V-invariant methods for generalised least squares

M.R.Osborne School of Mathematical Sciences, ANU

May 25, 2003

Abstract: The generalised least squares problem is

$$
\min _{\mathbf{x}} \mathbf{r}^{T} V^{-1} \mathbf{r} ; \mathbf{r}=A \mathbf{x}-\mathbf{b} .
$$

Computation of a solution can prove embarassing in many of its important applications:

- In data processing applications the dimension n of V is the size of the data set and can be extremely large. Structure in V needs to be exploited and, typically, explicit inversion avoided.
- The problem can be reformulated so that it may have a well defined solution in cases where V is illconditioned (even singular). An important instance is a reformulation to include equality constraints.

A class of V-invariant algorithms was introduced by Gulliksson and Wedin (SIAM J. Matrix Anal. Applic. 13(4)1298-1313,1992.) They have considerable potential for overcoming the indicated problems.

1. Generalised least squares - the GaussMarkov formulation. Let

$$
\varepsilon=A \mathrm{x}^{*}-\mathbf{b}, \varepsilon \sim N(0, V)
$$

Problem is given structure of model and a realization of b construct an estimate x of x^{*} by finding

$$
\min _{\mathrm{x}} E\left\{\left\|\mathrm{x}-\mathrm{x}^{*}\right\|_{2}^{2}\right\}
$$

Assume a class of estimators that are linear functions of the data

$$
\begin{aligned}
\mathbf{x} & =T \mathbf{b}, T: R^{n} \rightarrow R^{p} \\
E\left\{\left\|\mathbf{T b}-\mathbf{x}^{*}\right\|_{2}^{2}\right\} & =\operatorname{trace}\left\{T V T^{T}\right\}+\left\|(T A-I) \mathbf{x}^{*}\right\|_{2}^{2} .
\end{aligned}
$$

Assume estimator is unbiassed

$$
T A=I \Rightarrow E\{\mathbf{x}\}=\mathbf{x}^{*}
$$

Removes unknown x^{*} from problem.
2. Computation of T. Have to solve problem

$$
\min _{T} \operatorname{trace}\left\{T V T^{T}\right\} ; T A=I .
$$

Problem can be formulated

$$
\begin{aligned}
\min _{\mathbf{t}_{i}} \mathbf{t}_{i}^{T} V \mathbf{t}_{i} ; \mathbf{t}_{i}^{T} A & =\mathbf{e}_{i}^{T} \\
\text { where } \mathbf{t}_{i} & =T_{i *}, i=1,2, \cdots, p .
\end{aligned}
$$

Necessary conditions give

$$
\mathbf{t}_{i}^{T} V=\lambda_{i}^{T} A^{T}, i=1,2, \cdots, p
$$

or

$$
\left[\begin{array}{ll}
T & \wedge
\end{array}\right]\left[\begin{array}{cc}
V & -A \\
-A^{T} & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & -I
\end{array}\right] .
$$

Problem is well determined provided

$$
\left[\begin{array}{cc}
V & -A \\
-A^{T} & 0
\end{array}\right] \text { well conditioned. }
$$

Require V nonsingular on null space of A.
3. Reprise - orthogonal factorization. The prefered method for solving the linear least squares problem is based on the factorization

$$
A \rightarrow\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
U \\
0
\end{array}\right]
$$

where Q is orthogonal. Here $V=I$, and

$$
Q^{T} I Q=I
$$

The algorithm builds up Q using elementary orthogonal matrices (eg Aitken-Householder reflectors)

$$
Q_{i}=I-2 \mathbf{w}_{i} \mathbf{w}_{i}^{T}, \mathbf{w}_{i}^{T} I \mathbf{w}_{i}=1
$$

Know the resulting algorithm has good properties. We will see that

- it is a special case of a V-invariant transformation corresponding to $V=I$, and
- it has optimally good properties within this class.

