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The estimation problem In parameterized sys-

tems of differential equations this starts with

data acquired through observations of system

trajectories made in the presence of noise and

seeks to estimate the parameter values by solv-

ing an optimization problem which matches so-

lutions of the differential equation to the ob-

served data. Thus there is an explicit stochas-

tic component to the problem. Typically, two

classes of method are considered:

Class [1]: Explicitly computed solution trajec-

tories are compared directly with the observa-

tions in an unconstrained optimization proce-

dure; and

Class [2]: the system of differential equations

is imposed as explicit constraints on the opti-

mization problem. The resulting mathematical

program typically is solved by a variant of se-

quential quadratic programming.
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Basic data

The differential equation:

dx

dt
= w(t,x,β)

where x,w ∈ Rm, β ∈ Rp. Important case is the

linear equation

w =M(t,β)x+ f(t)

which provides the “enabling technology”.

The observed data:

yi = φTx(ti) + εi, i = 1,2, · · · , n,

where φ defines ‘observation functional’, εi iid,

(normal).
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Class [1] algorithm (embedding method): Typ-

ically this has two main components

1. Given trial β , plus auxiliary information

b ∈ Rm, generate trial solution x(t,β).

2. Using trial solution make adjustments to β

and auxiliary information to improve esti-

mate of β and x(t,β). Measure goodness

of fit by

F (β) =
n
∑

i=1

ri(ti,β)
2

ri = yi − φTx(ti,β).
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Auxilliary information

Example: Explicit embedding. Idea is to

(a) select boundary data B1, B2,b;

(b) guess variable part of auxiliary information

b;

(c) Solve boundary (or initial) value problem

B1x(0) +B2x(1) = b,
dx

dt
=M(t, β)x+ f(t).

Try to choose B1, B2 so the Green’s matrix

is ‘nicely bounded’. ‘Always possible’ if di-

chotomy known. Typically want fast solutions

pinned down at t = 1 , and slow solutions at

t = 0.

Simple shooting corresponds to B1 = I, B2 =

0. It requires the initial value problem to be

stable.

5



Leads to nonlinear least squares problem:

min
b,β

n
∑

i=1

(yi − φTx(ti,β,b))2.

Compute correction using Gauss-Newton (Scor-

ing). Note b occurs as an extra parameter vec-

tor to be estimated. Requires the integration

of the variational equations:






d∆β
dt =M∆β +∇βMx,

B1∆β(0) +B2∆β(1) = 0,
{

d∆b
dt =M∆b,

B1∆b(0) +B2∆b(1) = I.
,

where

∆u =
∂x

∂u
.
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Can explicit embedding be avoided?:

The class [2] approach (simultaneous meth-

ods) is formulated as

min
β

n
∑

i=1

(yi − φTx(ti,β))2

subject to equality constraints

xi+1 −X(ti+1, ti)xi = vi, i = 1,2, · · · , n− 1
where X fundamental matrix, v is the partic-

ular integral

dX

dt
= MX, X(ξ, ξ) = I,

vi =
∫ ti+1

ti
X(ti+1, u)f(u)du.

In practice, the differential equation constraints

would be replaced by an appropriate discretiza-

tion. Here the additional information comes

from the Lagrange multipliers, but the con-

straint system grows with n. In contrast the

ODE system has only m degrees of freedom.

Redundancy!
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Cyclic reduction– More than just elimination!

This is an elimination scheme for the block
bidiagonal recurrence

A0
i xi+1+B0

i xi = c
0
i

which combines adjacent rows using techniques
such as partial pivoting or orthogonal reduction
as follows:
[

B0
i−1 A0

i−1 0 c0i−1
0 B0

i A0
i c0i

]

→
[

B1
i/2 0 A1

i/2 c1i/2
V 1
i −I W1

i w1
i

]

.

The procedure can be applied recursively to
give
Interpolation equations

xt = Vtx(0) +Wtx(1) +wt,

Constraint equation

Gk
1x(0) +Gk

2x(1) = c
k
1.

