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The boundary value problem

Consider the differential equation

dx
dt

= f(t , x),

where x ∈ Rm, f ∈ Rm × R → Rm, together with the boundary
conditions

B0x(0) + B1x(1) = b.

Special cases include the initial value problem where
B0 = I, B1 = 0, while multi-point problems can be transformed
to BVP form. Relatively weak conditions guarantee IVP solution
locally. Non-trivial BVP involves a global statement. Can derive
conditions using, for example, Newton-Kantorovich theorem.
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Linear case

f(t , x) = A(t)x + q(t).

Let fundamental matrix X (t , ξ) satisfy the IVP

dX
dt

= A(t)X , X (ξ, ξ) = I

then BVP has a solution provided (B0 + B1X (1, 0)) has a
bounded inverse. The Green’s matrix is

G (t , s) = X (t) [B0X (0) + B1X (1)]−1 B0X (0)X−1(s), t > s,

= −X (t) [B0X (0) + B1X (1)]−1 B1X (1)X−1(s), t < s.

Note G does not depend on the initial condition on X . The
magnitude of G is an indicator of problem stability. Set stability
constant α = maxt ‖G(t , s)‖2. go BVDI

M.R. Osborne Numerical Questions in ODE Boundary Value Problems



Problem description ODE stability Estimation 1. embedding Estimation 2. simultaneous In conclusion

Estimation provides target problem

Specialise f ← f(t , x,β) where β ∈ Rp. Given data

y i = Hx(ti ,β
∗) + εi , i = 1, 2, · · · , n,

where H : Rm → Rk , nk > m + p, and εi ∼ N
(
0, σ2I

)
, estimate

β.

Equivalent smoothing problem: x ←
[

x(t)
β

]
, f ←

[
f(t , x)

0

]
.

Note problem is over-determined as stated and need not
possess an exact solution. Thus seek a solution of best fit in an
appropriate sense. Assume this problem has a well determined
solution for n, the number of observations, large enough.
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Data collection

1. Practical considerations can restrict interval on which
observations can be made. An example is transient
signals. Assumption is that sequences of observations
{t1, t2, · · · , tn} ⊂ [0, 1] are possible for arbitrarily large n.
The condition of a planned experiment is useful:

1
n

n∑
i=1

v(ti)→
∫ 1

0
v(t)dρ(t).

Here ρ implies an experimental mechanism.

2. Measurements for arbitrarily large t contain useful
information on signal x(t). Stationary problems provide
examples. Frequency estimation is problem of interest.
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The problem setting

Mesh selection for integrating the ODE system is conditioned
by two important considerations:

I The asymptotic analysis of the effects of noisy data on
maximum likelihood estimates of the parameters shows
that this gets small no faster than O

(
n−1/2

)
under planned

experiment conditions. A higher rate (O
(
n−3/2

)
) is

theoretically possible in maximum likelihood estimates in
the frequency estimation problem but direct maximization
is not the way to obtain them.

I It is not difficult to obtain ODE discretizations that give
errors at most O

(
n−2

)
.

This suggests that the trapezoidal rule provides an adequate
integration method. It is known to be endowed with attractive
properties.
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The objective

Estimation principles (least squares, maximum likelihood)
consider the objective:

F (xc ,β) =
n∑

i=1

‖y i − Hx (ti ,β) ‖2.

Methods differ in manner of generating comparison function
values x(ti ,β), i = 1, 2, · · · , n.
Embedding: x(ti ,β, b) satisfies BVP

dx
dt

= f(t , x,β), B0x(0) + B1x(1) = b.

Introduces extra parameters b. Needs method for choosing
B0, B1. Must solve boundary value problem at each
step. go GNM
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The objective
Estimation principles (least squares, maximum likelihood)
consider the objective:

F (xc ,β) =
n∑

i=1

‖y i − Hx (ti ,β) ‖2.

Methods differ in manner of generating comparison function
values x(ti ,β), i = 1, 2, · · · , n.

Simultaneous: ODE discretization information added as
constraints

c i(xc) = x i+1 − x i −
h
2

(f i+1 + f i) , i = 1, 2, · · · , n − 1,

with x i = x(ti ,β). Methods typically correct solution and
parameter estimates simultaneously. go SQP
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Initial value stability (IVS)

Here the problem considered is:

dx
dt

= f (t , x) , x(0) = b.

The stability requirement is that solutions with close initial
conditions x1(0), x2(0) remain close in an appropriate sense.