4. V-invariance. Motivating idea is that of simplifying A while preserving structure in V

$$
\mathrm{r}=A \mathrm{x}-\mathrm{b} \rightarrow \mathrm{~s}=J A \mathrm{x}-J \mathrm{~b} .
$$

How does Gauss-Markov operator transform?
Require $\mathbf{x}=T \mathbf{b}=T J^{-1} J \mathbf{b}$, transformed V must be symmetric, right hand side must be preserved.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
T & \wedge
\end{array}\right]\left[\begin{array}{ll}
J^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{ll}
J & \\
& I
\end{array}\right]\left[\begin{array}{cc}
V & -A \\
-A^{T} & 0
\end{array}\right]\left[\begin{array}{ll}
J^{T} & \\
& I
\end{array}\right]} \\
& \\
& =\left[\begin{array}{ll}
0 & -I
\end{array}\right]\left[\begin{array}{ll}
J^{T} & \\
& I
\end{array}\right]=\left[\begin{array}{ll}
0 & -I
\end{array}\right]
\end{aligned}
$$

Obtain

$$
\left[\begin{array}{ll}
T J^{-1} & \wedge
\end{array}\right]\left[\begin{array}{cc}
J V J^{T} & -J A \\
-A^{T} J^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -I
\end{array}\right]
$$

If nonsingular matrix J satisfies

$$
J V J^{T}=V
$$

say J is V-invariant.
5. Properties. Let J_{1} and J_{2} be V-invariant. Then

- $J_{1}^{-1}, J_{2}^{-1} J_{1} J_{2}$ and $J_{2} J_{1} V$-invariant,
- $J_{1}^{T}, J_{2}^{T} V^{-1}$-invariant (V nonsingular).

If

$$
V=\left[\begin{array}{cc}
0 & 0 \\
0 & V_{2}
\end{array}\right] \text { (reduced form!) }
$$

then J is V-invariant iff

$$
J=\left[\begin{array}{cc}
J_{11} & 0 \\
J_{21} & J_{22}
\end{array}\right], J_{22} V_{2} J_{22}^{T}=V_{2}
$$

and J_{11}, J_{22} nonsingular.
6. Elementary V-invariant transformations.

$$
\begin{aligned}
J & =I-2 \mathbf{u v}^{T} \\
J V J^{T} & =V-2\left(\mathbf{u v}^{T} V+V \mathbf{v} \mathbf{u}^{T}\right)+4 \mathbf{v}^{T} V \mathbf{v u u}
\end{aligned}
$$

If $\mathbf{v}, \mathbf{v}^{T} V \mathbf{v} \neq 0$ is given then the transformation defined by
$\mathbf{u}=\frac{V \mathbf{v}}{\mathbf{v}^{T} V \mathbf{v}}, J=I-2 \frac{V \mathbf{v} \mathbf{v}^{T}}{\mathbf{v}^{T} V \mathbf{v}}, J^{2}=I, \operatorname{det}(J)=-1$
is a V-invariant elementary reflector. If V is singular and $V \mathbf{v}=0, \mathbf{u}$ arbitrary then J is V invariant. If $\mathbf{v}^{T} \mathbf{u}=1$ then J is an elementary reflector. If V is in reduced form then

$$
J=I-2\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{v}_{1}^{T} & 0
\end{array}\right]
$$

is a V-invariant elementary reflector.
7. Use of matrix factors. Assume
$J A=\left[\begin{array}{l}R \\ 0\end{array}\right], V_{2}=\left[\begin{array}{cc}V_{21} & 0 \\ 0 & V_{22}\end{array}\right], V_{21} \in R^{p-k} \rightarrow R^{p-k}$.
V_{2} has become block diagonal. Transformed operator satisfies
$\left.\left[\begin{array}{ll}{\left[\begin{array}{ll}\tilde{T}_{1} & \tilde{T}_{2}\end{array}\right] \wedge}\end{array}\right]\left[\begin{array}{cc}{\left[\begin{array}{cc}0 & 0 \\ 0 & V_{21}\end{array}\right]} & 0 \\ 0 & V_{22}\end{array}\right]\left[\begin{array}{c}R \\ 0\end{array}\right]\right]=W$.
where $W=\left[\begin{array}{ll}0 & I\end{array}\right]$. Gives
$\widetilde{T}_{1}\left[\begin{array}{cc}0 & 0 \\ 0 & V_{21}\end{array}\right]+\wedge R^{T}=0, \widetilde{T}_{2} V_{22}=0, \widetilde{T}_{1} R=I$
with solutions

$$
\begin{aligned}
\widetilde{T}_{1} & =R^{-1}, \widetilde{T}_{2}=0 \\
\wedge & =-R^{-1}\left[\begin{array}{cc}
0 & 0 \\
0 & V_{21}
\end{array}\right] R^{-T} \\
\mathbf{x} & =\left[\begin{array}{ll}
R^{-1} & 0
\end{array}\right] J \mathbf{J}
\end{aligned}
$$

