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Abstract

We show that the homotopy algorithm of Osborne, Presnell and
Turlach [10], which has proved such an effective optimal path following
method for implementing Tibshirani’s “lasso” for variable selection in
least squares estimation problems, can be extended to polyhedral ob-
jectives in examples such as the quantile regression lasso. The new
algorithm introduces the novel feature that it requires two homotopy
sequences involving continuation steps with respect to both the con-
straint bound and the Lagrange multiplier. Performance is illustrated
by application to several standard data sets, and these results are com-
pared to calculations made with the original lasso homotopy program.
This permits an assessment of the computational complexity to be
made both for the new method and for the closely related linear pro-
gramming post optimality procedures which generate essentially iden-
tical solution trajectories. This comparison strongly favours the least
squares selection method. However, the new method still provides an
effective computational procedure, plus it has distinct implementation
advantages over the linear programming approaches to the polyhedral
objective problem. The computational difficulty is explained and the
problem that needs to be resolved in order to improve performance
identified.
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1 Introduction

The problem motivating this investigation is the classic variable selection
problem of determining a subset of the parameters β ∈ Rp in the linear
model

r = y −Xβ, (1)

where r ∈ Rn is the residual vector, y ∈ Rn is the vector of observations, and
X : Rp → Rn is the design matrix which is assumed to have full (typically col-
umn) rank, in order to provide an adequate but parsimonious representation
of the problem data. If an l1 inequality constraint

p∑
i=1

|βi| ≤ κ (2)

is imposed on β in the least squares regression formulation of the estima-
tion problem then the number of nonzero components of β in the optimum
solution increases as the constraint bound is increased away from zero. The
problem eventually becomes unconstrained for large enough values of the
bound, say κ ≥ κmax, so that all parameters can be expected to be involved
in the solution when p ≤ n. Tibshirani suggested in [12] that study of the
sets of non-zero parameter estimates as a function of the constraint bound
provided a basis for variable selection and gave the acronym “lasso” to the
resulting process. Improved algorithms were developed in [10]. In partic-
ular, this paper introduced a “homotopy” algorithm which follows the full
piecewise linear optimal solution path as a function of the constraint bound.
Subsequently significant evidence has accumulated that this algorithm is par-
ticularly efficient in many circumstances, frequently taking at most few more
steps than the number of variables selected. When this is true then it ri-
vals the cost of an unconstrained least squares algorithm for the full set of
variables while providing considerable additional information. This has led
to further applications. For example, it has proved distinctly effective in
applications in compressed sensing [3]. Generalisations have been made to
variable selection in problems with multiple objectives where the form of con-
straint must be chosen appropriately [13]. The lasso has been used with more
general likelihoods by approximating them by piecewise quadratic objectives
with continuous first derivative [15], and for robust variable selection using
the Huber-M estimator which involves a mixed piecewise linear, quadratic
objective [11]. Both these problems have sufficient smoothness to ensure that
the necessary conditions for optimality vary continuously at points where the
objective function changes its structure. However, this property is not shared
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by the homotopy equations in either case so that an extra layer of algorith-
mic complexity is added. Different selection properties can be addressed by
varying the form of constraint. For example, [1] recommend using what is
in effect the signed rank objective [5] as a constraint. They claim this has
an advantage in suggesting the development of cluster variables as an aid to
interpretation when the predictor variables are both relatively highly corre-
lated and make similar contributions to the response. A different suggestion
for attacking similar problems is the so-called “elastic net” [17].

The other class of applications that has attracted recent attention is that
corresponding to the relaxation of the smoothness of the objective. Examples
include the training of support vector machines [16], [14], the piecewise linear
objectives in quantile regression [7], [8], and [18] where the form of constraint
used in [13] is used to develop a simultaneous variable selection procedure
for simultaneous quantile regressions. A suggested compressed sensing ap-
plication involves the minimization of the l1 norm of the parameters subject
to a maximum norm constraint on the components of the residual vector [2].
This fits the pattern developed here because it follows from the necessary
conditions that the roles of the constraint and objective can be reversed.

