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Abstract : Recently polyhedral functions have proved
distinctly useful in expressing selection criteria in var-
ious model building techniques. Here they play the
role of a constraint on an estimation problem. While
they can always be replaced by an appropriate fam-
ily of linear constraints the result can be a very large
constraint set. Compact representations are available
and their use is illustrated by developing both active
set and homotopy algorithms. Their use is illustrated
using some well known data sets.
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Polyhedral constrained problems :

min
x∈X

f(x); X = {x; κ ≥ g (x)} .

Here f (x) strictly convex and smooth (typically a quadratic
form), and g (x) is polyhedral convex. Assume

x̂ = arg min
x

g (x) ⇒ κ ≥ g (x̂)

is isolated (global) minimum. Related problem consid-
ers the Lagrangian form:

L (x, λ) = f(x) + λg (x) .

Kuhn-Tucker conditions

∇f(x) = −µvT , vT ∈ ∂g (x) .

κ → g (x̂) , x∗ → x̂, µ
(
x∗

) → µ (x̂) ,

κ →∞,x∗ → arg min
x∈ eff(g)

f (x) , µ
(
x∗

) → 0.

If λ ≥ µ (x̂) , 0 ∈ ∂g (x̂)o then x̂ minimizes L (x, λ) .

The argument uses that if

vT ∈ ∂g (x̂) ⇒ µ

λ
vT ∈ ∂g (x̂) , λ > µ.
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Problems :

1. ‘Lasso’ provides a new approach to variable se-
lection

min
x

1

2
rT r; ‖x‖1 ≤ κ.

2. ‘Basis pursuit denoising’

min
{
1

2
rT r+λ ‖x‖1

}
.

3. ‘Support vector regression’

min




1

2
‖x‖22 + λ

n∑

i=1

|ri|ε


 ,

|r|ε =

{
|r| − ε, |r| ≥ ε,

0, |r| < ε.
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Let g (x) be polyhedral convex (supremum of a finite
affine family). Non-smooth points x∗ of the epigraph
characterized by vanishing of certain linear functions
(”structure functionals”)

φi
(
x∗

)
= 0, i ∈ σ.

This characterization is not unique. Each face 1 ≤
s ≤ q of tangent cone T at x∗ is characterized by a
particular reduced set σs with property that directions
t into face satisfy

V T
s t = λ > 0, Vs = ∇φT

σs
.

g (x) has local representation

g (x) = gs (x) +
∑

i∈σs

ws
i φi (x) ,

and its subdifferential - convex hull of gradients at nearby
diffferentiable points - is given by

v = gs + Vszs, zs ∈ Zs = conv {ws} .
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Edges of T found by dropping particular φi. Each re-
lation has form

[
∇φT

i ∇φT
i

] [
Ss

i
ss
i 1

]
= VsPi.

Edge condition is ∇φit = 0, Pi is a permutation ma-
trix.

Edges of T generate extreme points of Zs which has
representation as a system of linear inequalities, one
for each φi.

ζ−i ≤
[

sT
i 1

]
≤ ζ+

i

ζ−i , ζ+
i computed from directional derivative of g (x).
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Basic algorithm : Let

vT ∈ ∂g (x0) ⇒ v = gg + Vσz, z ∈ Zσ.

Generate direction by solving quadratic program

min
V T

σ h=0
G (x0,h) ,

G (x0,h) =
(
∇f (x0) + λgT

g

)
h +

1

2
hT∇2fh.

x (in particular x + h) is lc-feasible provided:

• given σ points to active structure functionals,

• gg is gradient of differentiable part of g.
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Subproblem generates descent direction :
Let h minimize G. Iff h 6= 0 then h is a descent
direction for minimizing L (x, λ) .

h 6= 0 ⇒ minG < 0 ⇒
(
∇f (x0) + λgT

g

)
h < 0.

L′ (x : h, λ) = max
vT∈∂L

vTh,

= max
z∈Zσ

{
∇f (x0) + λ (gg + Vσz)T

}
h,

=
(
∇f (x0) + λgT

g

)
h < 0.
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Descent component of active set method :

• compute h by minimizing G (x0,h);

• if x0 + h is an lc-feasible minimum of L (x, λ)

then stop;

• else perform linesearch on L (x + γh, λ).

Linesearch ends either with new active structure func-
tional or zero derivative of directional derivative.
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If h = 0 lc-feasible minimum then ∃ z0

∇f (x0) + λ (gg + Vσz0)
T = 0.

x0 optimal if 0 ∈ ∂L (x0, λ) , z0 ∈ Zσ. Otherwise it
is necessary to :

1. relax an active structure functional associated with
a violated constraint on Zσ;

2. redefine the local linearization.

To update the structure relations (σ ← σ� {j})
[

Vj vj

] [
S

sT
j 1

]
= VσPj,

gj
g = gg + ζjvj,

ζj =





ζ−j ,
[

sT
j 1

]
z0 < ζ−j ,

ζ+
j ,

[
sT
j 1

]
z0 > ζ+

j .
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Revised QP gives descent direction which is lc-feasible.
Let

hj = arg min
V T

j h=0
G (x0,h) .