Solution is well determined if R, V_{22} well determined.
8. Factorization - first case. Can factor A in desired form if we can solve the problem of constructing J giving

$$
J \mathbf{v}=\gamma \mathbf{e}_{1}
$$

As J^{T} is V^{-1}-invariant we can calculate γ. Have

$$
\begin{aligned}
\gamma^{2} \mathbf{e}_{1}^{T} V^{-1} \mathbf{e}_{1} & =\mathbf{v}^{T} J^{T} V^{-1} J \mathbf{v}=\mathbf{v}^{T} V^{-1} \mathbf{v}, \\
\gamma & =\theta \sqrt{ }\left\{\mathbf{v}^{T} V^{-1} \mathbf{v} /\left(V^{-1}\right)_{11}\right\} .
\end{aligned}
$$

If first form of transformation applicable then

$$
J \mathbf{v}=\mathbf{v}-\frac{2 \mathbf{w}^{T} \mathbf{v}}{\mathbf{w}^{T} V \mathbf{w}} V \mathbf{w}=\gamma \mathbf{e}_{1} .
$$

Note w scale invariant so take

$$
V \mathbf{w}=\mathbf{v}-\gamma \mathbf{e}_{1} .
$$

Standard argument suggests $\theta=-\operatorname{sgn}(\mathrm{v})_{1}$. Note γ independent of scale of V. w found most easily if V diagonal

$$
V=\operatorname{diag}\left\{V_{1}, \cdots, V_{n}\right\}
$$

Form of γ suggests elements of V be sorted in increasing order!
9. Factorization - second case. If $V=$ $\operatorname{diag}\left\{0, \cdots, 0, V_{k+1}, \cdots, V_{n}\right\}$ has nontrivial reduced form then second form of transformation must be used. Consider

$$
\begin{aligned}
V_{\varepsilon} & =\operatorname{diag}\left\{\varepsilon, \cdots, \varepsilon, V_{k+1}, \cdots, V_{n}\right\} \\
\lim _{\varepsilon \rightarrow 0}\left(V_{\varepsilon}\right)_{1} V_{\varepsilon}^{-1} & =\left[\begin{array}{cc}
I_{k} & \\
& 0
\end{array}\right] \\
\lim _{\varepsilon \rightarrow 0}\left|\gamma_{\varepsilon}\right| & =\left\|\mathbf{v}_{1}\right\|_{2} .
\end{aligned}
$$

The resulting transformation gives the V-invariant reflector

$$
J=I-2\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{d}_{1}^{T} & 0
\end{array}\right]
$$

where
$\sqrt{ } \mathbf{2} \mathbf{c}=\left(\mathrm{v}+\operatorname{sgn}(\mathrm{v})_{1}\left\|\mathbf{v}_{1}\right\| \mathrm{e}_{1}\right) /\left\|\mathbf{v}_{1}\right\|$,
$\sqrt{ } 2 \mathbf{d}=\left[\begin{array}{c}\mathbf{v}_{1}+\operatorname{sgn}(\mathbf{v})_{1}\left\|\mathbf{v}_{1}\right\| \mathbf{e}_{1} \\ 0\end{array}\right] /\left(\left\|\mathbf{v}_{1}\right\|+\left|(\mathbf{v})_{1}\right|\right)$.
10. Stability considerations If elements of J are large then this is an indicator of possible stability problems! Let

$$
J=I-2 \mathbf{c d}^{T}
$$

be an elementary V-invariant reflector. Then

$$
\|J\|_{2}=\eta+\sqrt{ }\left\{\eta^{2}-1\right\}, \eta=\|\mathbf{c}\|_{2}\|\mathbf{d}\|_{2}
$$

