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Abstract : It has been known for 50 years that the
discrete l1 approximation problem can be solved by
linear programming (L.P.). However, improved algo-
rithms involve a step which can be interpreted as a
line search, and which is not part of the standard sim-
plex algorithm. This is the simplest example of a class
of problems with a structure distinctly more compli-
cated than that of the standard nondegenerate LP.
Our aim is to uncover this structure for these more
general polyhedral functions and to use it to develop
what are recognizably simplicial type algorithms.
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A convex function is the supremum of an affine family:

f(x) = sup
i∈σ

cT
i x− di

If the index set σ is finite then f(x) is polyhedral.
The problem of minimizing f(x) over a polyhedral set
Ax ≥ b can always be written as an LP

min
Ax≥b

h; h ≥ cT
i x− di, i ∈ σ.
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The linear program supports a simple picture!

aT
2 x = b2

aT
1 x = b1

z = cT x

Ax ≥ b

nondegenerate linear program

Note that three faces of the epigraph intersect at each
extreme point x ∈ R2. The case of degeneracy corre-
sponds here to more than three faces intersecting at
an extreme point.
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Problems which arise in discrete estimation Let
the linear model be

r = Ax− b.

Here the estimation problem has the form

minxF (r),

where F (·) is a seminorm and polyhedral
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We consider algorithms for linear estimation problems
which are characterised by:

1 The epigraph of F (r(x)) is generically degener-
ate in the sense of linear programming.

2 There is a well defined set of necessary condi-
tions which describe the problem optimum and
which can be taken here as defining an appro-
priate sense of nondegeneracy.

It is assumed that rank (A) = p, and that this suffices
to guarantee a bounded optimum. Associated with
extreme points of the epigraph are appropriate sets of
algebraic conditions. Typically these involve a subset
of the equations specifying the linear model and we
refer to this subset as the ”active set” at xσ where σ is
the index set pointing to the active subset.
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Example 1 : l1 estimation

min
x

∑
|ri| r = Ax− b A : Rp → Rn.

corresponding to

cT
j = [±1,±1, · · · ,±1]A, j = 1,2, · · ·

Note apparent redundancy when ri = 0. The neces-
sary conditions are:

0 =
∑

i∈σC

θiAi∗ +
∑

i∈σ

uiAi∗,

θi = sign(ri), ri 6= 0,

σ = {i; ri = 0},
|ui| ≤ 1, i ∈ σ.

The nondegeneracy condition is

|σ| = p, rank (Aσ) = p.
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In case p = 2 extreme points characterized by (say)

±r1(x1, x2) = 0,

±r2(x1, x2) = 0.

Four faces of epigraph intersect at each extreme point
(LP expect 3). ± ⇒ θi such that directions into faces
of epigraph satisfy

θ1A1∗t = λ1 > 0,

θ2A2∗t = λ2 > 0.

for convex combination of edge directions. This con-
vention permits each face to be specified unambigu-
ously!
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r1 = 0

r2 = 0

t

r1 > 0, r2 > 0

r1 < 0
r2 < 0

r1 < 0
r2 > 0

r1 > 0
r2 < 0

four faces of epigraph intersect at
extreme points x ∈ R2

The l1 problem typically supports a linesearch!
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Example 2 : rank regression.
Let scores wi nondecreasing and summing to 0 be
given - for example wi =

√
12

(
i

n+1 − 1
2

)
, i = 1,2, · · · , n

min
x

n∑

i=1

wirν(i)

w1 ≤ w2 · · · ≤ wn,
n∑

i=1

wi = 0, ‖w‖ > 0.

ν ranking set. Nonsmoothness has its origin in the
reordering of scores associated with tied residuals.
Here the objective is a seminorm.

The necessary conditions are distinctly more compli-
cated!
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6 faces of epigraph intersect at extreme points of epi-
graph over R2. Consider the equations characterizing
ties:

± (r2 − r1) = ± (r3 − r2) = ± (r1 − r3) = 0.

Serious redundancy:

r1 − r3 = −r3 + r2 − r2 + r1.

This implies the third line must pass through intersec-
tion of first two. Again redundancy in the association
of edges and faces can be resolved by looking at di-
rections into faces as convex combinations of direc-
tions along edges.

θik (Ai∗ −Ak∗) t = λik > 0,

θkj

(
Ak∗ −Aj∗

)
t = λkj > 0.
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r1 = r2

r2 = r3

r3 = r1

t

r3 > r1 > r2 r3 > r2 > r1

r1 > r3 > r2 r2 > r3 > r1

r1 > r2 > r3 r2 > r1 > r3

six faces of epigraph intersect at
extreme points x ∈ R2
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Duality :

l1 Fenchel dual not too bad

min
u

bTu, ATu = 0, −e ≤ u ≤ e.

rank regression Fenchel dual looks familiar, but ...

min
u

bTu, ATu = 0, u ∈ conv {wi}
where wi are all distinct permutations of
w1, w2, · · · , wn.

l1 is actually a limiting case of rank regression corre-
sponding to sign scores.
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Type 1 PCF :

f (x) = max
1≤i≤m

cT
i x− di.

