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Abstract: The generalised least squares prob-

lem is

min
x

rTV −1r; r = Ax− b.

Computation of a solution can prove embarass-

ing in many of its important applications:

• In data processing applications the dimen-

sion n of V is the size of the data set and

can be extremely large. Structure in V

needs to be exploited and, typically, explicit

inversion avoided.

• The problem can be reformulated so that

it may have a well defined solution in cases

where V is illconditioned (even singular).

An important instance is a reformulation

to include equality constraints.
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A class of V -invariant algorithms was intro-

duced by Gulliksson and Wedin (SIAM J. Ma-

trix Anal. Applic. 13(4)1298-1313,1992.) They

have considerable potential for overcoming the

indicated problems.



1. Generalised least squares - the Gauss-

Markov formulation. Let

ε = Ax∗ − b, ε ∼ N (0, V ) .

Problem is given structure of model and a re-

alization of b construct an estimate x of x∗ by

finding

min
x

E
{
‖x− x∗‖22

}

Assume a class of estimators that are linear

functions of the data

x = Tb, T : Rn → Rp.

E
{
‖Tb− x∗‖22

}
= trace

{
TV TT

}
+ ‖(TA− I)x∗‖22 .

Assume estimator is unbiassed

TA = I ⇒ E {x} = x∗.

Removes unknown x∗ from problem.
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2. Computation of T . Have to solve problem

min
T

trace
{
TV TT

}
; TA = I.

Problem can be formulated

min
ti

tT
i V ti; tT

i A = eT
i ,

where ti = Ti∗, i = 1,2, · · · , p.

Necessary conditions give

tT
i V = λT

i AT , i = 1,2, · · · , p,

or

[
T Λ

] [
V −A

−AT 0

]
=

[
0 −I

]
.

Problem is well determined provided
[

V −A

−AT 0

]
well conditioned.

Require V nonsingular on null space of A.
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3. Reprise - orthogonal factorization. The
prefered method for solving the linear least
squares problem is based on the factorization

A →
[

Q1 Q2

] [
U
0

]

where Q is orthogonal. Here V = I, and

QT IQ = I.

The algorithm builds up Q using elementary or-
thogonal matrices (eg Aitken-Householder re-
flectors)

Qi = I − 2wiw
T
i ,wT

i I wi = 1.

Know the resulting algorithm has good prop-
erties. We will see that

• it is a special case of a V -invariant trans-
formation corresponding to V = I, and

• it has optimally good properties within this
class.
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4. V-invariance. Motivating idea is that of

simplifying A while preserving structure in V

r = Ax− b → s = JAx− Jb.

How does Gauss-Markov operator transform?

Require x = Tb = TJ−1Jb,

transformed V must be symmetric,

right hand side must be preserved.

[
T Λ

] [
J−1

I

] [
J

I

] [
V −A

−AT 0

] [
JT

I

]

=
[
0 −I

] [
JT

I

]
=

[
0 −I

]

Obtain

[
TJ−1 Λ

] [
JV JT −JA

−ATJT 0

]
=

[
0 −I

]

If nonsingular matrix J satisfies

JV JT = V

say J is V -invariant.
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5. Properties. Let J1 and J2 be V -invariant.

Then

• J−1
1 , J−1

2 J1J2 and J2J1 V -invariant,

• JT
1 , JT

2 V −1-invariant (V nonsingular).

If

V =

[
0 0
0 V2

]
(reduced form!)

then J is V -invariant iff

J =

[
J11 0
J21 J22

]
, J22V2JT

22 = V2,

and J11, J22 nonsingular.
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6. Elementary V -invariant transformations.

J = I − 2uvT ,

JV JT = V − 2
(
uvTV + V vuT

)
+ 4vTV vuuT

If v, vTV v 6= 0 is given then the transformation

defined by

u =
V v

vTV v
, J = I−2

V vvT

vTV v
, J2 = I, det (J) = −1

is a V -invariant elementary reflector. If V is

singular and V v = 0, u arbitrary then J is V -

invariant. If vTu = 1 then J is an elementary

reflector. If V is in reduced form then

J = I − 2

[
u1
u2

] [
vT
1 0

]

is a V -invariant elementary reflector.
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7. Use of matrix factors. Assume

JA =

[
R
0

]
, V2 =

[
V21 0
0 V22

]
, V21 ∈ Rp−k → Rp−k.