(outline of proof) We require the largest eigenvalue of

$$
J^{T} J \mathbf{w}=\mu \mathbf{w}
$$

or, equivalently,

$$
J \mathbf{w}=\mu J^{T} \mathbf{w} .
$$

Further, it is easy to see that the maximizing eigenvector has form $\mathbf{w}=\alpha \mathbf{d}+\beta \mathbf{c}$. The determinantal condition for non-trivial α, β is

$$
\left|\begin{array}{cc}
1+\mu & 2 \mu\|\mathbf{c}\|^{2} \\
-2\|\mathbf{d}\|^{2} & -(1+\mu)
\end{array}\right|=0
$$

giving

$$
\mu=2 \eta^{2}-1+2 \eta \sqrt{ }\left\{\eta^{2}-1\right\}=\|J\|_{2}^{2} .
$$

If $V=I$ then $\eta=1$, otherwise $\eta>1$.
11. Application of Lemma. Expect from general form for J in first class of transformations that stability requires that $\mathbf{w}^{T} V \mathbf{w} \neq 0$ is commensurate with $\|\mathrm{w}\|\|V \mathrm{w}\|$. Here

$$
\eta=\frac{\left\|V^{-1}\left(\mathbf{v}-\gamma \mathbf{e}_{1}\right)\right\|\left\|\mathbf{v}-\gamma \mathbf{e}_{1}\right\|}{\left(\mathbf{v}-\gamma \mathbf{e}_{1}\right)^{T} V^{-1}\left(\mathbf{v}-\gamma \mathbf{e}_{1}\right)}
$$

with V diagonal. Denominator is $2|\gamma|\left|v_{1}-\gamma\right| / V_{1}$. To estimate numerator

$$
\begin{aligned}
\left\|V^{-1}\left(\mathbf{v}-\gamma \mathbf{e}_{1}\right)\right\| & \geq\left|v_{1}-\gamma\right| / V_{1} \\
\left\|\mathbf{v}-\gamma \mathbf{e}_{1}\right\| & \geq\|\mathbf{v}\|
\end{aligned}
$$

This implies

$$
\|J\| \geq \eta \geq \frac{\|\mathbf{v}\|}{2 \gamma}
$$

That is $\|J\|$ will be large if

$$
\left|V_{1} \mathbf{v}^{T} V^{-1} \mathbf{v}\right| \ll\|\mathbf{v}\| .
$$

For the second class of transformations the $\varepsilon \rightarrow 0$ limit gives η large if

$$
\left\|\mathbf{v}_{1}\right\| \ll\|\mathbf{v}\| .
$$

12. When V is not diagonal . Start with the problem

$$
\min _{\mathbf{x}} \mathbf{r}^{T} V^{-1} \mathbf{r} ; \mathbf{r}=A \mathbf{x}-\mathbf{b}
$$

Given an $L D L^{T}$ factorization of V can rewrite problem by setting $L^{-1} \mathbf{r}=\widetilde{\mathbf{r}}=D^{1 / 2} \mathbf{s}$ to obtain

$$
\min _{\mathbf{x}} \mathbf{s}^{T} \mathbf{s} ; D^{1 / 2} \mathbf{s}=L^{-1} A \mathbf{x}-L^{-1} \mathbf{b}
$$

The necessary conditions give

$$
M\left[\begin{array}{l}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{b} \\
0
\end{array}\right]
$$

where M is the matrix of the equations determining the Gauss-Markov operator

$$
\left[\begin{array}{ll}
T & \wedge
\end{array}\right] M=\left[\begin{array}{ll}
0 & -I
\end{array}\right]
$$