Here a general homotopy type lasso algorithm for variable selection is de-
veloped in a form which is applicable to piecewise linear objective functions
of quite general type. There is one striking difference in the properties of
the optimal homotopy trajectory between the case when the objective is at
least once continuously differentiable and the non-smooth case when the ob-
jective is piecewise linear [11]. In the former case the Lagrange multiplier for
the l1 constraint is a piecewise linear, continuous function of the constraint
bound κ with the characteristic property that it decreases steadily from its
initial positive value at κ = 0 to 0 for κ large enough. In contrast, the cor-
responding Lagrange multiplier associated with a piecewise linear objective
is a decreasing step function of κ with jumps at the points where the set of
non-zero components of β changes, and it is necessary to include an explicit
multiplier update phase as these jumps have to be determined as part of the
computation. The homotopy algorithm can be developed quite generally for
polyhedral convex objective functions given generic forms for the subdiffer-
entials of the objective and the polyhedral constraint [9]. However, here we
restrict ourselves to the case of an l1 objective subject to the standard l1 form
of constraint used in the lasso. This objective corresponds to the special case
of parameter τ = .5 in the quantile regression problem

min
β

n∑
i=1

(1− τ)(−ri)+ + τ(ri)+, 0 < τ < 1, (3)

where the ri are residuals in a linear model fit. As indicated above, the
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application of the lasso to this objective corresponds to one of the more
popular applications of the lasso variable selection technology.

The unconstrained quantile regression application already hints that com-
putational complexity is potentially an important consideration in designing
algorithms for piecewise linear objectives in the constrained problems. This
arises because complexity is already a problem in simplicial algorithms for
the l1 estimation problem where it proves important to incorporate an ef-
fective line-search in order to make large correction steps especially in the
initial stages of the computation [9]. If this is not done then a sequence of
small steps is made as the residual vector adjusts to adapt itself to the form
required by the necessary conditions. But every residual changing sign trig-
gers a point of nondifferentiability of the objective. Typically O(n) changes
at least are expected in this adaptive process given general initial conditions.
A form of this problem occurs also in the homotopy algorithm. The reason
for this is that frequently a succession of multiplier update steps occur with
the successive parameter estimates contained exactly in the same orthant of
a fixed subspace. The corresponding increments in these estimates corre-
spond to descent steps for the objective function in this subspace. However,
the objective minimum in this subspace may not be on the homotopy path
(may not satisfy the homotopy necessary conditions) so the basic l1 strategy
requires modification.

Remark 1 The novelty in our approach lies in the manner in which the
non-smooth necessary conditions are used explicitly in the basic algorithm
structure. This involves switching between the constrained and Lagrangian
forms of the problem in order to continue with respect to the constraint bound
(increase) and then to update (decrease) the Lagrangian parameter. In par-
ticular, decisions about adding and subtracting variables are based on sub-
gradient vector components attaining or departing from bounds. This basic
pattern generalises to necessary conditions for more complicated piecewise
linear structures. The algorithm described here is equivalent to the use of
simplex algorithm post-optimality techniques applied to a linear programming
formulation of the problem [6], [8]. It has significant advantages both in
displaying problem structure and in avoiding the introduction of the slack
variables and auxilliary positivity constraints required in the linear program-
ming formulations. This enables the direct use of the design matrix as the
basic data structure in the homotopy approach.

The lasso algorithm is developed in the next section. This is followed
by a discussion of numerical experience together with an indication of the
source of the additional work required in the non-smooth objective case. The
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detailed algebraic calculations to justify the homotopy algorithm have been
postponed to the appendix. We describe the current state of our investigation
as a “proof of concept” exercise. This means several issues have not been
explored in detail. These include:

1. The numerical work is thorough but has not been exhaustively opti-
mised. For example, economised updating and downdating of matrix
factorizations has not been implemented. There could be scope for this
and it could involve, for example, keeping two lines of factorization for
the two types of continuation.

2. Our algorithm requires these factored matrices to be nonsingular. This
is a requirement that the current number of variables selected k satisfies
k ≤ rankX ≤ min p, n. Here this condition is simplified to rankX = p,
a condition frequently encountered in practice. However, the more gen-
eral condition can be important. For example, our original application
of the least squares lasso was to the problem of selecting an effective set
of knots for a regression spline {reference?}. Here there is no a priori
bound on the total number of knots p suggested initially. In such cases
use of an extra problem specific condition to ensure the non-singularity
requirement is satisfied is recommended .

3. Whenever a change of basis is made in linear programming post-optimality
studies (also referred to as parametric linear programming) then a non-
unique optimum has occured in the linear programming formulation. In
the typical case, the intersection between the linear program objective
and the feasible region is one dimensional in this degeneracy. This is
the post-optimality interpretation of Proposition 3 in [11]. This partic-
ular degeneracy in the linear program provides the homotopy step with
respect to the constraint bound in our formulation. However, there are
other ways in which degeneracy can and does occur. Our treatments
are expedient and are discussed in subsection 3.2 as one aspect of the
computations.

