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There are many ‘map projections’ [4]. All are distorting in some way
but one can preserve:—

e geodesics (gnomomic (Thales circa 590 B.C.)),
e areas (Archimedes circa 240 B.C., Lambert 1772),
e angles (Mercator 1569, stereographic (Halley 1695)).

Map projections that preserves angles are called ‘conformal’ and we
shall be concerned with

n
stereographic projection

/ e

One can see that this is conformal either by pure thought [6] or by
calculus, as follows. Notice that
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so inverse stereographic projection (in arbitrary dimension) is given by
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and we may calculate the (n + 1) x n matrix (the Jacobian)
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We may use ¢/(x) to map vectors in R" to vectors in R"™! tangent to S™
at ¢(x) according to X +— ¢'(x)X. The inner product between two such
vectors in R" is (¢ (2) X, ¢/(2)Y) = (¢'(2) X)!(¢'(2)Y). However,
(]2 + Hidpsn — 2228 ] [ (2] + DIdnsn — 22 2t
] 4t
(|lz||* + 4)Id,sn — 22 2°
4zt ] '
= (||lz|]* + 4)*Tdxn, — 4(||2]|*> + 4) x 2 + 4||z||* 2 2" + 16 2 2
= (l=]* + 4)*1dpxn
Therefore, from (1) we find
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= (el + ) — 222", 4] [

/ t 1/ . 16 —
(@) @) = g = L@
where A )
Q)

P4 T2
It follows that
(2)  {F(@)X, ¢ (@)Y )rorr = X' (¢ (2))'¢(2)Y = Q*(2)(X, Y ).
Finally, observe that the formula for the angle # between X and Y,
(X,Y)
(X, X)(V,Y)
does not see a rescaling of the form (2), no matter what is Q(z).
The Mercator projection from the two-sphere to the cylinder may
be obtained by following stereographic projection with the complex

logarithm z +— logz (where they are defined). All complex analytic
functions are conformal in two dimensions.

cosf =

29" July 2011
Smooth surfaces S in R® may locally be viewed, according to the
implicit function theorem [10], in three equivalent ways:—

e implicit S = {f = 0}, where df|s # 0,

e explicit S = {z = F(z,y)} for some choice of coérdinates,

e parametric S = ¢(U), for R? D" UJ 2, R3 with rank ¢ =2.
Gauss initiated the study of such surfaces under ‘Euclidean motions.’

The group of Euclidean motions in R™ comprises transformations of
the form

x+— Ax 4+ b, where A € SO(n) and b € R".
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Here, SO(n) denotes the ‘special orthogonal group’ comprising n x n
matrices A satisfying A'A = Id and det A = 1. Noting that

4 4][3]-[ ]

we may view the group of Euclidean motions as a subgroup of the group
of invertible (n + 1) x (n + 1) matrices. In particular, there are two
natural subgroups

som={[ 4 0]} ma w={[H 1]}

of which the latter is normal. In other words, the group of Euclidean
motions is a ‘semi-direct product’ [9], usually written as SO(n) x R™.
Elements from these two subgroups are referred to as ‘rotations’ and
‘translations,’ respectively.

The naive approach to surfaces S < R? under Euclidean motions is
to move them into some normal form from which one can read off some
useful information. Evidently, one can spend the translation freedom
to move a given point on the surface to the origin and then partially
spend the rotation freedom to align the unit normal (let’s suppose the
surface is oriented so that it has a preferred unit normal) with the
z-axis. In other words, we may arrange that S is given explicitly as

2=2'Qr+ ...,

in some orthogonal coordinate system (z!, 22, z) where @Q is a symmetric
2 x 2 matrix and the ellipsis ... denotes cubic and higher order terms.
The remaining coordinate freedom is rotation about the z-axis and
may be spent in orthogonally diagonalising (). We therefore arrive at
a defining equation for S of the form

z=M(zh)? + N (2®) + ...
where the only remaining ambiguity is to swop A; <= Ay. Therefore,
we are led to the invariant quantities

e mean curvature H = A\; + Ag,
e Gauss curvature K = A\ o.