Process is simplest if n = 2k. Restriction not
necessary in bidiagonal case.
These equations are intrinsic properties of the
ODE system in the sense that they do not
depend on the boundary conditions.
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The reduced system: The aim of choosing

B1, B2 in embedding the estimation problem

is to ensure that
[

B1 B2

Gk
1 Gk

2

]

has a ‘nicely’ bounded inverse. Thus Gk
1, G

k
2

must reflect the dichotomy properties of the

ODE system.

The cyclic reduction transformation allows the

reformulation of the estimation problem:

min
β

n
∑

t=ti,i=1

(

yt − φT (Vtx(0) +Wtx(1) +wt)
)2

subject to the constraints

Gk
1x(0) +Gk

2x(1) = c
k
1.

This reduces the Lagrangian form of the prob-

lem to solving an optimization problem involv-

ing a fixed number of equality constraints.
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Properties: Boundary conditions - V (0) =

I, V (1) = 0, W (0) = 0, W (1) = I, w(0) =

w(1) = 0.

Vt,Wt,wt, G1, G2, c are not uniquely defined

by the cyclic reduction process. Let C be the

transformation that combines adjacent block

rows. Then there is an equivalence class of

transformations:

C ←
[

R1 0
R21 R2

]

C

that preserve the basic structure in the elimi-

nation tableau.

Freedom in the interpolation is in R−1
2 R21.

Freedom in the constraint is in R1.

(

Gk
2

)−1
Gk

1 = X(1,0),
(

Gk
2

)−1
ck1 = v1.
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Governing equations

The simplest transformation is given by

C =

[

I X(ti+1, ti)
I −X(ti+1, ti)

]

,

assume δ = ti+1− ti is small, expand in powers
of δ, and equate leading terms. This gives sec-

ond order system (so extra boundary condition

can be satisfied):

d2

dt2

(

X−1

{

V
W

)

= 0,

⇒ V = X(t,0)(1− t), W = X(t,1)t.

Find other possibilities by fixing

R−1
2 R21 = S1 = δS +O(δ2).

Substituting this into C ← RC and repeating

calculation gives for V (W is similar)

d2V

dt2
+2(S −M) dV

dt
+

(

M2 − 2SM − dM
dt

)

V = 0.
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Orthogonal reduction

Partial pivoting can be unstable for block bidi-

agonal systems so use orthogonal transforma-

tion. This requires

CTRTRC = I

Substituting and expanding in powers of δ gives

S =
M +MT

2

Substituting in the general equation gives (or-

der important)

(

d

dt
+MT

)(

d

dt
−M

)

{

V
W
= 0

The general equation corresponds to the first

order system (write Y for either V,W )

d

dt

[

Y
Z

]

= N

[

Y
Z

]

, N =

[

M I
−(2S −M)

]

.
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The constraint equation: need particular in-

tegral equation in form

d

dt

[

w

z

]

= N

[

w

z

]

+

[

f

0

]

.

The construction gives x as a combination of

solutions of a higher order equation. Function

of constraint is to remove unwanted terms

0 =
dx

dt
−Mx− f

=

(

dV

dt
−MV

)

x(t1) +

(

dW

dt
−MW

)

x(tn)

+
dw

dt
−Mw − f

= ZV (t)x(t1) + ZW (t)x(tn) + z(t).

There is really only one condition here!
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Optimization methodologyWhen the model

is known then the Gauss-Newton or scoring

method appears the method of choice for the

first class of methods, and there are good rea-

sons for this which are a consequence of the

stochastic setting. Similar approximations ap-

pear to work well in SQP methods for the sec-

ond class of methods, and Zengfeng Li’s ex-

perience here will be summarized.
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Scoring - Two main ideas:

[1] Maximum likelihood for parameter estima-

tion.This starts with:

events: yt ∈ Rm, t ∈ T
probability density : f(yt,ηt(x), t)

exact model: ηt(x) : R
p × T → Rq

(parameter and covariate information).

This computes parameter estimate

xT = argminKT (x);

KT (x) = −
∑

t∈T
Lt, Lt = log f(yt, ηt(x), t)

Context: (not just sum of squares)

[1] independent events;

[2] n = |T | À m = dim yt; and

[3] right kind of analytic properties.

Signal in noise model relevant here:

∇ηLt = Vt(β)
−1{yt − ηt(xt,β}
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[2] Newton’s method for function minimization

Compute:

J = ∇2K(x),

h = −J−1(x)∇K(x)T .