Then h is a descent direction, and is lc-feasible in the
sense that

vT
j hj > 0,

[
sT
j 1

]
z0 > ζ+

j ,

< 0,
[

sT
j 1

]
z0 < ζ−j .

The necessary conditions give

∇2fhj +∇fT + λgj
g + Vjz = 0, V T

j hj = 0

⇒ hT
j

(
∇fT + λgj

g

)
= −hT

j ∇2fhj < 0.

hT
j ∇2fhj + hT

j

(
∇fT + λgg

)
+ λζjh

T
j vj = 0

Also

0 = hT
j

(
∇fT + λ (gg + Vσz0)

)

= hT
j

(
∇fT + λgg

)
+ λ

[
sT
j 1

]
z0h

T
j vj

⇒ hT
j ∇2fhj + λ

(
ζj −

[
sT
j 1

]
z0

)
hT

j vj = 0
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Homotopy approach : Assume x, λ are optimal, that
an index set σ points to the active structure function-
als, and zσ ∈ Zo

σ. Differentiating the necessary con-
ditions wrt λ gives

∇2f
dx

dλ
+ λVσ

dz

dλ
= − (g + Vσz) ,

V T
σ

dx

dλ
= 0.

This system can now be used to obtain a differential
equations for zσ and x:

λ
dz

dλ
+ z = a,

a = −
(
V T

σ (∇2f)−1Vσ

)−1
V T

σ (∇2f)−1g,

dx

dλ
= −(∇2f)−1 (I − S) g,

where S is the oblique projection onto the column space
of Vσ. x and λzσ are piecewise linear and continuous
in λ.
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Trajectory slope discontinuities There are two causes
for a slope discontinuity in the piecewise linear x tra-
jectory.
1. The multiplier vector zσ(λ) reaches a boundary
point of Zσ. This implies an equality

[
sT
j 1

]
P−1

j zσ = ζ±j
This corresponds to a reduced constraint set defined
by Vj and revised necessary conditions:

[
Vj vj

] [
Sj
sj 1

]
= VσPj,

∇fT + λ
{
gσ + ζ±j vj + Vjz−

}
= 0.

2. A new nonredundant structure functional φj be-
comes active. Here the revised necessary conditions
give

∇fT + λ

{
gσ − ζ±j vj +

[
Vσ vj

] [
zσ

ζ±j

]}
= 0.
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Examples We consider both the lasso and support
vector regression applied to the Iowa wheat data (p=9,
n=33), and Boston housing data (p=13, n=506).For
both these data sets, for the lasso started at κ = 0,
the homotopy algorithm turns out to be clearly the
method of choice as it takes exactly p simplicial steps
of O(np) operations applied to an appropriately or-
ganised data set to compute the solutions for the full
range of κ in each case with two more steps being
necessary if an intercept term is included in the hous-
ing data. This is essentially the minimum number pos-
sible. The cost is strictly comparable with the work
required to solve the least squares problem for the
full data set, and a great deal more information is ob-
tained.
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Support vector regression provides an example in which
the residual vector in the linear model appears in the
polyhedral function constraint. This now contains a
number of terms equal to the number of observations
so that it is distinctly more complex than in the lasso.
The active set algorithm proves reasonably effective:

ε λ nits n0 ne nits n0 ne
10 10 121 471 13 32 17 9

1 113 471 10 32 18 8
.1 92 459 10 33 18 6

1 10 144 135 13 31 3 9
1 130 135 13 26 2 8
.1 201 129 12 16 0 6

.1 10 262 16 13 54 1 9
1 179 14 12 34 0 8
.1 183 12 11 18 0 5

Active set: housing data, wheat data
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The homotopy algorithm is relatively less favoured in
this case. The obvious starting point in the sense that
the solution x = 0, λ = 0 is known. A characteris-
tic is a slow beginning with repeated changes in little
evident structure.

ε λ nits n0 ne
1 6.1039 -7 30 0 1

4.1825 -6 60 0 1
6.1329 -6 90 1 4
1.8249 +0 120 2 7
6.9885 +0 128 3 9

5 4.7748 -7 25 4 0
1.5381 -6 50 11 1
2.1717 -2 75 11 1
7.9804 -1 100 11 8
4.1176 +0 112 9 9

10 5.3009 -7 30 10 1
4.1587 -6 60 18 1
5.7636 -2 90 19 3
9.9232 -1 120 18 8
2.0812 +0 128 17 9

Homotopy: Iowa wheat data
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In the housing data something needs to be done to
escape the small values of λ. The active set algorithm
could be useful here.

ε λ nits n0 ne
.1 6.2813 -7 800 7 1

1.3640 -4 1600 4 5
1.2205 -2 2400 11 11
1.7506 -1 3200 14 11
1.3873 +2 3504 17 13

1 8.4170 -7 900 63 1
5.6961 -4 1800 81 5
2.5095 -2 2700 106 11
8.5303 +0 3600 134 13
2.6616 +2 3630 137 13

5 3.3052 -7 600 189 1
3.1050 -5 1200 276 3
3.7948 -3 1800 318 9
1.5889 -1 2400 394 11
6.1290 +2 2592 405 13

Homotopy: Boston housing data
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