In fact, one can back-track a little to obtain more ‘effective’ expressions
H =trace@) and K =det@.

Gauss’ Theorema Egregium®: the quantity K is intrinsic to S.|!!

We shall now explain what this theorem means and how to prove it in
a manner that introduces all sorts of useful geometric machinery.

lRemarkable Theorem



Firstly, a precise statement of Theorema Egregium. In the derivation
above, the quantities H and K were defined at a point but now let us
regard them as smooth functions on S. Let us write S parametrically
by means of ¢ : U — R3? for some open subset U C R3. We obtain a
function on U with values in the 2 x 2 symmetric matrices

(3) g(x) = (¢/(@)'¢' (@)

and Theorema Egregium says that the function K (z) can be obtained
solely from g(x). The geometric interpretation of this statement, that
‘K () is intrinsic to S,” emerges because the matrix g(z) records exactly
the inner product on the tangent space to S at ¢(z):—

e Tangent space at ¢(z) € S = {¢'(z)X for X € R?},

o (¢(2)X,¢'(2)Y)rs = X'g(2)Y.
In other words, the matrix g(x) is what beings living on S can measure.
They may need the help of ‘local coordinates’ ¢(x) for x € U C R? to
write down g(x) as a matrix but the remarkable fact is that they can
then compute the function K (x) for themselves, without knowing how
S sits inside R®. In particular, its value at any point on S will be
independent of choice of local coordinates near that point.

4™ August 2011
At this point it is not beyond the pale to prove Theorema Egregium
by brute force calculation. Specifically, if we write
E F
o) =gl = | 1G]

for smooth functions E = E(x), F = F(z), G = G(z), and we write
partial derivatives 0E/0z® as F, et cetera, then

2(EG — F*)(2F 1 — Eyy — G11)
+ F(AF Fy, — 211Gy — 2F3 By — ExGy + E1G))
+ E(G1\? — 2F1Gy + EyGo) + G(Ey? — 2B, F> + E\Gy)

k= 16(EG — F?2)?2

This sheds absolutely no light on what’s really going on here!

To discover the true picture (Riemann, Levi-Civita, Ricci,...) let’s
consider what happens to the matrix g(z) if we change codrdinates.
The plan is to incorporate the result into a definition (of Riemannian
manifold) and then work solely with this definition to construct some
natural machinery in which freedom from any further choices (such as
a system of codrdinates) is manifest.



The picture is like this

and, where it makes sense, ¢(%) = ¢(z) (and z = (2!, 2?) is regarded
as a function of T = (z',2?)). By the chain rule

~ N Ox ox'/0xt Ox'/0x?
o ({B) = ¢ (x)a_fxw where 5?5 = { axQ?aZLﬂ 8:62?852 ] .

Therefore, the matrix g(z) changes as follows.
e N ET) , &Ut, ox oz\" ox
W 70 = (@) 5@ = (o ) @5 = (52 ) sl

Henceforth, we shall regard a parameterisation R D U %, Sas giving
a ‘system of local coordinates’ (2!, %) on S. Then for each such local
coordinate system, the matrix-valued function g(z) defined by (3) may
be written out in terms of its components g(z) = (ga(z)), which are
themselves simply smooth functions on S (defined only where the local
coordinates are themselves defined). In terms of these components, the

transformation (4) reads

2l
gab Z Z oxa gcd 8~b .
c=1 d=1
We will abbreviate expressions such as this by omitting the summation
sign and instead using the ‘Einstein summation convention,” namely
that repeated indices implicitly require that they be summed. Also,
when matrix multiplication is written out explicitly like this, one can
freely reorder the expression. In summary, (4) may be written as
~ dx¢ Ox?
(5) Gab = gcd%@

where all quantities are regarded as smooth function on S. A smooth
manifold is defined by abstractly gluing together open subsets of R™ by
smooth coordinate changes (to obtain a Hausdorff topological space).



