V-invariant methods for generalised least squares problems

M.R.Osborne and Inge Söderkvist School of Mathematical Sciences, ANU, and Department of Mathematics, University of Luleã

The generalised least squares problem is

$$
\min _{\mathrm{x}} \mathbf{r}^{T} V^{-1} \mathbf{r} ; \mathbf{r}=A \mathbf{x}-\mathbf{b},
$$

where $A: R^{p} \rightarrow R^{n}, V: R^{n} \rightarrow R^{n}$. It will be assumed that A has its full rank $p<n$, but only that V is positive semi-definite. Typically in data analytic situations V, which has the dimension of the data set, is large. An application is made to a class of Kalman Filter problems. This forces well defined sparse structures on both A and V.

A class of V-invariant algorithms has been introduced by Gulliksson and Wedin (SIAM J. Matrix Anal. Applic., 13(4)1298-1313,1992.) Their problem of particular interest was equality constrained least squares which can be formulated in generalised least squares form with singular (and diagonal) V. This is a particular example of the ability of these algorithms to support a form of multi-scaling. They point out the importance of column pivoting in this application.

Söderkvist (Proceedings of CTAC95,p.709-716, World Scientific) considered the Kalman Filter case with diagonal covariance matrix V and was able to demonstrate superior numerical performance of his V-invariant methods for problems in which V possessed several distinct scales. The restriction to diagonal V is important in developing algorithms, and he experimented with methods for reducing the problem to one having this form employing both Jacobi's method ($V=Q \wedge Q^{T}$) and rank revealing Cholesky with diagonal pivoting $\left(P V P^{T}=L D L^{T}\right)$. He was concerned about possible errors in small elements of D.

Osborne (Proceedings ICCS03,v.3,p.673-682, Springer) has argued that provided the number of small elements in D is $k \leq p$ then errors in these are benign so that errors due to the rank revealing factorization are insignificant. Our aim here is to present an application appropriate to a class of Kalman filter problems with distinctly illconditioned covariances and both stable and unstable dynamics.

V-invariant transformation J

$$
J V J^{T}=V
$$

Let J_{1} and J_{2} be V-invariant. Then

- $J_{1}^{-1}, J_{2}^{-1} J_{1} J_{2}$ and $J_{2} J_{1} V$-invariant,
- $J_{1}^{T}, J_{2}^{T} \quad V^{-1}$-invariant (V nonsingular).

If

$$
V=\left[\begin{array}{cc}
0 & 0 \\
0 & V_{2}
\end{array}\right] \text { (reduced form!) }
$$

then J is V-invariant iff

$$
J=\left[\begin{array}{cc}
J_{11} & 0 \\
J_{21} & J_{22}
\end{array}\right], J_{22} V_{2} J_{22}^{T}=V_{2}
$$

and J_{11}, J_{22} nonsingular.

Ordinary least squares. Here V-invariance implies J orthogonal.

$$
V=I \Rightarrow J I J^{T}=I
$$

Analogue of Aitken-Householder elementary orthogonal transformation is

$$
J=I-2 \frac{V \mathbf{v} \mathbf{v}^{T}}{\mathbf{v}^{T} V \mathbf{v}}, J^{2}=I
$$

To use in matrix factorization need \mathbf{v} such that

$$
J\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1} \\
\gamma \mathbf{e}_{1}
\end{array}\right]
$$

Scale of \mathbf{v} not important. Take

$$
V \mathbf{v}=s\left[\begin{array}{c}
0 \\
\mathbf{u}_{2}-\gamma \mathbf{e}_{1}
\end{array}\right]
$$

where s is a scale factor.

Problem

$$
V \mathbf{v}=s\left[\begin{array}{c}
0 \\
\mathbf{u}_{2}-\gamma \mathbf{e}_{1}
\end{array}\right]
$$

is as hard as original unless V readily invertible! Specialize to $V=D$ diagonal, $\operatorname{dim}\left(\mathbf{u}_{1}\right)=j-1$,

$$
\begin{aligned}
D & =\operatorname{diag}\left\{d_{1}, d_{2}, \cdots, d_{n}\right\} \\
& =\operatorname{diag}\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{k}, \nu_{k+1}, \cdots, \nu_{n}\right\} \\
\varepsilon_{1} & \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{k} \ll \nu_{k+1} \leq \cdots \leq \nu_{n} \\
\mathbf{v} & =\left[\begin{array}{c}
0 \\
\mathbf{v}_{2}
\end{array}\right]=d_{j}\left[\begin{array}{c}
0 \\
D_{2}^{-1}\left(\mathbf{u}_{2}-\gamma \mathbf{e}_{1}\right)
\end{array}\right] .
\end{aligned}
$$

Here $s=d_{j}$ and the effective diagonal matrix has elements ≤ 1. Importance of the ordering of the elements of D becomes clearer in the calculation of γ.