4. There is no doubt of the utility of extracting an intercept term and
standardising the design accordingly in ordinary least squares estima-
tion. This is not quite so clear in the least squares lasso as the l1 norm
does not respect orthogonality. It becomes less clear when the objec-
tive is polyhedral, and further complicated if a variable rather than its
absolute value is entered into the constraint term. The calculations
presented here took the simplest option that permitted direct compar-
ison with the original lasso homotopy program [10]. This permitted
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the design to be augmented optionally by a column of 1’s. Columns of
the design and of the response were then scaled to have length 1. The
augmented design has been used in the quoted numerical results.

2 Lasso for the l1 objective

2.1 Necessary conditions

The basic idea of the homotopy algorithm is to follow the evolution of the
parameters β as piecewise linear functions of the constraint bound κ. Two
forms of the problem prove important in developing the homotopy trajectory.
These are

Constrained form This is used to follow β as a piecewise linear function
of the constraint bound κ. This problem is

min
β

n∑
i=1

|ri| ,
p∑
i=1

|βi| ≤ κ. (4)

If |yi| > 0, i = 1, 2, · · · , n, then the problem has the solution β = 0
when κ = 0. Increasing κ then permits components of β to move from
0 (become active), typically one at a time. If κ is large enough then β
is essentially unconstrained so the problem reduces to an unconstrained
l1 minimization problem. One consequence is that the associated La-
grange multiplier is λ = 0.

Lagrangian form This is used to update the subgradient vector compo-
nents in the necessary conditions as a parametric function of the La-
grange multiplier λ with κ fixed. This update is performed whenever
there is a change in the set of active β components. The problem
Lagrangian is

L (β, λ) =
n∑
i=1

|ri|+ λ

{
p∑
i=1

|βi| − κ

}
.

It is convex if λ ≥ 0. The form used here follows from the necessary
condition computed with respect to β expressed in subgradient form

0 ∈ ∂βL (β, λ) = ∂β

n∑
i=1

|ri|+ λ∂β

p∑
i=1

|βi| . (5)

The key to its utility is a consequence of κ not appearing explicitly in
this expression. Setting the initial value of λ corresponding to κ = 0 is
described in subsection 2.4.
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In non-degenerate cases it will be possible to separate zero and non-zero val-
ues of both r and β into complementary classes and to take uniquely specified
actions in the critical situations that occur when these classes have to be re-
defined. Pointer (index) sets are introduced to specify these separations.
Let

σ = {i : ri = 0} , ψ = {i : βi 6= 0} , (6)

and denote the set complements in {1, 2, · · · , n} and {1, 2, · · · , p} respec-
tively by

σc = {i : ri 6= 0} , ψc = {i : βi = 0} . (7)

Orderings of the elements in σ and ψ are assumed. Specifically the pointer
in the i’th position in σ is referenced as σ(i). In similar fashion the pointer
in position j in ψc is referenced as ψc(j). The computation must provide an
implementation of these orderings. In addition define permutation matrices
Pσ : Rn → Rn and Qψ : Rp → Rp by

Pσr =

[
r1
r2

]
,

{
(r1)i = rσc(i) 6= 0, i = 1, 2, · · · , n− |σ|,
(r2)i = rσ(i) = 0, i = 1, 2, · · · , |σ| ,

Qψβ =

[
β1

β2

]
,

{
(β1)i = βψ(i) 6= 0, i = 1, 2, · · · , |ψ|,
(β2)i = βψc(i) = 0, i = 1, 2, · · · , p− |ψ| .

To specify necessary conditions set

PσXQ
T
ψ =

[
X11 X12

X21 X22

]
, (8)

Pσy =

[
y1

y2

]
. (9)

Let
[
θTσ vTσ

]
∈ ∂r‖Pσr‖1, and

[
θTψ uTψ

]
∈ ∂β‖Qψβ‖1, where θσ and

θψ are the vectors of signs of the components of r1 and β1 respectively,
be subgradient vectors associated with the corresponding l1 norm functions.
Then the necessary conditions (5) are

[
θTσ vTσ

] [ X11 X12

X21 X22

]
= λ

[
θTψ uTψ

]
, λ ≥ 0, (10)

−1 ≤ vi ≤ 1, i = 1, 2, · · · , |σ|, (11)

−1 ≤ ui ≤ 1, i = 1, 2, · · · , |ψc|, (12)

‖r‖1 =
[
θTσ vTσ

]
Pσr = θTσ r1, (13)

‖β‖1 =
[
θTψ uTψ

]
Qψβ = θTψβ1 ≤ κ. (14)
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2.2 Varying κ

The evolution of the set of active parameter estimates as functions of κ
follows standard homotopy procedures. Consider κ = κ∗ > 0, κ∗ in an open
interval such that the optimal β is determined by a fixed set of zero residuals
ri = 0, i ∈ σ. These can be identified as l1 necessary conditions except
that here the active bound constraint picks up a degree of freedom so that
|σ| = |ψ| − 1. The resulting equations on this interval have the form

θTψβ1 = κ, l1 norm condition, (15)

X21β1 = y2, zero residual conditions. (16)

Differentiating with respect to κ gives

θTψ
dβ1

dκ
= 1, (17)

X21
dβ1

dκ
= 0, (18)

⇒ dβ1

dκ
=

[
θTψ
X21

]−1
e1. (19)

This shows that dβ1

dκ
is constant in a neighbourhood of κ∗ so that locally

β1 is a linear function of κ. Now it follows that λ = λ0 is constant on this
interval of linear dependence. To show this consider the partitioning of the
necessary conditions (10) which gives that

θTσX11 + vTσX21 = λθTψ .