Postmultiplying by $\left[\begin{array}{l}\mathbf{r} \\ \mathbf{x}\end{array}\right]$ gives

$$
\left[\begin{array}{ll}
T & \wedge
\end{array}\right]\left[\begin{array}{c}
-\mathbf{b} \\
0
\end{array}\right]=\left[\begin{array}{ll}
0 & -I
\end{array}\right]\left[\begin{array}{c}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=-\mathbf{x}
$$

demonstrating the equivalence of the two approaches.
13. Is $L D L^{T}$ practicable? One problem for which there is considerable amount of software in sparse and structured cases.
A rank-revealing Choleski has the form

$$
V \rightarrow L \operatorname{diag}\left\{D_{n}, D_{n-1}, \cdots, D_{1}\right\} L^{T}
$$

where pivoting ensures

$$
D_{n} \geq D_{n-1} \geq \cdots \geq D_{1}
$$

Need to reverse order to construct V-invariant transformation. Condition for success (eg Higham) is

$$
\begin{aligned}
& \left\{D_{1}, D_{2}, \cdots, D_{k}\right\} \text { commensurate, small, } \\
& D_{k} \ll D_{k+1}, \\
& \left\{D_{k+1}, \cdots, D_{n}\right\} \text { commensurate, } \\
& k \leq p
\end{aligned}
$$

Would expect that $\left\{D_{1}, D_{2}, \cdots, D_{k}\right\}$ could have high relative error. Does that matter?
14. A stable problem. Case
$D=\operatorname{diag}\left\{0, \cdots, 0, D_{k+1}, \cdots, D_{n}\right\}$ gives the equality constrained problem

$$
\min _{\mathbf{x}} \mathrm{s}^{T} \mathbf{s} ;\left[\begin{array}{cc}
0 & \\
& D_{2}^{1 / 2}
\end{array}\right] \mathbf{s}=\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

This is the limiting problem associated with the penalised objective

$$
\min _{\mathbf{x}}\left\{\mathbf{r}_{2}^{T} D_{2}^{-1} \mathbf{r}_{2}+\lambda \mathbf{r}_{1}^{T} \mathbf{r}_{1}\right\} ; \mathbf{r}=\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

which has the alternative form
$\min _{\mathbf{x}} \mathrm{s}^{T} \mathbf{s} ;\left[\begin{array}{ll}\lambda^{-1 / 2} I & \\ & D_{2}^{1 / 2}\end{array}\right] \mathbf{s}=\left[\begin{array}{c}A_{1} \\ A_{2}\end{array}\right] \mathbf{x}-\left[\begin{array}{l}\mathbf{b}_{1} \\ \mathbf{b}_{2}\end{array}\right]$.
From theory of penalty functions expect

$$
\|\mathrm{x}(\lambda)-\widehat{\mathbf{x}}\|=O(1 / \lambda), \lambda \rightarrow \infty
$$

15. Perturbation behaviour. Necessary conditions for the penalty problem are

$$
\mathbf{r}_{2}^{T} D_{2}^{-1} A_{2}+\lambda \mathbf{r}_{1}^{T} A_{1}=0
$$

Set $\tau=1 / \lambda$ and define

$$
\tau \mathbf{u}=A_{1} \mathbf{x}-\mathbf{b}_{1}\left(=\mathbf{r}_{1}\right)
$$

Can find equations defining a trajectory satisfied by $\mathbf{x}(\tau), \mathbf{u}(\tau)$ by differentiating these relations.

$$
\begin{aligned}
A_{2}^{T} D_{2}^{-1} A_{2} \frac{d \mathbf{x}}{d \tau}+A_{1}^{T} \frac{d \mathbf{u}}{d \tau} & =0 \\
A_{1} \frac{d \mathbf{x}}{d \tau}-\tau \frac{d \mathbf{u}}{d \tau} & =\mathbf{u}
\end{aligned}
$$

Matrix of this system is nonsingular for τ small enough provided A_{1}, A_{2} are of full rank. Thus can integrate back to $\tau=0$ and Taylor series expansion is well defined.

Conclusion - Let $D=\operatorname{diag}\left\{D_{1}, D_{2}\right\}$. The equality constrained problem obtained by setting $D_{1}=$ 0 has a well defined solution which differs from that of the original problem by $O\left(\left\|D_{1}\right\|\right)$.
16. Kalman Filter. Let $\mathrm{x}_{k}=\mathrm{x}\left(t_{k}\right) \in R^{p}$ be an unobserved state variable describing the state of a system at time t_{k}. System evolves in accordance with dynamics equation