To calculate γ use V-invariance

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]^{T} J^{T} D^{-1} J\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
\mathbf{u}_{1} \\
\gamma \mathbf{e}_{1}
\end{array}\right]^{T} D^{-1}\left[\begin{array}{c}
\mathbf{u}_{1} \\
\gamma \mathbf{e}_{1}
\end{array}\right] \\
\Rightarrow \mathbf{u}_{2}^{T} D_{2}^{-1} \mathbf{u}_{2} & =\gamma^{2} \mathbf{e}_{1}^{T} D_{2}^{-1} \mathbf{e}_{1} .
\end{aligned}
$$

There are two cases depending on j and k.
$j \leq k$

$$
\gamma^{2}=\left(\mathbf{u}_{2}\right)_{j}^{2}+\sum_{s=j+1}^{k} \frac{\varepsilon_{j}}{\varepsilon_{s}}\left(\mathbf{u}_{2}\right)_{s}^{2}+\sum_{s=k+1}^{n} \frac{\varepsilon_{j}}{\nu_{s}}\left(\mathbf{u}_{2}\right)_{s}^{2}
$$

$j>k$

$$
\gamma^{2}=\left(\mathbf{u}_{2}\right)_{j}^{2}+\sum_{s=j+1}^{n} \frac{\nu_{j}}{\nu_{s}}\left(\mathbf{u}_{2}\right)_{s}^{2}
$$

Note that there is multiple scale behavior when $j \leq k$ and that limit $\varepsilon \rightarrow 0$ can be defined! Also γ is the column length in the re-scaled metric. Column pivoting can be required because of the multiple scaling.

If elements of J are large then this is an indicator of possible stability problems! Let

$$
J=I-2 \mathbf{c d}^{T}
$$

be an elementary V-invariant reflector. Then

$$
\|J\|_{2}=\eta+\sqrt{ }\left\{\eta^{2}-1\right\}, \eta=\|\mathbf{c}\|_{2}\|\mathbf{d}\|_{2}
$$

Here

$$
\begin{aligned}
\eta & =\frac{\left\|D_{2}^{-1}\left(\mathbf{u}_{2}-\gamma \mathbf{e}_{1}\right)\right\|\left\|\mathbf{u}_{2}-\gamma \mathbf{e}_{1}\right\|}{\left(\mathbf{u}_{2}-\gamma \mathbf{e}_{1}\right)^{T} D_{2}^{-1}\left(\mathbf{u}_{2}-\gamma \mathbf{e}_{1}\right)}, \\
\Rightarrow\|J\| & \geq \eta \geq \frac{\left\|\mathbf{u}_{2}\right\|}{2 \gamma}
\end{aligned}
$$

That is $\left\|J_{j}\right\|$ will be large if

$$
\left|d_{j} \mathbf{u}_{2}^{T} D_{2}^{-1} \mathbf{u}_{2}\right| \ll\left\|\mathbf{u}_{2}\right\|
$$

the $\varepsilon \rightarrow 0$ limit gives η large if

$$
\left\|\mathbf{u}_{\varepsilon}\right\| \ll\left\|\mathbf{u}_{2}\right\| .
$$

Here \mathbf{u}_{ε} corresponds to $\left\{\varepsilon_{j}, \cdots, \varepsilon_{k}\right\}$ in D_{2}.