Differentiating with respect to κ gives

dvTσ
dκ

X21 =
dλ

dκ
θTψ . (20)

To show dλ
dκ

= 0 multiply by dβ1

dκ
and use (18) and (17) to obtain

0 =
dvTσ
dκ

X21
dβ1

dκ
=
dλ

dκ
.

Thus λ is constant in intervals of κ with fixed zero residual sets and can have
jumps only when it is necessary to vary the partitioning of the optimality
conditions. It also follows that dvσ

dκ
and

duψ
dκ

vanish on these intervals.
One connection between the above development and a direct optimisation

approach is the following.
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Lemma 2 dβ
dκ

is a direction of descent for minimising ‖r‖1.

Proof. The calculation of the directional derivative can proceed as follows.

‖r‖′1
(
β :

dβ

dκ

)
= − sup

z∈∂‖r‖1
zTX

dβ

dκ
,

= −θTσX11
dβ1

dκ
= −λθTψ

dβ1

dκ
,

= −λθTψ
[
X21

θψ

]−1
e|ψ| = −λ < 0.

where (18) has been used. Here e|ψ| is the unit vector with 1 in the |ψ| place.

A similar result is given in [8].
The homotopy algorithm proceeds by stepping in the direction defined

by dβ1

dκ
. There are two possibilities for terminating this step.

1 A new zero residual is generated. It is assumed that the change in the
characteristic set corresponds to row σc(k) of X11. Set xTk = eTkX11,
yk = eTk y1, and define rk similarly. The update of the index set σ
to take account of the new zero residual is σ ← σ

⋃
{σc(k)}. If σ is

reordered such that σc(k) → σ(1) then the corresponding subgradient
component is given by v1(λ0) = sign (rk (κ∗)) = θk.

2 A component of β1 vanishes before a new zero residual is reached. Let
this component correspond to index ψ(j). To preserve the necessary
conditions it is necessary to downate the index set pointing to the β
components, (ψ ← ψ \ {ψ(j)}). It is assumed that ψ(j)→ ψc(1). The
corresponding subgradient component is u1 = sign (βj (κ∗)) = θj.

At this point the computation switches to consider continuation with respect
to the Lagrange multiplier as parameter. Optimality as λ is reduced requires
that the new subgradient components move from their bound values into the
interior of their region of feasibility. This is guaranteed by the following re-
sults which assume the non-degeneracy condition that exactly one component
of r or β is involved.

Lemma 3 Optimality is preserved in a small enough reduction ∆λ in λ pro-
vided θkv1(λ0 −∆λ) < 1 . This is equivalent to the following.

θk
dv1(λ0)

dλ
≥ 0. (21)
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Lemma 4 Optimality is preserved in a small enough reduction ∆λ in λ pro-
vided θju1(λ0 −∆λ) ≤ 1.This result is equivalent to

θj
du1(λ0)

dλ
≥ 0. (22)

These results are proved in appendix A.

2.3 Varying λ

Let the current value of the Lagrange multiplier be λ = λ0. Also, let the cur-
rent interval of linear dependence of the parameters β on κ be [κ0 ≤ κ ≤ κ1].
There are two cases which can interrupt this dependence:

1. Assume the κ homotopy step is terminated by the occurrence of the
new zero residual rk, rk (κ1) = 0, corresponding to the first termination
possibility in the κ phase. In this case the updated quantities are given
by

X21 ←
[

xTk
X21

]
, y2 ←

[
yk
y2

]
, (23)

X21 is now square and invertible as the vanishing of rk as κ is increased
requires that the corresponding row xk from X11 be independent of the
rows of X21. Now both β and κ are fixed by the condition

X21β1 = y2.

2. The break in the κ homotopy is triggered by the vanishing of a β
component. In this case it is necessary to remove the column of X21

corresponding to the new zero component of β to produce X21. Again
it is square and nonsingular but now has dimension |σ|. The vector θψ
has its j’th component added to uψ.