Using (5) as a prototype, there are many tensors that can similarly
be defined on an arbitrary smooth manifold M either operationally or
conceptually as follows (supposing some knowledge of vector bundles).

in Local Coordinates as Vector Bundle
~ TM
0 ~ ox”
vector field | X° Xo = xtZ2 x
ox® Oxb M
Oxb M
1-form | w, dz“ Dy = Wp—— [Jw orweA!
or® M
0z Ozt
2-f b = —Wha ~a = Wed "=~ ==~ A?
orm | Weyp Wp Wab wd&x“@xb w e
B - 0xf oz?
metric | Jab T Jbe Jab = Jed gz gzt | g € O?A' (+ve def)
and (gqp) is positive definite

Also notice that the exterior derivative on functions

A’ fr—df = ﬁ dz”
ox®
and the action of vector fields on functions
_ e OF
Xf = X m = XJ df

are coordinate-free and, therefore, intrinsically defined on any smooth
manifold.

5" August 2011
On R”™ there are some useful operations that can be defined using
the standard coordinates, namely
0X b &ub
—— and Ogwpy =
gra NG BTG = 5
on vector fields and 1-forms respectively. In fact, these are really the

same operation. Specifically, if we use the standard Euclidean metric
and its inverse on R”

5ab:{1 ifa=10 5ab:{1 ifa=10

(6) XV 0,X" =

0 ifa#b 0 ifa#b
to identify vector fields and 1-forms according to
Wq — abXb X = (Sabwb,

then the operations (6) clearly coincide.
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Remarkably, the differential operators (6) on R" (and the fact that
they agree under the natural identification of vector fields and 1-forms)
generalise to any Riemannian manifold. Indeed, this is the key to a
completely intrinsic proof of Theorema Egregium. Before setting up
this generalisation, however, here is an example that shows the utility
of these operations on R".

The operations (6) certainly depend on choice of coordinates. Let’s
see this explicitly on 1-forms. Suppose z° is another choice of local
coordinates and recall that @, = w;,(92°/07%). We compute

5o - 0 (0% _ Owg0xt 0%ar
= e \“Yom ) T ozeor Y oreorh
Owy Ox¢ Ox 9%x° Ox¢ Oz 9%x°
= = 8cwd

= — —— 4 W, == — —— W ———.
Ox¢ 0x* Jxb ¢ 0T OT® dre oxb ¢ 0T OT®
In particular, notice that 9%x¢/02°02° is symmetric in a and b. Hence,
Oz Oz?
Voze oz
where O wy) = %(@wb—@bwa) denotes the skew part of d,w;,. But this is
exactly the operational definition of a 2-form and we have constructed
the exterior derivative, an intrinsic differential operator d : A — A2
on any smooth manifold. It continues with the de Rham complex
d d d d

(7) AOL>AIL>A2—>A3—> _)An—1_>An

intrinsically defined on any smooth n-manifold where the operators d
in local coordinates are given by

Oaldn) = Opew

NS wy.g— 0[awb...c] € APH

where, again, square brackets [- - - | mean to take the skew part over the
indices they enclose. We have generalised the familiar operations of
grad, curl, and div on R? to codrdinate-free operators on an arbitrary
smooth manifold. The sequence (7) is a complex meaning that the
composition of any two consecutive operators is zero.

Just as n X n matrices naturally split into symmetric and skew parts

(8) A=A+ A) +5(A-AY
so it is natural to consider the symmetric part of d,wy, namely
a(au)b) = %(&wa + &,wa),

having seen above that this operator is very much tied to R™ with its
standard coordinates and Euclidean metric. It is the Killing operator
on R™ and its solutions enjoy a geometric interpretation, namely that
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the corresponding vector field be an infinitesimal Euclidean isometry.
We shall come back to this geometric interpretation shortly, but it is
already illuminating to solve J(qws) = 0 explicitly as follows. It is clear
that

Oawp)y = 0 = Iy = Oywy is skew.
Observe that
Kape = 0aFpe = 0u0pw.
is skew in be since Fj. is and symmetric in ab by the equality of mixed
partial derivatives. The following algebraic observation is well-known.

Lemma 1. Suppose K. is symmetric in ab and skew in be. Then it
vanishes.