Example Let

$$
D=\left[\begin{array}{lll}
\varepsilon & & \\
& \varepsilon & \\
& & 1
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
\alpha \\
\beta \\
\nu
\end{array}\right]
$$

The transformation taking \mathbf{w} to $\gamma \mathbf{e}_{1}$ in limit $\varepsilon \rightarrow 0$ is

$$
I-\pi\left(\left[\begin{array}{c}
\alpha \\
\beta \\
\nu
\end{array}\right]+\theta(\pi 1) \mathbf{e}_{1}\right)\left(\left[\begin{array}{c}
\alpha \\
\beta \\
0
\end{array}\right]+\theta(\pi 1) \mathbf{e}_{1}\right)^{T}
$$

where

$$
\begin{aligned}
\pi & =\frac{1}{\pi 1 \pi 2}, \theta=\operatorname{sgn}(\alpha) \\
\pi 1 & =\left(\alpha^{2}+\beta^{2}\right)^{1 / 2} \\
\pi 2 & =|\alpha|+\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}
\end{aligned}
$$

Note that $\pi \nu$ would be large if $\alpha, \beta \ll \nu$ violating the stability condition.

Solution of GLSQ problem is $\mathbf{x}=T \mathrm{~b}$ where T solves

$$
\left[\begin{array}{ll}
T & \wedge
\end{array}\right]\left[\begin{array}{cc}
D & A \\
A^{T} & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & I
\end{array}\right] .
$$

Let $J A=\left[\begin{array}{c}R \\ 0\end{array}\right]$. Transformed operator satisfees

$$
\left[\begin{array}{ll}
{\left[\begin{array}{ll}
\widetilde{T}_{1} & \widetilde{T}_{2}
\end{array}\right] \wedge}
\end{array}\right]\left[\begin{array}{cc}
{\left[\begin{array}{cc}
D_{\varepsilon} & 0 \\
0 & D_{21}
\end{array}\right]} & 0 \\
0 & D_{22}
\end{array}\right] \begin{gathered}
{\left[\begin{array}{c}
R \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
R^{T} & 0
\end{array}\right]}
\end{gathered}
$$

Gives

$$
\begin{aligned}
\widetilde{T}_{1} & =R^{-1}, \widetilde{T}_{2}=0 \\
\wedge & =R^{-1}\left[\begin{array}{cc}
D_{\varepsilon} & 0 \\
0 & D_{21}
\end{array}\right] R^{-T} \\
\mathbf{x} & =\left[\begin{array}{ll}
R^{-1} & 0
\end{array}\right] J \mathbf{b} .
\end{aligned}
$$

When V is not diagonal start with an $L D L^{T}$ factorization of V and rewrite problem by setting $L^{-1} \mathbf{r}=\widetilde{\mathbf{r}}=D^{1 / 2} \mathbf{s}$ to obtain

$$
\min _{\mathbf{x}} \mathbf{s}^{T} \mathbf{s} ; D^{1 / 2} \mathbf{s}=L^{-1} A \mathbf{x}-L^{-1} \mathbf{b}
$$

Implement by making a rank-revealing Cholesky:

$$
P V P^{T} \rightarrow L \operatorname{diag}\left\{d_{n}, d_{n-1}, \cdots, d_{1}\right\} L^{T}
$$

where the diagonal pivoting ensures

$$
d_{n} \geq d_{n-1} \geq \cdots \geq d_{1}
$$

and process stops if a very small or negative d_{i} encountered. Key point is that illconditioning in V is largely forced into D. Conditions for success (eg Higham) correspond to the assumptions made already on D but need further step to reverse order of computed D to construct V-invariant transformation. Would expect that small d_{i} could have high relative error. Does this matter?

The case

$$
D=\operatorname{diag}\left\{0, \cdots, 0, d_{k+1}, \cdots, d_{n}\right\}, k<p
$$

gives the equality constrained problem

$$
\min _{\mathbf{x}} \mathrm{s}^{T} \mathbf{s} ;\left[\begin{array}{cc}
0 & \\
& D_{2}^{1 / 2}
\end{array}\right] \mathbf{s}=\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

This is the limiting problem associated with the penalised objective

$$
\min _{\mathbf{x}}\left\{\mathbf{r}_{2}^{T} D_{2}^{-1} \mathbf{r}_{2}+\lambda \mathbf{r}_{1}^{T} \mathbf{r}_{1}\right\} ; \mathbf{r}=\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

which has the alternative form
$\min _{\mathbf{x}} \mathrm{s}^{T} \mathbf{s} ;\left[\begin{array}{ll}\lambda^{-1 / 2} I & \\ & D_{2}^{1 / 2}\end{array}\right] \mathrm{s}=\left[\begin{array}{c}A_{1} \\ A_{2}\end{array}\right] \mathbf{x}-\left[\begin{array}{l}\mathbf{b}_{1} \\ \mathbf{b}_{2}\end{array}\right]$.
From theory of penalty functions expect

$$
\|\mathrm{x}(\lambda)-\mathrm{x}(\infty)\|=O(1 / \lambda), \lambda \rightarrow \infty
$$