Set φi (r) , i = 1,2, · · · , N structure functionals

for f (r (x)) if each extreme point

[
x∗

f (r (x∗))

]
of

epi (f)is determined by the linear system

φi
(
r

(
x∗

))
= 0, i ∈ σ ⊆ {1,2, · · · , N} .

where σ defines the active set (of structure function-
als).

We have already seen examples where the set of struc-
ture functionals contains redundant elements!
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Redundancy : Structure equation φs = 0 is redun-
dant if

∃π 6= ∅, s /∈ π � (φi = 0 ∀ i ∈ π) ⇒ φs = 0

identically in r. Consider rank regression example

φ12 = r2 − r1, φ23 = r3 − r2, φ31 = r1 − r3.

φ12 = φ23 = 0 ⇒ φ31 = φ23 − φ12 = 0,

φ12 = 0 ⇒ φ21 = 0.

multiplication by -1 is significant!
φ12, φ23 and φ23, φ31examples of nonredundant pairs.
Say: get nonredundant configurations by allowable re-
ductions.
Linear independence : Given set of structure func-
tionals

rank (Vσ) = k = |σ| ≤ p.

V T
σ = ΦT

σ A ∈ Rp → Rk

Φσ =
[
∇rφT

σ(1) · · · ∇rφT
σ(k)

]
∈ Rk → Rn.

Nondegeneracy : Each allowable reduction of active
set is linearly independent.

15



To generate a compact local representation specialise
one of the allowable reductions. Let x = x∗+εt, ε >

0 small enough. Then, using piecewise linearity of the
objective, rearranging gives

f (r (x)) = fσ (r (x)) +
|σ|∑

i=1

ωi (t)φσ(i) (r (x)) ,

1. fσ smooth, ωi (t) provides nonsmooth behaviour.

2. Each distinct realization of ωi (t) , i = 1,2, · · · , |σ|
characterizes one of the faces of epi (f) meeting

at

[
x∗

f (r (x∗))

]
.
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An alternative is to use the property displayed in the
examples to develop a local description by character-
izing the individual faces at a particular extreme point
(more generally a nonsmooth point of the epigraph).
Completeness : For each face s, 1 ≤ s ≤ q of
T (epi (f) ,x∗) there exists σs such that directions
into the face

[
x∗ + εt

f (x∗ + εt)

]
=

[
x∗

f (x∗)

]
+ ε

[
t

f ′ (x∗ : t)

]

satisfy

V T
σs

t = λ > 0.

Note that ∀ s system

φσs(i) (x) = 0, i = 1,2, · · · , p

has same solution x∗.
Redundancy is an algebraic property. At an extreme
point it requires q > p + 1.
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Extreme directions in T (epi (f) ,x∗)
These are given by

ti
σs

= V −T
σs

ei, i = 1,2, · · · , p, s = 1,2, · · · , q.

Edges formed by the intersection of adjacent faces
(say σs, σt) are determined by an equation of this form
for each face and there is potential here for overspec-
ification.

What characterizes an edge unambiguously is that a
particular structure functional in the allowable reduc-
tions increases away from zero.
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Example l1 estimation : Active structure functionals
correspond to zero residuals.

φ2i−1 = ri, φ2i = −ri, N = 2n.

Let an extreme point x∗ be determined by

φσ(i) = ri, σ = {1,3, · · · ,2p− 1}
Let x = x∗ + εt .Then

f (r (x)) =
∑

|ri(x∗)|>0

|ri|+
p∑

i=1

ωi (t)φ
σ(i) (r (x))

For each allowable reduction of the active structure
functionals ωi (t)φ

σ(i) (ri) = |ri| , ωi = ±1.

Completeness needs finer structure. For face

r1 > 0, r2 > 0, r3 > 0 : σs = {1,3,5}
r1 > 0, r2 < 0, r3 > 0 : σs = {1,4,5}

Differences between sets of equations for extreme di-
rections are pretty trivial in this case.

There are 2p faces intersecting at x∗.
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Example: rank regression : Structure is in ties

φij = rj − ri,1 ≤ i 6= j ≤ n, N = n (n− 1) .

Redundancies

φij = −φji, φik = φjk + φij.

Possible structure equations when p = 3.

r1 = r2 = r3 = r4,

r1 = r2, r3 = r4 = r5,

r1 = r2, r3 = r4, r5 = r6.

In first case σ1 = {φ12, φ13, φ14} possible set of
structure functionals - specializes r1 (origin!).

f (r) =
n∑

i=5

wµ(i)ri+




l+4∑

i=l

wi


 r1+

4∑

i=2

ωi−1 (t)φ1i.
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Redundancy v’s completeness!
This set is not good for completeness. If t is into face
r1 < r2 < r3 < r4

r1 < r2 < r3 < r4 ⇒ φ12 > 0, φ13 > φ12, φ14 > φ13.

Relaxed structure functionals do not give right order-
ing.