Proof. We compute
Kabc = Kbac = _Kbca = _cha = Kcab = _Kacb = _Kabc
so K. = 0, as advertised. O

Thus, we have shown that the Killing equation is equivalent to the
following system

aaWb = Fab
(9) aaE}c =0

which is closed in the sense that all the partial derivatives of all of the
unknown functions wy and Fp,. are determined in terms of the functions
themselves. It is straightforward to solve, firstly for F;,, which must
be constant, and then for w, to conclude that

for Fab = F[ab},

Wy = 84 + mabxb for constant tensors s, and mg, = —Myp,.

We shall see later how these solutions correspond to Euclidean motions.
There is a more refined splitting of n x n matrices

A= (3(A+ A") — L(traceA)Id) + 3(A — A) 4 L(traceA)Id
into a symmetric trace-free part, a skew part, and a pure-trace part.
Correspondingly, a weaker version of the Killing equation known as
the conformal Killing equation is obtained by requiring only that the
trace-free symmetric part of d,w, vanish. We shall write this equation

as Jiwp)® = 0. Immediately, it may be rewritten as

Ouwp = Fyp + Aoy, where Fyy is skew.

Like the Killing equation, this equation has a geometric interpretation.
As the name suggests, it is that the corresponding vector field should
be an infinitesimal conformal symmetry. Pending a full explanation
of this interpretation, let us try to solve it as we did for the Killing
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equation (the general approach being known as ‘prolongation’). As
above, we consider

Kabc = aaabwc = aa-Fbc + (aaA)(Sbca

noting that this tensor is symmetric in ab and has the property that
Kape) = Lqoye for some L,. Here is the counterpart of Lemma 1.

Lemma 2. Suppose K. satisfies
Kigpe =0 and  Kypey = Ladye for some L.
Then Kape = Lape + Lydae — Legp-
Proof. Consider
Kape = Kape — (Ladbe + Lodac — Ledap),
noting that [?abc satisfies the hypotheses of Lemma 1. O

Lemma 2 shows that
Oalye = (Oy\)dac — (OcA)dan,
which we may rewrite as
Outroe = 0apQe — 0acQp,  Where I\ = —Q.
Now observe that
Kabed = 0a0h0cwa = 0aOpFeq + (0a0y\)dca

is symmetric in abc and has the property that Kupcq) = Lapdcq for some
tensor L, namely Lo, = 0,0,A = —0,Q.

Lemma 3. Suppose Kapeq is symmetric in abc and satisfies
Kapedy = Lapdea for some Lqy (necessarily symmetric).
Ifn > 3, then Kgeq = 0.

Proof. Lemma 2 implies that Ky ecq = Lapded + LacOva — Lagdpe and
because K pq is symmetric in ab we conclude that

0= 2K[ab]cd = LacObd — LvcOad — LadObe + LiaOac-
Tracing this expression over ac gives
0= Lépg + (n — 2)Lypg, where L = 8% L.

Tracing over bd now implies L = 0 and if n > 3, then substituting back
implies that L., = 0, as required. U
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This lemma is just what we need to conclude that 9,Q, = 0 and we
have closure. Specifically, the conformal Killing equation 0wy ° = 0 is
equivalent to the following closed system

aawb = Fab + A(Sab

(]—O) OuFye = dab@c — 0acQyp O\ = —Qa for Fop = F[ab}~
8(1@17 =0

It follows immediately that the dimension of the solution space is

n+n(n2— 1)+1+n: (n+1)2(n—|—2).

Indeed, the general solution is

1
Wy = Sq + Mapx® + Aty + rPrpr, — Eraxbxb,

where s,, Mgy, A, 1, are constant tensors with my, = —my,. We shall
see later how these solutions correspond to conformal motions. In
particular, we shall see how the vector field

0
oz
corresponds to the family of conformal transformations

b

(rb.xbx“ — %r“a: a:b)

L 1

1 —trpzb + %tQHTHQHxH?’

% —

for t € R.