Update:

x→ x+ h.

Advantages:

(1) Fast rate of ultimate convergence to x̂ 3
∇K(x̂) = 0 provided J (x̂) is nonsingular.
(2) Good transformation invariance properties.

Disadvantages:

(1)Convergence is local.

(2) Method requires ∇2K(x). It is often re-
garded as uneconomical or inconvenient to com-

pute this.
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Improving global behavior : Introduce merit

function Q(x) with properties that

(1) It has same minimizer(s) as K;
(2) ∇Q(x)h < 0 whenever h, ∇Q(x) 6= 0.
Aim is to reduce Q at each step x → x+ λh

where typically λ might be chosen to satisfy:

% < ψ(x,h, λ) < 1− %,

ψ =
Q(x+ λh)−Q(x)

λ∇Q(x)h ,

0 < % < .5.

Can always find such a λ, σ. Latter usually

small.

Harder to find suitable Q.

• Q = K will do if ∇2K positive definite.

• Q = ‖∇K‖2 works but ...!

• Big advantage of scoring is that suitable Q
is available
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Define the sample information matrix by

In =
1

n
Ef{∇2

xKn} =
1

n

∑

t

∇xη
T
t V

−1
t (x)∇xηt

and estimate the Newton correction by

h = −In(x)−11

n
∇xKn(x)T

Properties:

(1) Scoring has the same good transformation

properties as Newton’s method.

(2) It requires only first derivative information.

(3) In is positive (semi) definite so ∇xKnh <
(=)0.

This last property ensures that the scoring step

is necessarily downhill for minimizing Kn when

In is nonsingular, and that Q = Kn works as a

monitor. This has the consequences:

(1) ∇xKh
‖∇xK‖‖h‖ < −

1
condI ,

(2) Limit points of the iteration are stationary

points of K.
(3) λ = 1 will satisfy the ψ–test eventually if n

large enough.
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Approximating the expectation

In the expected Hessian

Vt (x)
−1 = E

{

∇ηLTt ∇ηLt
}

.

If the expectation has to be estimated then the

law of large numbers can help

1

n
E{∇2

xKn} =
1

n

∑

i

E{∇xLTi ∇xLi}

= −1
n

∑

i

(

∇xLTi ∇xLi − E{∇xLTi ∇xLi}
)

+
1

n

∑

i

∇xLTi ∇xLi

→ 1

n

∑

i

∇xLTi ∇xLi
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Rate of convergence Can write as a fixed

point iteration when λ = 1

xi+1 = F (xi); F (x) = x−In(x)−11

n
∇xKn(x)T

x̂n point of attraction provided

$(F
′
(x̂n)) < 1

As ∇xKn(x̂n) = 0 have

F
′
(x̂n) = I − In(x̂n)−11

n
∇2
xKn(x̂n)

= (In(x̂n))−1
(

(In(x̂n)−
1

n
∇2
xKn(x̂n))

)

= F
′
(x∗) +O(‖x̂n − x∗‖), a.s., n→∞

But F
′
(x∗) = o(1), n→∞ using strong law

⇒ $(F
′
(x̂n))→ 0, n→∞

Arbitrary fast rate of (first order) convergence

provided effective sample size is large enough.
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Scoring with linear constraints The problem

min
x
Kn; Cx = d, C : Rp → Rm, rank(C) = m.

The necessary conditions for a minimum give

∇xKn = λTC

where λ is the vector of Lagrange multipliers.

Limiting form as n→∞ follows from
1

n
{∇xKn − E∗{∇xKn}}+

1

n
E∗{∇xKn} = (λ/n)TC

The left hand side has the limiting form

−
∫ 1

0
E∗{∇xL(y,x, t)}dω(t)

Thus the limiting system is

−
∫ 1

0
E∗{∇xL(y,x, t)}dω(t) = λ∗TC

Cx = d

where λ∗ = limn→∞λ/n. Solution is

x = x∗, λ∗ = 0.
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SQP framework: Problem

min
x
K(x); c(x) = 0.

Introduce Lagrangian

l(x,λ) = K(x) + λTc(x).