I ‖x1(t)− x2(t)‖ → 0, t →∞. strong IVS.

I ‖x1(t)− x2(t)‖ remains bounded as t →∞. weak IVS.
I Computation introduces idea of stiff discretizations which

preserve the stability characteristics of the original
equation in the sense that decaying solutions are mapped
onto decaying solutions. This is one area where there are
genuine nonlinear results - for example, J.B’s work on BN
stability of Runge-Kutta methods.
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Not all relevant IVPs are stable
The classical BVP solution method of multiple shooting
provides an example. This requires computation of the multiple
shooting matrix:

−X (t2, t1) I
−X (t3, t2) I

· · · · · ·
B0 B1

 .

The IVP for computing X (ti+1, ti) could well be unstable in both
forward and backward directions.
Dahlquist’s famous "consistency + stability implies convergence
as h→ 0" theorem does not require IVP stability, but it’s setting
implies exact arithmetic.
Multiple shooting in this form appears to require accurate
computation of all solutions with the {ti} serving as controls.
That is a weakness.
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Constant coefficient case
Here

f (t , x) = Ax − q

If A is non-defective then weak IVS requires the eigenvalues
λi(A) to satisfy Reλi ≤ 0 while this inequality must be strict for
strong IVS.
A one-step discretization of the ODE (ignoring q contribution)
can be written

x i+1 = Th (A) x i .

where Th(A) is the amplification matrix. Here a stiff
discretization requires the stability inequalities to map into the
condition |λi (Th) | ≤ 1.
For the trapezoidal rule

|λi (Th)| =
∣∣∣∣1 + hλi(A)/2
1− hλi(A)/2

∣∣∣∣ ,

≤ 1 if Re {λi (A)} ≤ 0.
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Dichotomy: Key paper is de Hoog and Mattheij.
go DEBV This is the structural property that connects linear BVP

stability with the detailed behaviour of the range of possible
solutions.
Weak form: ∃ projection P depending on choice of X such that,
given

S1 ← {XPw, w ∈ Rm} , S2 ← {X (I − P) w, w ∈ Rm} ,

φ ∈ S1 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≥ s,

φ ∈ S2 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≤ s.

Computational context requires modest κ for t , s ∈ [0, 1].
If X satisfies B0X (0) + B1X (1) = I then P = B0X (0) is a
suitable projection in sense that for separated boundary
conditions can take κ = α. There is a basic equivalence
between stability and dichotomy.
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BVS restricts possible discretizations

I Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

I Discretization needs similar property so given BC’s
exercise same control.

I This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.
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BVS restricts possible discretizations

I Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

I Discretization needs similar property so given BC’s
exercise same control.

I This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.

This property called di-stability by England and Mattheij who
showed the TR is di-stable in constant coefficient case.

λ(A) > 0⇒
∣∣∣∣1 + hλ(A)/2
1− hλ(A)/2

∣∣∣∣ > 1.

M.R. Osborne Numerical Questions in ODE Boundary Value Problems



Problem description ODE stability Estimation 1. embedding Estimation 2. simultaneous In conclusion

Bob Mattheij’s example
Consider the differential system defined by

A(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

q(t) =

 et (−1 + 19 (cos 2t − sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))

 .

Here the right hand side is chosen so that z(t) = ete satisfies
the differential equation. The fundamental matrix displays the
fast and slow solutions:

X (t , 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .

go OBC
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Bob Mattheij’s example
For boundary data with two terminal conditions and one initial
condition :

B0 =

 0 0 0
0 0 0
1 0 0

 , B1 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the following
results.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Table: Boundary point values - stable computation

These computations are apparently satisfactory.
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Bob Mattheij’s example
For two initial and one terminal condition:

B0 =

 0 0 1
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1

 .

The results are given in following Table.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Table: Boundary point values - unstable computation

The effects of instability are seen clearly in the first and third
solution components.
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Nonlinear stability

The IVP/BVP stability requirements are restrictive in sense that
solutions must not depart from classification as
increasing/decreasing.

Important conflicting examples occur in dynamical systems.
These

I can have a stable character - for example, limiting
trajectories which attract neighboring orbits;

I clearly cannot satisfy the IVP/BVP stability requirements.