Generalised spline objects having the general form $\mathcal{E}\left\{\mathbf{h}^{T} \mathbf{x}(t) \mid y_{1}, \cdots, y_{n}\right\}$ can be obtained by considering the stochastic differential equation

$$
d \mathbf{x}=M \mathbf{x} d t+\sigma \sqrt{\lambda} \mathbf{b} d w
$$

where $M: R^{m} \rightarrow R^{m}$, in conjunction with the observation process

$$
\mathbf{h}^{T} \mathbf{x}\left(t_{i}\right)+\varepsilon_{i}=y_{i}, \mathcal{V}\left\{\varepsilon_{i}\right\}=\sigma^{2} .
$$

Let

$$
\frac{d X}{d t}=M X, X(\xi, \xi)=I .
$$

Variation of parameters gives the dynamics equation

$$
\mathbf{x}_{i+1}=X_{i} \mathbf{x}_{i}+\sigma \sqrt{\lambda} \mathbf{u}_{i}
$$

where

$$
\begin{aligned}
& \mathbf{u}_{i}=\int_{t_{i}}^{t_{i+1}} X\left(t_{i+1}, s\right) \mathbf{b} \frac{d w}{d s} d s, \\
& \left.\mathbf{u}_{i} \sim N\left(0, \sigma^{2} \lambda R_{i}\right)\right) .
\end{aligned}
$$

This leads, via the Kalman filter subject to a diffuse prior, to the generalised least squares problem

$$
\min _{\mathbf{x}}\left\{\mathbf{r}_{1}^{T} R^{-1} \mathbf{r}_{1}+\mathbf{r}_{2}^{T} V^{-1} \mathbf{r}_{2}\right\},
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{r}_{1} \\
\mathbf{r}_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
-X_{1} & I & & \\
& -X_{2} & I & & \\
& & \cdots & & \\
\mathbf{h}^{T} & & & -X_{n-1} & I \\
& \mathbf{h}^{T} & & & \\
& & \cdots & & \\
& & & \mathbf{h}^{T}-\left[\begin{array}{l}
0 \\
\mathbf{y}
\end{array}\right], \\
\text { and } & =\sigma^{2} \lambda \operatorname{diag}\left\{R_{1}, R_{2}, \cdots, R_{n-1}\right\}, V=\sigma^{2} I
\end{array}\right.} \\
& \text { and }
\end{aligned}
$$

$$
R_{i}=\int_{t_{i}}^{t_{i+1}} X\left(t_{i+1}, s\right) \mathbf{b b}^{T} X\left(t_{i+1}, s\right)^{T} d s
$$

V-invariant factorization applied to successive column blocks requires rank-revealing factorization of the corresponding R_{j} and within column block sorting. Straight forward application under the given ordering results in accumulating fill. The first few steps are:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-X_{1} & I & \\
& -X_{2} & I \\
\vdots & \vdots & \vdots \\
\mathbf{h}^{T} & & \\
& \mathbf{h}^{T} & \\
& & \mathbf{h}^{T}
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
U_{1} & W_{1} & \\
& -X_{2} & I \\
\vdots & \vdots & \vdots \\
& \mathbf{z}_{11}^{T} & \\
& \mathbf{h}^{T} & \\
& & \mathbf{h}^{T}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
U_{1} & W_{1} & \\
& U_{2} & W_{2} \\
\vdots & \vdots & \vdots \\
& & \mathbf{z}_{21}^{T} \\
& & \mathbf{z}_{22}^{T} \\
& & \mathbf{h}^{T}
\end{array}\right]
\end{aligned}
$$

The ordering used in Paige and Saunders information filter generates less direct fill.