Note that λ does not appear explicitly in either possibility. Now differentiate
the repartitioned necessary conditions with respect to λ to obtain[

0 · · · 0 dvTσ
dλ

] [ X11 X12

X21 X22

]
=
[
θTψ

d(λuTψ)
dλ

]
.

Equating components gives

dvTσ
dλ

X21 = θTψ , (24)

dvTσ
dλ

X22 =
d
(
λuTψ

)
dλ

. (25)
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Remark 5 It follows that dvTσ
dλ

and
d(λuTψ)
dλ

are constant so the updates of vσ
and uψ are computed readily. However, uψ is not itself piecewise linear in
λ. A similar situation occurs in the lasso homotopy algorithm for the case
of a quadratic objective function subject to an l1 constraint [10]. Here this
complicates the checking that the components of uψ are within bound. The
condition that λuψ is piecewise linear can be expressed component-wise as

d

dλ
(λu(λ)i) = γi, i = 1, 2, · · · , p,

where γi is constant independent of λ on each linear piece. It follows that

(uψ)i =
αi
λ

+ γi,

where
αi = (uψ(λ0)i − γi)λ0.

Thus
uψ(λ0 −∆)i =

αi
λ0 −∆

+ γi

is an increasing function of ∆ < λ0 provided αi > 0. This means that
uψ(λ0 −∆)i can reach its upper bound as ∆ is increased provided

1 =
αi

λ0 −∆
+ γi ⇒ ∆ = λ0 −

αi
1− γi

.

This requires αi > 0⇒ uψ(λ0)i > γi. The lower bound is reached if

−1 =
αi

λ0 −∆
+ γi ⇒ ∆ = λ0 +

αi
1 + γi

.

This requires αi < 0⇒ uψ(λ0)i < γi.

A consequence is that the necessary conditions continue to hold as λ is
reduced until either:

1. Let uq = eTq uψ, and assume it is the component of uψ to first reach
a bound. Then ψ ← ψ

⋃
{ψc(q)} and the increase κ phase is recom-

menced. The necessary conditions are maintained if the corresponding
component of β moves away from zero with the sign of the bound.
This is required in order to impose the norm condition correctly on the
augmented β.
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2. Let vq = eTq vσ and assume it is the component of vσ to first reach a
bound. The appropriate action is to remove the corresponding index
from σ, σ ← σ \ {σ(q)}, and restart the increase κ phase using the
downdated X21. Now rq = eTq r2 is no longer bound to zero. The
necessary conditions will continue to hold provided its sign agrees with
the sign of vq as κ is increased.

The additional results required are as follows (see appendix A). Again a non-
degeneracy condition is assumed. Here it that exactly one component of
either v or u is involved.

Lemma 6 Let vq(λ) reach first a bound as λ is decreased. If σ ← σ \ {σ(q)}
and the κ phase restarted then

sign

(
drq
dκ

)
= − sign

(
dvq
dλ

)
. (26)

Lemma 7 Let uq(λ) reach first a bound as λ is decreased. If ψ ← ψ
⋃
{ψc(q)}

and the κ phase restarted then

sign

(
dxq
dκ

)
= − sign

(
duq
dλ

)
. (27)

2.4 Starting out

Assume yi 6= 0, i = 1, 2, · · · , n. Then

r = y, σ = ∅, (θσ)i = sign (yi) , i = 1, 2, · · · , n,

when κ = 0. For simplicity, assume also there is an unique answer to

k = arg
{

max
i

∣∣θTσX∗i∣∣} ,
where X∗i denotes the i’th column of X. Set

λ =
∣∣θTσX∗k∣∣ , ψ = {k} , θψ = sign

(
θTσX∗k

)
, (28)

λ
[
θψ uTψ

]
= θTσXQ

T
ψ . (29)

Note that initially ψ is a singleton so that θψ is a scalar. Equations (28) and
(29) provide a set of quantities satisfying the necessary conditions for small
enough κ. This permits the κ phase to be initiated from κ = 0.
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3 Numerical results

3.1 Computational complexity

Results of the homotopy algorithm for several well known data sets are dis-
played in Table 1. The data sets are

Hald , http://www.stat.uconn.edu/~nalini/fcilmweb/example13.html,
[4];

Iowa , http://www.math.unm.edu/splus/node130.html, [4];

diabetes http://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.

txt;

housing http://lib.stat.cmu.edu/datasets/boston .