11" August 2011

In this lecture we shall be concerned with the theory of connections
on vector bundles [7]. Connections in this generality will turn out to
be considerably more useful than our initial aim, which is to extend
the differential operator (6) to an arbitrary Riemannian manifold.

A connection on a smooth vector bundle F is a linear differential
operator V : E — A! ® E satisfying the Leibniz rule:—

V(fo)=df ® o+ fVo for f € I'(A°) and ¢ € T'(E).
In particular, the exterior derivative itself d : A° — A! is a connection

on the trivial bundle and the general connection on the trivial bundle
is given by

Vf=df +~f, forany fixedy € '(A").

Locally, a connection on any smooth vector bundle may be constructed
by trivialising the vector bundle E|y = U x RY. Then ¢ € I'(U, E) can
be identified with an array (oq,09, -+ ,0n) of smooth functions and
V: E|y — A' ® E|y defined by

v(017027 e 70N) - (dglad027 e adUN)~
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If V and V are connections on F, then so is hV + (1 — h)V for any
smooth function h. It follows that local connections may be patched
together by a partition of unity and, therefore, that any smooth vector
bundle will admit a connection. This deals with existence. As far as
freedom is concerned, suppose that V and V are two connections on
E and consider ® =V -V : E — A' ® E. It is a homomorphism of
vector bundles, equivalently a differential operator of degree zero. To
see this, note that

o(fo) = V(fo)—V(fo)

df @0+ fVo —df ®0 — fVo
fNo— fVo = fd(o).

One says that ‘@ is linear over the functions’ and it follows easily that
® is a homomorphism. In summary, if V: ¥ — A' ® E is a connection
then the general connection on E is V + ®, where ® € T'(A' @ End(E))
is arbitrary.

A connection V : E — A!' ® E induces linear differential operators

V:ANoE ANt gFE

(the E-coupled exterior derivative) characterised by a version of the
Leibniz rule, namely

(11) Viw®o)=dw®o+ (—1)w A Vo.
Notice that this is consistent

V(ifw®o) = d(fw)®@c+ (-1)ffwAVo
= dfANw®0o+ fdw®@o+ (-1)Ffw A Vo
= dw® fo+ (-DfwAdf @0+ (—1)fw A fVao
= dw® fo+ (—=1D)*w A (df @ 0 + fV0o)
= dw® fo+ (-1D)fwAV(fo) = V(w® fo)

and also that A* @ E — A*! ® FE satisfies a Leibniz rule:
V(fr)=df AT+ fVT for f € '(A°) and o € T'(AF @ E).

The composition £ VL ANQFE Y A20F s actually a homomorphism
of vector bundles: one checks it is linear over the functions:—
V(fo) = V(df ® o+ Vo)
= d*f®oc—df N\No+df N\Vo + fVie = fVio.

We shall write V2 : E — A’Q F as k € ['(A?®End(F)) and call it the
curvature of V.
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If two vector bundles E and F are equipped with connections then
the Leibniz rule automatically equips various bundles induced from E
and £’ with connections, including

E* E®E MNE (O End(E)=FE*®EFE
E®F  Hom(E,F)=E*®F.

For example, if we denote the canonical pairing between a vector bundle
and its dual by E* @ E > p®@ o+ p 1o € A° then

(12) dlplo)=(Vp)lo+plVo
(another version of the Leibniz rule) characterises V : E* — A' @ E*.

Lemma 4. For the induced connection on End(FE) and the coupled
exterior deriative V : A*> ® End(F) — A* ® End(F) we have

Vi =0 (the Bianchi indentity).
Proof. Let us consider the composition
(13) N@E LA o B Y A2 @ B
We find that
Viiw®o)=V(dw+ (-1)fwAVo)=---=wA V0.