Fill can be controlled to a total of $m+1$ rows in the next to pivotal block column by orthogonal transformations which are in the context used V-invariant.First applied at step m
$\left[\begin{array}{ccc}\ldots & \ldots & \cdots \\ U_{m} & W_{m} & \\ & -X_{m+1} & I \\ \cdots & \cdots & \cdots \\ & \mathbf{z}_{m 1}^{T} & \\ & \mathbf{z}_{m 2}^{T} & \\ & \vdots & \\ & \mathbf{z}_{m m}^{T} & \\ & \mathbf{h}^{T} & \end{array}\right] \rightarrow\left[\begin{array}{ccc}\ldots & & \\ & & \\ U_{m} & W_{m} & \cdots \\ & -X_{m+1} & I \\ \cdots & \cdots & \cdots \\ & Z_{m} & \\ & 0 & \end{array}\right]$
where $Z_{m}: R^{m} \rightarrow R^{m}$. It is convenient to carry out the transformation in two steps in order to compute auxiliary quantities.

$$
\left[\begin{array}{c}
\mathbf{z}_{i 1}^{T} \\
\vdots \\
\mathbf{z}_{i m}^{T} \\
\mathbf{h}^{T}
\end{array}\right] \rightarrow\left[\begin{array}{c}
Z_{i}^{1} \\
\mathbf{h}^{T}
\end{array}\right] \rightarrow\left[\begin{array}{c}
Z_{i} \\
0
\end{array}\right] .
$$

Example: Quintic spline. This corresponds to the case

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \mathbf{h}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

with h and b chosen for maximum smoothness. The covariance matrix blocks are readily computed:

$$
R_{i}=\delta\left[\begin{array}{ccc}
\frac{\delta^{4}}{20} & \frac{\delta^{3}}{8} & \frac{\delta^{3}}{6} \\
\frac{\delta^{3}}{8} & \frac{\delta^{2}}{3} & \frac{\delta}{2} \\
\frac{\delta^{3}}{6} & \frac{\delta}{2} & 1
\end{array}\right]
$$

The rank revealing Cholesky gives
$P R_{i} P^{T}=\delta\left[\begin{array}{ccc}1 & & \\ \frac{\delta}{2} & 1 & \\ \frac{\delta^{2}}{6} & -\frac{\delta}{2} & 1\end{array}\right]\left[\begin{array}{lll}1 & & \\ & \frac{\delta^{2}}{12} & \\ & & \frac{\delta^{4}}{720}\end{array}\right]\left[\begin{array}{ccc}1 & \frac{\delta}{2} & \frac{\delta^{2}}{6} \\ & 1 & -\frac{\delta}{2} \\ & & 1\end{array}\right]$.
Note the small elements in D_{i}. However, there are $(n-1)(m-1)$ of these all told while the design is $R^{n m} \rightarrow R^{n m+n}$ so the conditions for the solubility of the generalised least squares problem can be satisfied.

Example: Tension splines. This corresponds to an example with unstable dynamics. For one and two parameter splines we have

$$
M=\left[\begin{array}{cc}
0 & 1 \\
\alpha^{2} & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\alpha^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \beta^{2} & 0
\end{array}\right]
$$

Smoothness is maximized by choice $\mathbf{h}=\mathrm{e}_{1}, \mathrm{~b}=$ \mathbf{e}_{m}. Again covariances have small elements. The examples are not very unstable.

$\alpha=1$	
$n=11$	$D_{i}=\{8.3-5,1.0-1\}$
$n=51$	$D_{i}=\{6.7-7,2.0-2\}$
$\alpha=1, \beta=2$	
$n=11$	$D_{i}=\{9.9-13,1.4-8,8.3-5,1.0-1\}$
$n=51$	$D_{i}=\{0.0,4.4-12,6.7-7,2.0-2\}$

Example: A stable example is provided by the simple chemical reaction $A \rightarrow B \rightarrow C$ with rates k_{1} and k_{2}. Here

$$
\frac{d}{d t}\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{ccc}
-k_{1} & 0 & 0 \\
k_{1} & -k_{2} & 0 \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]
$$

Well posedness of the estimation problem requires $(h)_{3} \neq 0$. Maximum smoothness of the g -spline is achieved with $\mathrm{b}=\mathrm{e}_{1}, \mathrm{~h}=\mathrm{e}_{3}$.

$k_{1}=1, k_{2}=2$	
$n=11$	$D_{i}=\{5.5-8,6.8-5,9.1-2\}$
$n=51$	$D_{i}=\{1.8-11,6.4-7,2.0-2\}$