At the end of each step which varies κ either σ is increased or ψ is decreased,
and at the end of each step that decreases λ either σ is decreased or ψ is
increased. An iteration of our homotopy algorithm involves a step varying
κ followed by a step varying λ. Table 1 records the numbers for each of
the possible combinations of behaviour in these step pairings that occured
in reaching the unconstrained solution of the problem. Specifically let SA
entries correspond to increments and SD to decrements in σ, XA to incre-
ments and XD to decrements in ψ. These results show that much of the
time the basic step pairing gives entries in the SASD column. This counts
descent steps that move one residual rq away from zero in the κ step (SA)
and adds a new residual rk to the zero residual set in the λ step (SD) while
leaving β(κ) in the same |ψ| dimensional subspace. This is illustrated for the
diabetes data set in Figure 1 which shows several examples of this behaviour.
Because dβ

dκ
is a descent direction (Lemma 2) it follows that the algorithm is

making steps that approach the l1 minimum in the current |ψ| dimensional
subspace (actually a fixed orthant as a sign change in β interrupts the SASD
sequence).

The smoothness of the least squares objective means that steps that up-
date and down-date σ have no analog in the original lasso algorithm in which
the usual step is one that adds a new variable (XA) - here corresponding
most closely to the SAXA column in Table 1. The other possibilities include
XDSD column entries which correspond to back-track steps and XDXA col-
umn entries which often indicate variables changing sign. Both these types
of behaviour, which we summarise here under the heading of XD steps, are
observed to occur infrequently in the original lasso formulation which has a
complexity essentially dominated by variable addition steps. Results for the

13

http://www.stat.uconn.edu/~nalini/fcilmweb/example13.html
http://www.math.unm.edu/splus/node130.html
http://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
http://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt
http://lib.stat.cmu.edu/datasets/boston


p n SASD SAXA XDXA XDSD
Hald 4 13 8 4 1 0
Iowa 8 33 16 14 1 6

diabetes 10 442 514 23 1 13
housing 13 506 783 24 0 11

Table 1: Step counts for homotopy algorithm (R implementation)– l1 objec-
tive
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Figure 1: Homotopy algorithm illustrated on the diabetes data. The left
panel shows the complete homotopy. The numbers on the right of this panel
label the solution components. The right panel is a magnification of the
initial part of the homotopy illustrating the large number of SASD steps
that are taken.

XA XD
Hald 5 0
Iowa 9 0

diabetes 14 3
housing 16 2

Table 2: Step counts for homotopy algorithm – least squares objective
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κ variables at 0 subspace SASD steps
12.30 2,8,9
13.37 8,9 40
31.79 8,9
32.04 8,9,10 9
35.47 8,9,10
36.35 8,9 26
45.13 8,9
45.82 9

Table 3: Example of backtrack step, diabetes data

original lasso corresponding to those shown above are given in Table 2. These
show an order of magnitude difference in the computational complexity of the
l1 homotopy algorithm which occurs because the large number of the SASD
steps turns an O(n) algorithm - the complexity of an update step when n is
large and p typically fixed - into at least an O(n2) algorithm. This problem
arises because the process is seeking improvements by taking many “small”
SASD steps towards the l1 minimum in the current subspace. However, this
process terminates whenever the homotopy “escapes” corresponding to the
occurrence of a step of type SAXA, XDXA, or XDSD, and this can happen
before the minimum in the current subspace is reached. This behaviour is
a consequence of the role of the currently zero-valued parameter estimates
pointed to by ψc in the homotopy necessary conditions (10) which have no
counterpart in a straight l1 minimization based on the non-zero parameter
estimates alone. This is illustrated in Table 3 which shows a backtrack step
occuring in the application of the piecewise linear homotopy algorithm to
the diabetes data without an intercept term. The table gives the κ values
at the entry and exit, where appropriate, for the subspaces encountered, to-
gether with the zero variables, and the number of SASD steps in the current
subspace. This example is of interest also because after the backtrack step,
which gives a sequence of descent steps in the smaller subspace, there is a
return to the larger subspace left previously. It follows that large step meth-
ods based on using line search techniques developed for the l1 minimization
problem cannot be applied without modification.

The problem that the sequence of small steps solves can be formulated
explicitly. The idea is to maximise κ or minimise λ in the orthant of the
subspace determined by θψ subject to constraints which ensure that the
homotopy necessary conditions remain satisfied . For example, the problem
of determining the range of κ appropriate to the current ψ in a “large step”
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homotopy algorithm corresponds to the problem of designing a fast algorithm
for solving the problem

max
v,w,λ,β

∑
i∈ψ

(θψ)i βi (30)

subject to constraints which express a small reformulation of the necessary
conditions (1) and (10) – (14)

vT
[
X11

X21

]
− λθTψ = 0, (31)

−eσ ≤ v ≤ eσ, (32)

vT r = ‖r‖1, (33)

vT
[
X12

X22

]
−wT

ψ = 0, (34)

−λeψ ≤ wψ ≤ λeψ, (35)

λ ≥ 0, (36)

(θψ)i βi ≥ 0, i ∈ ψ, (37)

where w = λu, and eσ and eψ are vectors with all components 1 and hav-
ing the indicated dimension. This is almost a linear program of the right
structure. The catch is the single nonlinear constraint (33) which is required
to restrict the components of v to lie in the subdifferential of ‖r‖1. This
constraint is satisfied implicitly in the small step homotopy method.