Right set is (σs = {12,23,34} )

φ12 > 0, φ23 = φ13−φ12 > 0, φ34 = φ14−φ13 > 0.
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Changing structure functional basis changes repre-
sentation of non-smooth part of function.

p∑

i=1

ωi (t)φσ1(i) (x + t) = tTVσ1ω(t),

= tTVσ1SsS
−1
s ω(t),

=
p∑

i=1

(ωs (t))i φσs(i) (x + t)

where φT
σ1

Ss = φT
σs

[
φ12 φ13 φ14

]



1 −1
1 −1

1




=
[

φ12 φ23 φ34

]

Solutions of systems V T
σs

ts
i = ei, i = 1,2,3, break

ties

ts
1 : r1 < r2 = r3 = r4,

ts
2 : r1 = r2 < r3 = r4,

ts
3 : r1 = r2 = r3 < r4.
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subdifferential : Let f(x), x ∈ X be convex. The
subdifferential ∂f(x) is the set

{v; f(t) ≥ f(x) + vT (t− x),∀t ∈ X}.
Also subdifferential is convex hull of gradient vectors
at nearby differentiable points.
Subgradient v generalises idea of a gradient vector at
points of nondifferentiability of f(x).
Subdifferential is important for characterizing optima
and calculating descent directions in nonsmooth con-
vex optimization.
directional derivative :

f ′(x : t) = inf
λ>0

f(x + λt)− f(x)

λ
,

= max
v∈∂f(x)

vT t.

optimality : x minimizes f(x) if 0 ∈ ∂f(x).
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Recall

f (r (x)) = fσ (r (x)) +
|σ|∑

i=1

ωi (t)φσ(i) (r (x)) ,

Implies a representation of subdifferential:

vT ∈ ∂f (r (x)) → v = fg + Vσz.

fg = ∇xfσ (r)T : gradient of smooth part.

(Vσ)∗i = ∇xφT
σ(i) =

{
∇rφσ(i)A

}T
, i = 1,2, · · · , |σ| ,

z ∈ Zσ = conv(ωs, s = 1,2, · · · , q).

Standard inequality for directional derivative gives

Zσ =
{
z; (fg + Vσz)T t ≤f ′

(
x∗ : t

)}
.

Constraint set known if directional derivative known.
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Role of extreme directions
Extreme points of Zσ are determined by the extreme
directions associated with the edges of T (epi (f) ,x∗).
Key calculation is

f ′
(
x∗ : ts

)
= fT

g ts + max
z∈Zσ

zTV T
σ ts,

= fT
g ts + max

z∈Zσ





p∑

i=1

λiz
TV T

σ ts
i



 ,

≤ fT
g ts +

p∑

i=1

λi max
z∈Zσ

zTV T
σ ts

i

=
p∑

i=1

λif
′ (x∗ : ts

i
)
.

It uses the linearity of f(x) on the faces of T twice.
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Computation of Zσ :

Start with tie r1 = r2 = r3 = r4. If r1 leaves group
on edge then φ12, φ13, φ14 all relax. On the edge
φ23 = φ24 = 0 have to relate φ12, φ13, φ14 and
φ12, φ23, φ24. In general

[
Φj ∇rφT

j

] [
Sj

sT
j 1

]
= ΦσPj.

where active set condition on edge is ΦT
j At = 0.

f ′
(
x∗ : t

)
= fT

g t + max
z∈Zσ

zTV T
σ t,

= fT
g t+max

z∈Zσ
zTP−T

j

[
ST

j sj

1

] [
ΦT

j
∇rφj

]
At,

= fT
g t+max

z∈Zσ
zTP−T

j

[
sj
1

]
vT

j t,

= fT
g t+





ζ+
j vT

j t, vT
j t > 0,

ζ−j vT
j t, vT

j t < 0.

This gives the inequalities determining Zσ in the form

ζ−j ≤
[

sT
j 1

]
z ≤ ζ+

j .
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Result for rank regression is that for each group of ties
in the active set




m−k+1∑

i=1

wi


 ≤

m∑

i=k

zπ(i) ≤



m+1∑

i=k+1

wi


 .

Here π is the set of all permutations of m−k+1 com-
ponents of the multiplier vector, k = 1,2, · · · , m, and
m + 1 is the number of residuals involved in current
group.

If 0 /∈ g + V z, z ∈ Z then most violated multiplier
condition can be used to generate a descent direc-
tion corresponding to relaxing off an active structure
functional - essentially a standard “simplex” step.
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Linesearch : Descent step relaxes off one structure
functional while remainder defining edge stay active
(simplicial step). Experience is that linesearch in this
direction is profitable. Linesearch must terminate at
new active structure functional.
l1: Only necessary to know distances to nonsmooth
points in search direction. Required point is a weighted
median. Hoare’s partitioning algorithm suggested with
partition bound defined by standard median of three.
General: Bisection applied to directional derivative to
refine bracket of minimum. Explicit computation when
bracket contains just one active member.
Statistical estimation: Asymptotic linearity results sug-
gest use of secant algorithm to find axis crossing point
of piecewise constant directional derivative. Shifting
strategy important.
These are all partitioning methods. Important that
evaluation of f ′ (x : t) is no worse than nγ (n) , γ (n)

of slow growth.
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red: secant step

green: shift step

progress in secant algorithm
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