Limit cycle behavior provides a familiar example that is of this
type. Also they can share some of the properties of stationary
processes. Can algorithms for estimating frequency in such
systems possess the O(n−3/2) convergence rate?
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Example 1 - preprint Hooker et al
FitzHugh-Nagumo equations α = .2, β = .2, γ = 1.

dV
dt

= γ

(
V − V 3

3
+ R

)
,

dR
dt

= −1
γ

(V − α− βR) .
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Example 2 - Van der Pol equation 1

d2x
dt2 − λ

(
1− x2

) dx
dt

+ x = 0.

Reliable,"difficult" ODE example with difficulty increasing with λ.
scilab plot shows convergence to limit cycle for λ = 1, 10.

Van der Pol

−20 20
−3

3
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Example 2 - Van der Pol equation 2
Matlab also uses this example but result given is less useful as
it gives state information but not derivative. λ = 1000. Also
starting values are rather special as:

x(0) = 2 +
1
3
αλ−4/3 − 16

27
λ−2 ln(λ) + O(λ−2)

where α = 2.33811....

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Solution of van der Pol Equation, µ = 1000

time t

sol
utio

n y
1
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Example 2 - BVP formulation 1
Transformation s = 4t/T puts 1/2 period onto [0, 2]. Set
x3 = T/4. The ODE becomes

dx1

ds
= x2,

dx2

ds
= λ

(
1− x2

1

)
x2x3 − x1x2

3 ,

dx3

ds
= 0.

Boundary data is

B0 =

 0 1 0
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
1 0 0

 , b = 0.

Initial conditions good for λ = 1 and work for λ ≤ 5.
Continuation with ∆λ = 1 used for higher values.
h = 1/100, 1/1000.
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Example 2 - BVP formulation 2

BVP results for λ = 10. Extra values by reflection.
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Stability consequences

The ODE stability conditions provide sharp distinctions - in part
because they are specifying global properties. Computational
requirements force compromise.
In the IVP this is provided by various control devices: for
example, automatic step length control. Two classes of
computational stability problem:

I Difference approximation does not satisfy Dahlquist root
condition ρ(1) = 0; ρ(t) = 0, t 6= 1,⇒ |t | < 1. In this case
errors grow with n and so are unbounded as h→ 0.

I In unstable problems a computed slow solution will be
swamped eventually as a result of the growth of rounding
error induced perturbations which grow like γ exp(Kt).
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Stability consequences

The ODE stability conditions provide sharp distinctions - in part
because they are specifying global properties. Computational
requirements force compromise.
In BVP fudge dichotomy considerations to finite interval and
ask for "moderate" κ. Can write down the inverse of the multiple
shooting matrix as h→ 0 limit of corresponding inverses of
discretization matrices. The limit can then be interpreted using
the Green’s matrix. Need to take advantage of di-stability. In
practice a strictly unstable BVP is associated with a sensitive
Newton iteration. Available tools include:

I adaptive mesh control;
I continuation.
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System factorization

go OPT1 First problem is to set suitable boundary conditions.
Expect good boundary conditions should lead to a relatively
well conditioned linear system. Write the trapezoidal rule
discretization as

c i (x i , x i+1) = c ii(x i) + c i(i+1)(x i+1).

Consider the factorization of the difference equation (gradient)
matrix with first column permuted to end:

C12 C11

C21 C22

C(n−1)(n−1) C(n−1)n 0

→ Q
[

U V
0 · · · H G

]

This step is independent of the boundary conditions. go SVE
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Optimal boundary conditions

The boundary conditions can be inserted at this point. This

gives the system with matrix
[

H G
B1 B0

]
to solve for x1, xn.

Orthogonal factorization again provides a useful strategy.

[
H G

]
=

[
L 0

] [
ST

1
ST

2

]
It follows that the system determining x1, xn is best conditioned
by choosing [

B1 B0
]

= ST
2 .

The conditions depend only on the ODE.
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BC’s for Mattheij example

go MatEx The “optimal” boundary matrices corresponding to
h = .1 are given in the Table. These confirm the importance of
weighting the boundary data to reflect the stability requirements
of a mix of fast and slow solutions. The solution does not differ
from that obtained when the split into fast and slow was
correctly anticipated.

B1 B2

.99955 0.0000 .02126 -.01819 0.0000 -.01102
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
.02126 0.0000 .00045 .85517 0.0000 .51791

Table: Optimal boundary matrices when h = .1
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i H∇(β,b)x i .