Let Bk be an approximation to ∇2
xl(xk,λk) and

solve linear subproblem

min
d∈S
∇K(x)d+ 1

2
dTBkd,

S = {d; c(xk) +A(xk)d = 0}

(use cyclic reduction in constraint reduction

step)

Take guarded step xk+1 := xk+ γdk
(implemented Byrd and Omojokum trust re-

gion strategy)

Update Lagrange multiplier λ

λk+1 = −A+
k (∇K

T
k +Bkdk))
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Use Gauss-Newton approximation to Bk (pos-

sibly guarded):

(i) ignore term
∑n

i=1 ri
∂2ri

∂xj∂xk
(justified by the standard argument)

(ii) ignore term
∑n−1

i=1 λ
T
i

∂2ci
∂xj∂xk

Numerical experience is that G-N approxima-

tion works.

Not too difficult to show suitably scaled λi → 0
(not quite enough).

Limiting stochastic differential equation

dλ = −∇xw(t,x,β)Tλdt+ σφdω.
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Example

M(t,β) =







1− β1 cos(β2t) 0 1 + β1 sin(β2t)
0 β1 0

1+ β1 sin(β2t) 0 1 + β1 cos(β2t)







f(t) = et







−1+ 19(cos(2t)− sin(2t))
−18

1− 19(cos(2t) + sin(2t))







x(t) = ete

Data has form x(t) + σrnd, σ = 5., 1., .01

initial parameter vector 20% larger than true -

[19,2].

n Ne GN Ne GN Ne GN

25+1 15 55 6 11 4 4

27+1 16 20 6 10 3 4

210+1 7 13 4 5 3 3
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Model selection It all becomes harder if the

only information available is that the model

is known to lie within a parameterized class

of systems. Presumably one should start the

searching with the simpler members of this

class (the potentially under-specified systems).

However, the scoring method requires a consis-

tency result and thus looses its justification in

this case. A stochastic embedding procedure

which produces spline-like objects which offer

the possibility of overcoming this difficulty is

being studied for systems linear in the state

variables. Key components include the use of

a multiple shooting version of the Kalman fil-

ter for problems with nontrivial dichotomy, and

the use of information criteria for discriminat-

ing between contending models.
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Splines as parametric models: Smoothing

spline η(t) defined by:

min
η

n
∑

i=1

(yi − η(ti))2+ τ
∫ 1

0

(

dkη

dtk

)2

dt

τ provides a compromise between data fit and

smoothness.

Stochastic formulation (Wahba)

η(t) = E {y(t)|y1, y2, · · · , yn, λ}
dkη

dtk
= σ
√
λ
dω

dt

Here λ = 1/τ . Plus consistency result η(t) →
E{y(t)}, n → ∞ provided λ chosen appropri-

ately.

Generalisation to more general differential op-

erators (g-splines)

min
η

n
∑

i=1

(yi − η(ti))2+ τ
∫ 1

0
(Mkη)

2 dt

As τ gets large η forced to null space of Mk.

Possibility of identifying linear model for signal

η(t) in this case.
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First order systems (Wecker, Ansley, Kohn)

Write Mk in first order system form

dx

dt
=Mkx

Stochastic form (here b = ek)

η(t) = E {x1(t)|y1, y2, · · · , yn, λ} ,
dx =Mkxdt+ σ

√
λbdω.

Generalise - yi = φTx(ti), M(t,β) matrix of

general linear system, b involved in smoothness

control. Let X(t, ξ) be fundamental matices of

deterministic equation. Then obtain relations

xi+1 = X(ti+1, ti)xi+ σ
√
λui,

ui =
∫ ti+1

ti
X(ti+1, s)bdω(s),

∼ N(0, σ2R(ti+1, ti)),

R(ti+1, ti) = λ
∫ ti+1

ti
X(ti+1, s)bb

TX(ti+1, s)
Tds.
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Kalman filter: System is in form required for

computing x(t|n) using Kalman filter and in-
terpolation smoother. The filter is a forward

recursion giving xi|i = E {x(ti)|y1, y2, · · · , yi, λ},
and σ2Si|i, the corresponding covariance. The
interpolation smoother gives the dependence

on all the data. If ti ≤ t ≤ ti+1:

x(t|n) = X(t, ti)xi|i+A(t, ti)
(

xi+1|n − xi+1|i
)

,

A(t, ti) =
{

X(t, ti)Si|iXi+Γ(t, ti)
}

S−1
i+1|i,

Γ(t, ti) = R(t, ti)X(ti+1, t)
T .

