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ADbstract: The generalised least squares prob-
lem is

mXin rTV_lr; r = Ax — b.

Computation of a solution can prove embarass-
ing in many of its important applications:

e In data processing applications the dimen-
sion n of V is the size of the data set and
can be extremely large. Structure in V
needs to be exploited and, typically, explicit
inversion avoided.

e [ he problem can be reformulated so that
it may have a well defined solution in cases
where V is illconditioned (even singular).
An important instance is a reformulation
to include equality constraints.



A class of V-invariant algorithms was intro-
duced by Gulliksson and Wedin (SIAM J. Ma-
trix Anal. Applic. 13(4)1298-1313,1992.) They
have considerable potential for overcoming the
indicated problems.



1. Generalised least squares - the Gauss-
Markov formulation. Let
e=Ax*—Db, e~ N(0,V).
Problem is given structure of model and a re-
alization of b construct an estimate x of x* by
finding
. *12

min £ {[lx - x"|13}
Assume a class of estimators that are linear
functions of the data

X

Tb, T : R" — RP.
2 2
E{|ITb — x*||5]

trace {TVTT} + |(TA - I)x*|)5.

Assume estimator is unbiassed
TA=1= E{x} =x"

Removes unknown x* from problem.



2. Computation of 7. Have to solve problem

min trace {TVTT} - TA=1.
T

Problem can be formulated

njcintiTVti; thA = e,
where t;, = T, 1 =1,2,--- , p.

Necessary conditions give
thv=x'al i=1,2,--. p,

or

AT 0

Problem is well determined provided

m Al e S =0 1]

~AT 0

Require V nonsingular on null space of A.

[ v _A] well conditioned.



3. Reprise - orthogonal factorization. The
prefered method for solving the linear least
squares problem is based on the factorization

U
A—|Q1 Q2] [ 0 ]
where () is orthogonal. Here V =1, and

Q1o =1.
The algorithm builds up @ using elementary or-
thogonal matrices (eg Aitken-Householder re-
flectors)
Q; = I—QWZ'WZ-T,WZ-TIWi =1.

Know the resulting algorithm has good prop-
erties. We will see that

e it is a special case of a V-invariant trans-
formation corresponding to V =1, and

e it has optimally good properties within this
class.



4. V-invariance. Motivating idea is that of
simplifying A while preserving structure in V

r=Ax—-—b —-s=JAx — Jb.

How does Gauss-Markov operator transform?
Require x =Tb = TJ1Jb,

transformed Vv must be symmetric,
right hand side must be preserved.

g1 J ][ v -A T
[T/\} _ I” I_[—AT 0 ’
_ T ]
— 0 —I] J 1_:[0 —I}
Obtain
T _
TJ1 /\] _JXTJJT gAlz[o —1]

If nonsingular matrix J satisfies
JvJt =v

say J is V-invariant.




5. Properties. Let J; and Jo be V-invariant.
Then

o J;71, J51 J1Js and JpJy V-invariant,
o J{, J3 V—linvariant (V nonsingular).

If

O O
e I
V [ 0 Vs ] (reduced form!)

then J is V-invariant iff

Ji1 O T
J = , JooVodss = V-
[J21 J22] 20V5J55 2

and Jy1, Joo nonsingular.



6. Elementary V-invariant transformations.

I——2uvT,
'V——Q(uvaf+¥VvuT)4—4VTVVuuT

J
JvJt

If v, vl Vv # 0 is given then the transformation
defined by

Vv Vvvl
L
iIs a V-invariant elementary reflector. If V is
singular and Vv = 0, u arbitrary then J is V-
invariant. If viu = 1 then J is an elementary

reflector. If V is in reduced form then

Vo)

J2 =1, det(J) =—1

uj

J=I—2[
u

IS a V-invariant elementary reflector.



7. Use of matrix factors. Assume

R Vs — Vo1 O
011”27 | 0 Va
Vo has become block diagonal. Transformed
operator satisfies

a1 2] (5]

'RT 0 0

JA =

], V21€Rp—k_>Rp—k.

where W = [ 0 I } Gives
- o o
11 ! 0 Voy
with solutions

] + AR =0, ToVor =0, IR =1

~

T, = R, Th=0,

_ =110 O
A= R [0‘/21

x = |R7! 0]Jb
Solution is well determined if R, Voo well de-
termined.

R—T




8. Factorization - first case. Can factor A
in desired form if we can solve the problem of
constructing J giving
Jv = ey,

As J!I' is V—liinvariant we can calculate ~.
Have

nye:lFV_lel vigly—1jv = VTV_]'V,

_ Ty —1 —1
7= 6\/{" Viov/ (V )11}'

If first form of transformation applicable then
owlv
wl'Vw

Note w scale invariant so take

Jv=v

Vw —ve1.

Vw =v—re1.

Standard argument suggests 6 = —sgn(v);.
Note ~ independent of scale of V. w found
most easily if V diagonal

V =diag{Vy,---,Va}.

Form of v suggests elements of V be sorted in
increasing order!
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9. Factorization - second case. If V =
diag {O,--- 0, Vi1, -+ ,Vn} has nontrivial re-
duced form then second form of transforma-
tion must be used. Consider

V. = diag{s,--- &, Vi1, - ,Vn}

"ol

im |vel = |Ivillo-
e—0

lim (Ve) Vo2
ce—0

T he resulting transformation gives the V-invariant
reflector

C1

Co [d,‘]z-jo}

J=I—2[

where

V2 = (v+sgn(v)q|lviller) /lvall,

v2d [Vl Fean(ivalen ] / (vall + 1))
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10. Stability considerations If elements of J
are large then this is an indicator of possible
stability problems! Let

J=1-—2cd’
be an elementary V-invariant reflector. Then
2
1l =n+v/{n? -1}, n=llel,lldl,.