3.2 Dealing with degeneracies

The homotopy algorithm encounters degeneracy when the decision process
at the end of either the κ or λ step requires a choice to be made between
several possibilities. For example, several residuals could vanish identically
to terminate a κ step. One cause encountered in the diabetes and Boston
housing data corresponded to identical observations of the response and par-
tial design in sub models when several potential model variables are omitted.
This degeneracy could be avoided by repeated inspection at some computa-
tional cost. Two alternative approaches to resolving this problem have been
employed successfully in our computations:

1. Small random perturbations can be added to the input data. This has
been used in a Fortran 95 implementation of the algorithm.

2. An R implementation permits several indices to enter σ during the
vary κ step. If this happens then the matrices in (19) and (25) are only
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square and invertible once duplicate rows are removed. These equa-
tions can be solved using generalised inverse technology. Typically, if
several indices enter σ during a κ step then they are later simultane-
ously removed during a λ step. However, if the λ step ends with an
increment in ψ then it may happen that, after the removal of duplicate
rows, X21 does not have one more column than it has rows which is a
requirement for (19) in the next κ step. In this case it is necessary to
perform further λ steps, which should all involve decrementing σ, until
the required condition on (19) is satisfied.

It is not easy to compare the computational performance of the two proce-
dures. However, we have the impression that the procedure used in the R
implementation appears to usually produce smaller iteration counts.

A Proofs

Proofs of the Lemmas that govern the switching between the κ and λ phases
are presented. Note that the conditions presented are necessary for the piece-
wise linear dependence of β on κ, and vσ and λuψ on λ to be continuous.
However, the algebraic proofs presented here have some independent interest.

Remark 8 It will be convenient to distinguish between the set of zero residu-
als in the κ phase and the augmented set corresponding to a new zero residual
in the subsequent λ phase which starts with λ equal to its value λ0 in the κ
phase. The key components of the augmented system are written

vσ (λ0) =

[
θk
vσ

]
, X21 =

[
xTk
X21

]
.

As a result of augmenting X21 while holding ψ fixed it follows that X21 is
nonsingular. The key component of the necessary conditions becomes

θ
T

σX11 + vTσX21 = λθTψ ,

and
dv1
dλ

= θTψX
−1
21 e1.

A similar notation is used in the case that ψ is downdated to take account
of a component of β becoming zero. Let this component be βψ(j) then it is
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assumed that it is swapped to position |ψ| and then moved to ψc in position
1. The repositioning is summarised by[

θTψ
X21

]
=

[
θ
T

ψ θj
X21 xj

]
Qj, (38)

where the permutation matrix that expresses the operation that moves the j’th
component of θψ to the last position is written Qj.

Proof of Lemma 3. It is necessary to show that the subgradient component
associated with rk (κ1) = 0 satisfies equation (21).

Proof. It is convenient to characterise θk = sign (rk) using the condition
rk(κ1) = 0. This is

xTk

{
β1 (κ0) + (κ1 − κ0)

dβ1

dκ

}
− yk = 0,

so that

xTk
dβ1

dκ
= xTk

[
θTψ
X21

]−1
e1,

=
1

κ1 − κ0
rk (κ0) . (39)

It follows that

θk = sign

(
xTk
dβ1

dκ

)
. (40)

Let w be defined by

xTk = wT

[
θTψ
X21

]
, (41)
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where w1 6= 0, and wT =
[
w1 wT

2

]
. Then

X21 =

 wT

[
θTψ
X21

]
X21

 ,
=

[
w1θ

T
ψ + wT

2X21

(w1 + (1− w1))X21

]
,

=

[
w1

[
θTψ
X21

]
+

[
wT

2

(1− w1) I|σ|

]
X21

]
,

=

[
w1I|ψ| +

[
wT

2

(1− w1) I|σ|

]
X21

[
θTψ
X21

]−1][
θTψ
X21

]
,

=

[
w1I|ψ| +

[
wT

2

(1− w1) I|σ|

] [
0 I|σ|

]] [ θTψ
X21

]
,

=

[
w1 wT

2

0 I|σ|

] [
θTψ
X21

]
.