In other words (13) is nothing other than [d Ak : A*@ E — A1 @ E.
Now, let us consider the composition

EANQE S ANQE AN QE.
We can group it in two different ways to conclude that

E Y AlgE

5| [1ans

NoFE - MeE

commutes. Untangling this conclusion implies Vx = 0. U

Now let us view the operation X° + 9,X° from (6) as a connection
on the tangent bundle of R™ and see what is its curvature. Writing 7’
for the tangent bundle, we see that 9 : T — A'® T satisfies the Leibniz
rule so certainly it is a connection. From (11), the induced operator
0: M ®T — A?>® T is characterised by

wWpX € — G[wa] — w[aab]Xc = (‘9[awb] + w[b(?a}Xc = 8[a(wb}XC)

and it follows that, in general, X;¢ +— 0;,Xy°. The curvature is the
composition X+ 0,X¢ > 0,05 X, which vanishes.

To summarise connections: Leibniz Rules, OK?
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We shall now specialise our discussion to connections on the tangent
bundle, equivalently the co-tangent bundle. We shall refer to them as
affine connections. Some authors [1] write linear connections instead.

Immediately, a problem arises. We already have a natural linear
differential operator A — A% namely the exterior derivative. However,
a connection V : A' — A ® Al gives rise to another one, namely the
composition

A YL AL AL D A2,

There is no need for these to agree. However, if we write 7 for their
difference, then we see that 7 is linear over the functions:—

T(fw) = (Ao V —d)(fw)
= ANdf @w+ fVw) — (df Nw+ fdw)
= df N\w+ fAoVw —df N\w— fdw
= fAoVw—fdw = fr(w).

Hence 7 : A' — A? is a homomorphism of vector bundles. It is called
the torsion of the affine connection V. It is convenient to regard it as a
homomorphism A! — Al ® A! that happens to take values in A* A Al
Then V — 7 : A — A!' ® A! is a torsion-free connection canonically
constructed from V. Henceforth we shall suppose our affine connections
to be torsion-free. Notice that our previous discussion shows that on
any smooth manifold, torsion-free affine connections exist. It is easy
to check that, by sticking with torsion-free connections, other awkward
problems are avoided. For example, V : A' ® T — A? ® T may be
unambiguously defined either by (11) or as the composition

(14) ANRT L ANAN T 22 20T,
where V is the induced connection on A' ® T.

From now on, we shall usually adorn connections and tensors with
indices, consistently using upper indices for contravariant tensors such
as vector fields and lower indices for covariant tensors such as k-forms
or metrics. On the one hand, this reflects simply writing everything
in local coordinates. But the consistent distinction between upper and
lower indices means that, instead, we may view the indices as markers
depicting the type of the tensor and incorporate the natural operations
such as skewing, symmetrising, or contracting into the notation by
altering the order of the indices and by viewing the Einstein summation
convention as the natural pairing between vectors and co-vectors. This
is Penrose’s abstract index notation [8].
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By definition, for a torsion-free affine connection V,, the exterior
derivative may be written as w, +— Viqwy. If V, is torsion-free, the
general torsion-free connection is

Vawy = Vowy — Lap‘we,  where 'y = T'(qp)°.
The corresponding connection on vector fields is
VX =V, X+ Tyt X?
for then (12) holds for V,, given that it holds for V-

(VaX)we + X0 (Vaws) = (VX 4 Lo X?)we + XO(Vawy — Dap‘we)
= (VaX)w. + Xb(Vawp) = Va(Xlwy).
The corresponding formula for the induced connection on ®?A! is
(15) Vabse = Vabse — Tap™0ae — Taepa

(because the Leibniz rule allows one readily to verify this formula for
simple tensors 0. = ¢p1h. whence the general case follows by linearity).

The curvature of an affine connection is a tensor R € T'(A2@End(T))
and for a torsion-free connection may be defined by

(16) (VaVy — ViVa) X = Ry g X

(tradition dictating that it differ by a factor of 2 from « defined above).
Notice that we are using that V, is torsion-free implicitly on the left
hand side of (16) since then V : A' ® T'— A? ® T may be realised as
the composition (14). From (12) it is easily checked that the curvature
on the co-tangent bundle is given by

(VoVy — ViV )wig = —Rap awe.

Theorem 1. On a Riemannian manifold there is a unique torsion-free
affine connection ‘preserving the metric’ in the sense that V,gp. = 0
for the induced connection on ()*AL.