The gradient terms wrt β are found by solving the BVP’s

B0
∂x
∂β

(0) + B1
∂x
∂β

(1) = 0,

d
dt

∂x
∂β

= ∇x f
∂x
∂β

+∇βf,
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i H∇(β,b)x i .

while the gradient terms wrt b satisfy the BVP’s

B0
∂x
∂b

(0) + B1
∂x
∂b

(1) = I,

d
dt

∂x
∂b

= ∇x f
∂x
∂b

.
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Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with
parameters β∗1 = γ, and β∗2 = 2 corresponding to the solution
x (t ,β∗) = ete:

A(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

q(t) =

 et (−1 + γ (cos 2t − sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))

 .

In the numerical experiments optimal boundary conditions are
set at the first iteration. The aim is to recover estimates of
β∗, b∗ from simulated data eti He + εi , εi ∼ N(0, .01I) using
Gauss-Newton, stopping when ∇Fh < 10−8.
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Embedding: Again the Mattheij example

H =
[

1/3 1/3 1/3
]

n = 51, γ = 10, σ = .1
14 iterations

n = 51, γ = 20, σ = .1
11 iterations

n = 251, γ = 10, σ = .1
9 iterations

n = 251, γ = 20, σ = .1
8 iterations

H =

[
.5 0 .5
0 1 0

]

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations

Here ‖
[

B1 B2
]

1

[
B1 B2

]T
k − I‖F < 10−3, k > 1.
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Lagrangian
go OPT2 Associated with the equality constrained problem is the

Lagrangian

L = F (xc) +
n−1∑
i=1

λT
i c i .

The necessary conditions give:

∇x iL = 0, i = 1, 2, · · · , n, c (xc) = 0.

The Newton equations determining corrections dx c , dλc are:

∇2
xxLdx c +∇2

xλLdλc = −∇xLT ,

∇xc (xc) dx c = Cdx c = −c (xc) ,

Note sparsity! ∇2
xxL is block diagonal, ∇2

xλL = CT is block
bidiagonal.
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SQP formulation

The Newton equations also correspond to necessary conditions
for the QP:

min
dx
∇xFdx c +

1
2

dxT
c Mdx c ; c + Cdx c = 0,

in case M = ∇2
xxL, λu = λc + dλc . A standard approach is to

use the constraint equations to eliminate variables. go GNM

dx i = v i + Vidx1 + Widxn, i = 2, 3, · · · , n − 1.

The reduced constraint equation is

Gdx1 + Hdxn = w.

Is this variable elimination restricted by BVS considerations?
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Null space method

Standard SQP approach. Let CT =
[

Q1 Q2
] [

U
0

]
then

Newton equations can be written QT∇2
xxLQ

[
U
0

]
[

UT 0
]

0

[
QT dx c

λu

]
= −

[
QT∇xF T

c

]
.

These can be solved in sequence

UT QT
1 dx c = −c,

QT
2∇2

xxLQ2QT
2 dx c = −QT

2∇2
xxLQ1QT

1 dx c −QT
2∇xF T ,

Uλu = −QT
1∇2

xxLdx c −QT
1∇xF T .
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Stability test using Mattheij problem

QT
1 dx c estimates QT

1 vec
{

eti
}

when xc = 0.
test results n = 11

.87665 -.97130 -1.0001

.74089 -1.0987 -1.3432

.47327 -1.2149 -1.6230

.11498 -1.3427 -1.8611
-.32987 -1.4839 -2.0366
-.85368 -1.6400 -2.1250
-1.4428 -1.8125 -2.1018
-2.0773 -2.0031 -1.9444
-2.7309 -2.2137 -1.6330
-3.3719 -2.4466 -1.1526

particular integral QT
1 x

.87660 -.97134 -1.0001

.74083 -1.0988 -1.3432

.47321 -1.2150 -1.6231

.11491 -1.3428 -1.8612
-.32994 -1.4840 -2.0367
-.85376 -1.6401 -2.1250
-1.4429 -1.8125 -2.1019
-2.0774 -2.0032 -1.9444
-2.7310 -2.2138 -1.6331
-3.3720 -2.4467 -1.1527
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Conclusion

I Problem stability considerations important but cannot be
whole computational story.

I Embedding makes use of carefully constructed, explicit
boundary conditions. Thus expect BVS restrictions must
apply.

I The variable eliminations form of the simultaneous method
partitions variables into sets {x1, xn}, and {x2, · · · , xn−1}
which are found sequentially. It relies implicitly on a form of
BVS .

I The null space variant partitions the variables into the sets{
QT

1 xc
}

,
{

QT
2 xc

}
. It appears at least as stable as the

variable elimination procedure. Sparsity preserving
implementation is straightforward.
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