Thus

X
−1
21 =

[
θTψ
X21

]−1 [ 1
w1
− 1
w1
wT

2

0 I|σ|

]
. (42)

It follows that

dv1
dλ

(λ0) = θTψX
−1
21 e1,

= eT1

[
1
w1
− 1
w1
wT

2

0 I|σ|

]
e1,

=
1

w1

. (43)

But by (39)

xTk

[
θTψ
X21

]−1
e1 = wT

[
θTψ
X21

] [
θTψ
X21

]−1
e1 = w1 =

1

κ1 − κ0
rk (κ0) . (44)

Thus sign(w1) = θk, so that

sign

(
dv1

dλ
(λ0)

)
θk = 1.
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Proof of Lemma 4
A preliminary result is required.

Lemma 9 The solution to the linear system[
aT b
I c

] [
x
γ

]
=

[
µ
z

]
is [

x
γ

]
=

[
z− µ−aT z

b−aT c c
µ−aT z
b−aT c

]
. (45)

The particular case of interest is[
µ
z

]
=

[
1
0

]
,

which gives [
x
γ

]
=

1

b− aTc

[
−c
1

]
. (46)

Proof. After the reordering the new component of u will satisfy

u1(λ0) = (θψ)j = θj

and is at its bound. It is required to move into its feasible region as λ is
reduced. This gives the condition

θju1(λ0 −∆λ) < 1,

⇒ −∆λθj
du1(λ0)

dλ
< 0,

⇒ θj
du1(λ0)

dλ
≥ 0

The starting point is

dβj
dκ

= eTj

[
θTψ
X21

]−1
e1.

The next step is to highlight the updated quantities. This uses (38):[
θTψ
X21

]
=

[
θ
T

ψ θj
X21 xj

]
Qj,

=

[
θ
T

ψX
−1
21 θj

I xj

] [
X21

1

]
Qj,

=

[
dv
dλ

T
θj

I xj

] [
X21

1

]
Qj.
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It follows that

dβj
dκ

= eT|ψ|

[
X21

1

]−1 [ dvT

dλ
θj

I xj

]−1
e1,

= eT|ψ|

[
X21

1

]−1
1

θj − xjT dv
dλ

[
−xj

1

]
,

=
eT|ψ|

θj − xjT dv
dλ

[
X
−1
21 x

j

1

]
,

=
1

θj − xjT dv
dλ

,

=
1

θj − d(λu1)
dλ

.

The final result is
dβj
dκ

du1
dλ

= −1

λ
(47)

showing that u1 moves into its feasible region.
Proof of Lemma 6
Proof. Let the component vq of vσ first reach a bound at λ = λ1 < λ0.
Then

θq = vq(λ1) = vq(λ0) + (λ1 − λ0)
dvq
dλ

,

⇒ sign

(
dvq
dλ

)
= −θq, as |vq (λ0) | < 1.

It is convenient to develop a representation of xq using (41).

xTk = wT

[
θTψ
X21

]
,

= w1θ
T
ψ + wqx

T
q +

∑
j∈{1,··· ,|σ|}\{q}

wje
T
j X21.

Thus

xTq =
1

wq
xTk −

w1

wq
θTψ −

∑
j∈{1,··· ,|σ|}\{q}

wj
wq

eTj X21,

=
[
−w1

wq
1
wq
· · · −wj

wq
· · ·
] θTψ

xTk
X−q21

 ,
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where X−q21 denotes X21 with row xq removed. This gives, using (19),

drq
dκ

= −xq
dβ1

dκ
= −xTq

 θTψ
xTk
X−q21

−1 e1 =
w1

wq
.

On the other hand
dvTσ
dλ

= θTψX
−1
21 ,

so that

dvq
dλ

= θTψX
−1
21 eq = θTψ

[
θTψ
X21

]−1 [ 1
w1
−wT

2

w1

0 I|σ|

]
eq = −wq

w1

.

Thus

sign

(
drq
dκ

)
= − sign

(
dvq
dλ

)
.

Proof of Lemma 7
Proof. Assume that uq, q ∈ ψc is the variable that reaches its bound as λ
is decreased. Let uq (λ1) = θq then the equation determining dβ

dκ
is

dβ

dκ
=

[
θTψ θq
X21 X22eq

]−1
e1.

From equations (24) and (25) it follows that[
1 −dvTσ

dλ

] [ θTψ θq
X21 X22eq

]
=
[

0 · · · 0 θq − d(λuq)

dλ

]
.

Thus[
1 −dvTσ

dλ

]
e1 =

[
0 · · · 0 θq − d(λuq)

dλ

] [ θTψ θq
X21 X22eq

]−1
e1,

giving

1 =

(
θq −

d (λuq)

dλ

)
dβq
dλ

,

= −λduq
dλ

dβq
dκ

.

Equation (27) is a direct consequence as λ > 0.
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