(outline of proof) We require the largest eigen-
value of

JVJw = pw
or, equivalently,
Jw :,LLJTW.

Further, it is easy to see that the maximizing
eigenvector has form w = ad 4+ Bc. The deter-
minantal condition for non-trivial «, 3 is

' L+p 2ullel® | _ 4
=2[[d|* =1 +p)
giving
u=2n2—1+277\/{?72—1} = ||J|5.
If V=1 then n =1, otherwise n > 1.
12



11. Application of Lemma. Expect from
general form for J in first class of transforma-
tions that stability requires that wlVw # 0 is
commensurate with ||w]| [|[Vw]|. Here

V=1 (v —vep)| IV — ~esl|
N = ;
(v—ve1)' V-1 (v —er1)
with V diagonal. Denominatoris 2 |v||vy — | /V1.-
To estimate numerator

[Vt (v —en)| > Jo1—Al/VA,
v —~eil] = [v]
T his implies
Il
170> n >
Y

That is ||J|| will be large if
ivivTivl < vl

For the second class of transformations the
e — 0 limit gives n large if

vl < vl -

13



12. When V is not diagonal . Start with the
problem

mxin rTV_lr; r = Ax — b.

Given an LDL! factorization of V can rewrite
problem by setting L~ 1r =¥ = D1/2s to obtain

mXin STs; D25 = 7 1ax — 7 1p.
The necessary conditions give
r —b
where M is the matrix of the equations deter-
mining the Gauss-Markov operator

T A|M=|0 -I].
Postmultiplying by [i] gives

7 A]| =0 15| =

demonstrating the equivalence of the two ap-
proaches.
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13. Is LDLY practicable? One problem for
which there is considerable amount of software
in sparse and structured cases.

A rank-revealing Choleski has the form

V — Ldiag {Dn,D,,_1,- -+ ,D1} LT
where pivoting ensures
Dp>Dpq2---2D1y.

Need to reverse order to construct V-invariant
transformation. Condition for success (eg Higham)
IS

{D1,D>,---,D;} commensurate, small,
Dy < Diy1,

{Dk+17 e ,Dn} commensurate,

k<p

Would expect that {Dq, D5, ---, D;} could have
high relative error. Does that matter?
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14. A stable problem. Case
D = diag {O, 0, Dpy 1,0 ,Dn} gives the equal-
ity constrained problem

0 s=| 1 |x_ by
Di/? Ao by |

This is the limiting problem associated with
the penalised objective

min sTs;
X

(T -1 T 1. . | A1 by
mxln{rQD2 r2—|—)\r1r1}, r = [AQIX— [b2]
which has the alternative form
T KAl/QI

c— | A1, | b1
Dé/Q Ao by |’
From theory of penalty functions expect

[x(A) =X[[=0(1/A), A — co.
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15. Perturbation behaviour. Necessary con-
ditions for the penalty problem are

I‘gDz_lAQ + )\I‘C{Al = 0.
Set 7 = 1/ and define
™A — A1X — bl (: I'1).

Can find equations defining a trajectory satis-
fied by x(7),u(7) by differentiating these re-
lations.

rdu

dx
ALTDS A= 4+ AT== = o,
272 2d7'+ 1d7‘
dx du
1— —T— = u.
dT dT

Matrix of this system is nonsingular for = small
enough provided Aq, Ao are of full rank. Thus
can integrate back to - = 0 and Taylor series
expansion is well defined.

Conclusion - Let D = diag {D1, D>}. The equal-
ity constrained problem obtained by setting D1 =
O has a well defined solution which differs from
that of the original problem by O (||D1]]).
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16. Kalman Filter. Let x;, = x(t;) € RP
be an unobserved state variable describing the
state of a system at time ¢;,. System evolves
in accordance with dynamics equation

Xk_|_1=Xka—|—llk, ]{721,2,--- ,n—l,

and information on state is available through
observations

Yk € R™, yp = Hpxp + e, k=1,2,--- ,n—1
C{ei,sj} Véw,C{uz, } R(Sw,C{sz, }—O
jc{xivuk} _C{X’wgk} =0, 7< k.

Let V. = {x1|o,y1,--- ,yn}. The Kalman filter
produces the linear, minimum variance predic-
tion x, = E{xx|Vx} can be formulated as the
generalised least squares problem

T 1/2 1/2 ,1/2 .
mins®s; diag {SZ._1|Z._1,R7;_1,VZ- }S—Xx—y,
T 0 [ Xi_1i-1 <.
X=| X1 1 y Y — 0 , X = [ ;_1
0 H; Y '

with Output XZ—1|Z7X’l|’L .
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17. V-invariant filter example. Example due
to Inge Soderkvist (CTAC 1995)

X
H;
Yy

X1/0

5110

. k2
127RZ':IQ7Z7’J:37[3:[ 1/]{'2]’

1
1| Vi= 12
) 1= 1727"' 757
= X;, independent of covariances,
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18. Sorting of D,. An analogue of the sorting
of the D, has occurred before. Consider the
penalised formulation of the constrained least
squares problem

mjn {2l + 3172 |}
This can be solved by an orthogonal factoriza-
tion of the matrix
[ )\1/2A1 ]
Ao ’
Easy to see there is trouble if system not or-
dered so large rows are first (or row inter-

changes used). Result due to Powell and Reid,
IFIP 1968. Consider

o 2 1

10 10° 0O

10 0 10°
0 1 1 |

If row interchanges are not used in first step
of orthogonal factorization then all information

on first row is lost in five decimal arithmetic.
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