Proof. Fixing an arbitrary torsion-free affine connection V,, the general
torsion-free affine connection is given by

VQ¢b = €a¢b - Fabcgbc for Fabc = ]_"(ab)c’ eqUivalently F[ab}c =0.

Let us use (15) to compute

(17) Vagbc = vagbc - 1-‘(JLbdgdc - Facdgbd = Vagbc - Fabc - Facb;

where we are using g, to identify covariant and contravariant tensors
according to X, = g,»X° and, conversely, w® = ¢®w,. Here, we are
denoting by g% the ‘inverse’ of g, namely ¢.,¢" = 0,° where §,° is
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the Kronecker delta, i.e. the canonical pairing between tangent and co-
tangent vectors. (In the vernacular, one speaks of ‘raising and lowering
indices” and often does this without comment). From (17) we see that
existence and uniqueness of our desired connection boils down precisely
to existence and uniqueness for the following algebraic equations

(18) 1—‘[ab]c =0 and 1—‘a(bc) = %Vagbcy
which, in turn, boils down to Lemma 1. To see this, it is convenient to
rephrase Lemma 1 as the statement that

AN @A 3 Kupe — Ky € A2 @ A

is an isomorphism (precisely, Lemma 1 says that this homomorphism is
injective but these vector bundles clearly have the same rank). To solve
(18) we note that I'ype = %6agbc — Kape, where Kgpe = Ko, provides
the general solution of the second equation and then Lemma 1 is just

what we need to solve K. = %V[agb]c and hence the first equation.
More specifically, the unique solution of (18) is easily seen to be

Lape = %(ﬁagbc + 6bgac - 6cgozb)
(cf. the statement and proof of Lemma 2). O

The connection V, from Theorem 1 is called the metric connection or
the Levi-Civita connection associated with g,,. It is the basic object in
Riemannian differential geometry [1, 5]. As an aside, we remark that
its construction only depends on the non-degeneracy of g, (meaning

that X® — g, X? is an isomorphism 7" = A!) and hence applies equally
well in the Lorentzian setting.

18" August 2011
e Lie derivative by formula, e.g. LxY? = X°V,Y? + (V,X%)w,.
e Geometric interpretation of Lie derivative.
e Derivation of Killing equation on vector fields.
e Formal definition of conformal structure via gy, = Q%gas.
e Derivation of conformal Killing equation.

19" August 2011

e Conformal change in Levi-Civita connection:—

A~

Vawp = Vawy — Towp — Tpwa + TWegap, where T, = (V) /S0
e Conformal change in Riemann curvature tensor:—

Rabcd = QQ (Rabcd - (Eacgbd - Ebcgad - Eadgbc + Ebdgac))a
where Eab = VaTb - TQT(, + %TCTCgab.
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e Decomposition of Riemann curvature tensor:—

~

Raped = Wabed + Pacgvd — PocGad — Padgve + Pragac,

where P, is symmetric (the Rho-tensor or Schouten tensor)

and Wpeq 18 totally trace-free (the Weyl tensor).

e Discussion with Bianchi symmetry. ..

e The Weyl tensor is conformally invariant: /Wabcd = Wu a.
L ]/;\)ab = Pab - v(berb + TaTb - %TcTcgab-

® Rupeq Obstructs Riemannian flatness for n > 2.

o W i.a Obstructs conformal flatness for n > 4.

L4 Rabcd = 4K(gacgbd - gbcgcd) In case n = 2.

e The unit 2-sphere has K = 1/4.
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a

e By stereographic projection, the unit n-sphere has

Rabcd = YGacGvd — GvcYad-
e Liouville’s Theorem and formula [3]

p m%ab — 1st||z|? A>0 m®, € SO(n)
c_ 1 5> Where L2 ca 1, ab
L+ rexe — 5tz = —5lrll? 5% = —sm®r,.

e Proof by conformal Killing equation.
e Proof by solving 9,17, = T, 1) — %TCTcéab.
e Proof by conformal circles [2]

2U.UIAY — 6U.AA® + 3A. AU’ =0, where 0 = U%), and A® = 9U".

[1]
2]
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