V2 has become block diagonal. Transformed
operator satisfies

[ [
T̃1 T̃2

]
Λ

]






[
0 0
0 V21

]
0

0 V22




[
R
0

]

[
RT 0

]
0




= W.

where W =
[
0 I

]
. Gives

T̃1

[
0 0
0 V21

]
+ ΛRT = 0, T̃2V22 = 0, T̃1R = I

with solutions

T̃1 = R−1, T̃2 = 0,

Λ = −R−1
[

0 0
0 V21

]
R−T ,

x =
[

R−1 0
]
Jb.

Solution is well determined if R, V22 well de-
termined.
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8. Factorization - first case. Can factor A

in desired form if we can solve the problem of
constructing J giving

Jv = γe1.

As JT is V −1-invariant we can calculate γ.
Have

γ2eT
1V −1e1 = vTJTV −1Jv = vTV −1v,

γ = θ
√ {

vTV −1v/
(
V −1

)
11

}
.

If first form of transformation applicable then

Jv = v− 2wTv

wTV w
V w =γe1.

Note w scale invariant so take

V w = v−γe1.

Standard argument suggests θ = −sgn (v)1.
Note γ independent of scale of V . w found
most easily if V diagonal

V = diag {V1, · · · , Vn} .

Form of γ suggests elements of V be sorted in
increasing order!

10



9. Factorization - second case. If V =

diag
{
0, · · · ,0, Vk+1, · · · , Vn

}
has nontrivial re-

duced form then second form of transforma-

tion must be used. Consider

Vε = diag
{
ε, · · · , ε, Vk+1, · · · , Vn

}

lim
ε→0

(Vε)1 V −1
ε =

[
Ik

0

]
,

lim
ε→0

|γε| = ‖v1‖2 .

The resulting transformation gives the V -invariant

reflector

J = I − 2

[
c1
c2

] [
dT
1 0

]

where

√
2c = (v + sgn (v)1 ‖v1‖ e1) / ‖v1‖ ,

√
2d =

[
v1 + sgn (v)1 ‖v1‖ e1

0

]
/ (‖v1‖+ |(v)1|) .
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10. Stability considerations If elements of J
are large then this is an indicator of possible
stability problems! Let

J = I − 2cdT

be an elementary V -invariant reflector. Then

‖J‖2 = η +
√ {

η2 − 1
}

, η = ‖c‖2 ‖d‖2 .

(outline of proof) We require the largest eigen-
value of

JTJw = µw

or, equivalently,

Jw =µJTw.

Further, it is easy to see that the maximizing
eigenvector has form w = αd + βc. The deter-
minantal condition for non-trivial α, β is

∣∣∣∣∣
1 + µ 2µ ‖c‖2
−2 ‖d‖2 − (1 + µ)

∣∣∣∣∣ = 0,

giving

µ = 2η2 − 1 + 2η
√ {

η2 − 1
}

= ‖J‖22 .

If V = I then η = 1, otherwise η > 1.
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11. Application of Lemma. Expect from
general form for J in first class of transforma-
tions that stability requires that wTV w 6= 0 is
commensurate with ‖w‖ ‖V w‖. Here

η =

∥∥∥V −1 (v − γe1)
∥∥∥ ‖v − γe1‖

(v − γe1)
T V −1 (v − γe1)

,

with V diagonal. Denominator is 2 |γ| |v1 − γ| /V1.
To estimate numerator

∥∥∥V −1 (v − γe1)
∥∥∥ ≥ |v1 − γ| /V1,

‖v − γe1‖ ≥ ‖v‖ .

This implies

‖J‖ ≥ η ≥ ‖v‖
2γ

.

That is ‖J‖ will be large if
∣∣∣V1v

TV −1v
∣∣∣ ¿ ‖v‖ .

For the second class of transformations the
ε → 0 limit gives η large if

‖v1‖ ¿ ‖v‖ .
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12. When V is not diagonal . Start with the
problem

min
x

rTV −1r; r = Ax− b.

Given an LDLT factorization of V can rewrite
problem by setting L−1r =r̃ = D1/2s to obtain

min
x

sT s; D1/2s = L−1Ax− L−1b.

The necessary conditions give

M

[
r
x

]
=

[
−b
0

]

where M is the matrix of the equations deter-
mining the Gauss-Markov operator

[
T Λ

]
M =

[
0 −I

]
.

Postmultiplying by

[
r
x

]
gives

[
T Λ

] [
−b
0

]
=

[
0 −I

] [
r
x

]
= −x

demonstrating the equivalence of the two ap-
proaches.
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13. Is LDLT practicable? One problem for

which there is considerable amount of software

in sparse and structured cases.