Two choices of the initial condition x1|0 - ei-
ther to choose it as constant or assume diffuse

prior (x1|0 = 0, S1|0 ↑ ∞). Both have been
considered for smoothing splines. The filter is

an initial value process, but does involve a cor-

rection step. Stability is a legitimate question.
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There is a “multiple shooting” form which is

convenient in the case of the diffuse prior

min
x

{

rT1V
−1r1+ r

T
2R

−1r2

}

,

[

r1
r2

]

=































φT
1

φT
2
· · · · · ·

φT
n

−X1 I
−X2 I

· · · · · ·
Xn−1 I































x−
[

y

0

]

where V = σ2I, R = σ2diag{R1, R2, · · · , Rn−1},
Ri = R(ti+1, ti). Here conditioning, even sin-

gularity, of R is a source of problems. One

approach being investigated is the use of V-

invariant methods for generalised least squares

in order to avoid problems in inverting R.
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Smoothness - choice of φ, b.

Differentiating the interpolation smoother gives

dx(t|n)
dt

=Mx(t|n) + bbTX(ti+1, t)
Tv,

v = S−1
i+1|i(xi+1|n − xi+1|i)

Non-smoothness only at the points ti. The in-

teresting term is that involving bbTX(ti+1, t)
T .

Calculations need derivatives of X(ti, t):

djX(ti, t)

dtj
= X(ti, t)Pj(M)

P0 = I, Pj =
dPj−1

dt
−MPj−1, j = 1,2, · · ·

Smoothness of
djx(t|n)

dtj
at ti requires

φTPj−1(M)b = 0, j = 1,2, · · ·
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Limit to smoothness if Pj−1(M)
Tφ linearly

independent ⇒ j < k. Spline results follow by

setting

φ = e1, b = ek,

M =

















0 1
0 1

· · · · · ·
0 1

−mk −mk−1 · · · · · · −m1
















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Smoothness - implications for R(ti+1, ti).

If δ small then Taylor expansion gives

R(t+ δ, t) =
∫ t+δ

t

∑

i,j

(s− (t+ δ))i+j

i!j!
Wijds

Wij = Pi(M)bb
TPj(M)

T .

As δ → 0 can use Rayleigh quotient for eigen-
value information.

(1) Largest eigenvalue:

πk = λδbTb+O(δ2).

Corresponding eigenvector → b.
(2) If orthogonality conditions bTPj−1(M)

Tφ =

0 satisfied then eigenvector with smallest eigen-

value → φ. Corresponding RQ is

π1 =
λ

((k − 1)!)2
(bTPk−1(M)

Tφ)2

φTφ

δ2k−1

2k − 1+O(δ
2k).

This is an upper bound!
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Parameter estimation: Two main approaches

- cross validation and GML.The latter involves

a “likelihood” approach. Starting point is that

innovations ζi = yi−φTxi|i−1 are independent,

normally distributed with variance σ2Vi where
Vi = (1+ φTSi|i−1φ). Idea is to minimize

∑

i

′
{

logσ2+ logVi+
ζ2i
σ2Vi

}

Minimizing with respect to σ2 gives

σ̂2 =
1

N

∑

i

′ζ2i
Vi
.

Substituting back gives concentrated likelihood

GML =
∑

i

′
logVi+N log





∑

i

′ζ2i
Vi




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Generalised cross validation This gives an

objective function

GCV =

∑n
i=1

(

yi − φTxi|n
)2
/n

{trace{I − T}/n}2
.

Here T is the influence matrix mapping obser-

vations yi into the estimated signal φ
Txi|n.

Advantages are claimed for its use in estimat-

ing λ. Problem is finding an implementation

in less than O(n2) cost that can be used for

parameter estimation.

GML readily easy to calculate in O(n) cost. It

appears relatively insensitive to λ.
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