$$
\mathbf{x}_{k+1}=X_{k} \mathbf{x}_{k}+\mathbf{u}_{k}, k=1,2, \cdots, n-1
$$

and information on state is available through observations

$$
\begin{aligned}
& \mathbf{y}_{k} \in R^{m}, \mathbf{y}_{k}=H_{k} \mathbf{x}_{k}+\varepsilon_{k}, k=1,2, \cdots, n-1 \\
& \mathcal{C}\left\{\varepsilon_{i}, \varepsilon_{j}\right\}=V_{i} \delta_{i j}, \mathcal{C}\left\{\mathbf{u}_{i}, \mathbf{u}_{j}\right\}=R_{i} \delta_{i j}, \mathcal{C}\left\{\varepsilon_{i}, \mathbf{u}_{j}\right\}=0, \\
& \quad \Rightarrow \mathcal{C}\left\{\mathbf{x}_{i}, \mathbf{u}_{k}\right\}=\mathcal{C}\left\{\mathbf{x}_{i}, \varepsilon_{k}\right\}=0, j \leq k .
\end{aligned}
$$

Let $\mathcal{Y}_{k}=\left\{\mathbf{x}_{1 \mid 0}, \mathbf{y}_{1}, \cdots, \mathbf{y}_{n}\right\}$. The Kalman filter produces the linear, minimum variance prediction $\mathbf{x}_{k \mid k}=E\left\{\mathbf{x}_{k} \mid \mathcal{Y}_{k}\right\}$ can be formulated as the generalised least squares problem
$\min _{\mathbf{X}} \mathbf{s}^{T} \mathbf{s} ; \operatorname{diag}\left\{S_{i-1 \mid i-1}^{1 / 2}, R_{i-1}^{1 / 2}, V_{i}^{1 / 2}\right\} \mathbf{s}=X \mathbf{x}-\mathbf{y}$,
$X=\left[\begin{array}{cc}I & 0 \\ -X_{i-1} & I \\ 0 & H_{i}\end{array}\right], \mathbf{y}=\left[\begin{array}{c}\mathbf{x}_{i-1 \mid i-1} \\ 0 \\ \mathbf{y}_{i}\end{array}\right], \mathbf{x}=\left[\begin{array}{c}\mathbf{x}_{i-1} \\ \mathbf{x}_{i}\end{array}\right]$,
with output $\mathbf{x}_{i-1 \mid i}, \mathbf{x}_{i \mid i}$.
17. V-invariant filter example. Example due to Inge Söderkvist (CTAC 1995)

$$
\begin{aligned}
X_{i} & =I_{2}, R_{i}=I_{2}, i \neq 3, I_{3}=\left[\begin{array}{ll}
k^{2} & \\
& 1 / k^{2}
\end{array}\right] \\
H_{i} & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], V_{i}=I_{2}, \\
\mathbf{y}_{i} & =\left[\begin{array}{c}
15 \\
5
\end{array}\right], i=1,2, \cdots, 5, \\
\mathbf{x}_{1 \mid 0} & =\left[\begin{array}{c}
10 \\
5
\end{array}\right]=\mathbf{x}_{i}, \text { independent of covariances, } \\
S_{1 \mid 0} & =I_{2}
\end{aligned}
$$

18. Sorting of D_{i}. An analogue of the sorting of the D_{i} has occurred before. Consider the penalised formulation of the constrained least squares problem

$$
\min _{\mathbf{x}}\left\{\left\|\mathbf{r}_{2}\right\|^{2}+\left\|\lambda^{1 / 2} \mathbf{r}_{1}\right\|^{2}\right\} .
$$

This can be solved by an orthogonal factorization of the matrix

$$
\left[\begin{array}{c}
\lambda^{1 / 2} A_{1} \\
A_{2}
\end{array}\right] .
$$

Easy to see there is trouble if system not ordered so large rows are first (or row interchanges used). Result due to Powell and Reid, IFIP 1968. Consider

$$
\left[\begin{array}{ccc}
0 & 2 & 1 \\
10^{6} & 10^{6} & 0 \\
10^{6} & 0 & 10^{6} \\
0 & 1 & 1
\end{array}\right] .
$$

If row interchanges are not used in first step of orthogonal factorization then all information on first row is lost in five decimal arithmetic.