A rank-revealing Choleski has the form

V → Ldiag {Dn, Dn−1, · · · , D1}LT

where pivoting ensures

Dn ≥ Dn−1 ≥ · · · ≥ D1.

Need to reverse order to construct V -invariant

transformation. Condition for success (eg Higham)

is

{D1, D2, · · · , Dk} commensurate, small,

Dk ¿ Dk+1,{
Dk+1, · · · , Dn

}
commensurate,

k ≤ p

Would expect that {D1, D2, · · · , Dk} could have

high relative error. Does that matter?
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14. A stable problem. Case

D = diag
{
0, · · · ,0, Dk+1, · · · , Dn

}
gives the equal-

ity constrained problem

min
x

sT s;

[
0

D
1/2
2

]
s =

[
A1
A2

]
x−

[
b1
b2

]
.

This is the limiting problem associated with

the penalised objective

min
x

{
rT
2D−1

2 r2 + λrT
1r1

}
; r =

[
A1
A2

]
x−

[
b1
b2

]

which has the alternative form

min
x

sT s;


 λ−1/2I

D
1/2
2


 s =

[
A1
A2

]
x−

[
b1
b2

]
.

From theory of penalty functions expect

‖x (λ)− x̂‖ = O (1/λ) , λ →∞.
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15. Perturbation behaviour. Necessary con-
ditions for the penalty problem are

rT
2D−1

2 A2 + λrT
1A1 = 0.

Set τ = 1/λ and define

τu = A1x− b1 (= r1).

Can find equations defining a trajectory satis-
fied by x (τ) ,u (τ) by differentiating these re-
lations.

AT
2D−1

2 A2
dx

dτ
+ AT

1
du

dτ
= 0,

A1
dx

dτ
− τ

du

dτ
= u.

Matrix of this system is nonsingular for τ small
enough provided A1, A2 are of full rank. Thus
can integrate back to τ = 0 and Taylor series
expansion is well defined.

Conclusion - Let D = diag {D1, D2}. The equal-
ity constrained problem obtained by setting D1 =
0 has a well defined solution which differs from
that of the original problem by O (‖D1‖).
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16. Kalman Filter. Let xk = x (tk) ∈ Rp

be an unobserved state variable describing the
state of a system at time tk. System evolves
in accordance with dynamics equation

xk+1 = Xkxk + uk, k = 1,2, · · · , n− 1,

and information on state is available through
observations

yk ∈ Rm, yk = Hkxk + εk, k = 1,2, · · · , n− 1

C
{
εi, εj

}
= Viδij, C

{
ui,uj

}
= Riδij, C

{
εi,uj

}
= 0,

⇒ C {xi,uk} = C {xi, εk} = 0, j ≤ k.

Let Yk =
{
x1|0,y1, · · · ,yn

}
. The Kalman filter

produces the linear, minimum variance predic-
tion xk|k = E {xk|Yk} can be formulated as the
generalised least squares problem

min
x

sT s; diag
{
S

1/2
i−1|i−1, R

1/2
i−1, V

1/2
i

}
s = Xx− y,

X =




I 0
−Xi−1 I

0 Hi


 , y =




xi−1|i−1
0
yi


 , x =

[
xi−1
xi

]
,

with output xi−1|i,xi|i .
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17. V-invariant filter example. Example due

to Inge Söderkvist (CTAC 1995)

Xi = I2, Ri = I2, i 6= 3, I3 =

[
k2

1/k2

]
,

Hi =

[
1 1
0 1

]
, Vi = I2,

yi =

[
15
5

]
, i = 1,2, · · · ,5,

x1|0 =

[
10
5

]
= xi, independent of covariances,

S1|0 = I2.

19



18. Sorting of Di. An analogue of the sorting

of the Di has occurred before. Consider the

penalised formulation of the constrained least

squares problem

min
x

{
‖r2‖2 +

∥∥∥λ1/2r1
∥∥∥2

}
.

This can be solved by an orthogonal factoriza-

tion of the matrix
[

λ1/2A1
A2

]
.

Easy to see there is trouble if system not or-

dered so large rows are first (or row inter-

changes used). Result due to Powell and Reid,

IFIP 1968. Consider



0 2 1
106 106 0
106 0 106

0 1 1


 .

If row interchanges are not used in first step

of orthogonal factorization then all information

on first row is lost in five decimal arithmetic.
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