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Explicit parameters

Start with signal measured in the presence of noise giving
independent event outcomes yt ∈ Rq and associated pdf
g (yt ;θt , t) indexed by “points” t ∈ Tn ⊂ R l , and structural
information provided by a known parametric model

θt = η (x, t) , E {yt} = η (x, t)

where θ ∈ Rq, and x ∈ Rp. Given the event outcomes yt it is
required to estimate the actual parameter values x∗.
A priori information is the condition for a planned experiment.
This is needed for asymptotics. Let Tn ⊂ S(T ), |Tn| = n.
Require

1
n

∑
t∈Tn

f (t)→
∫

S(T )
f (t)ρ(t)d t

go ICTE
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Setting the objective

Likelihood: Gn (y; x, Tn) =
∏

t∈Tn
g (yt ;θt , t)

Estimation principle: x̂n = arg maxx Gn (y; x, Tn).
Target objective function is log likelihood:

Fn (y; x, Tn) =
∑
t∈Tn

log g (yt ;θt , t )

=
∑
t∈Tn

F (yt ;θt , t)

Assume:
I ∃ true model η, parameter vector x∗;
I x∗ properly in interior of region in which Fn is well behaved;
I boundedness of integrals (computing expectations etc),

adequate smoothness.
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Necessary conditions
The necessary conditions for a maximum plus an application of
the law of large numbers lead to a limiting equation satisfied by
x∗.

0 =
1
n

∑
t∈Tn

∇xF (yt ;η (x, t) , t) ,

=
1
n

∑
t∈Tn

∇xF (yt ;η (x, t) , t)− E∗
1

n

∑
t∈Tn

∇xF (yt ;η (x, t) , t)


+ E∗

1
n

∑
t∈Tn

∇xF (yt ;η (x, t) , t)

 ,

a.s.→
∫

S(T )
E∗ {∇xF (y;η (x, t) , t)} ρ (t) d t, n→∞.

go EXPP E∗ corresponds to expectation computed with x = x∗.
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Consistency, limiting distribution

To prove x̂n
a.s.→ x∗ can apply Newton’s method to the necessary

conditions

x i+1 = x i − Jn (x i)
−1 1

n
∇xFn (x i)

T ,

with starting value x∗ to give a small residual for n large
enough and use the Kantorovich theorem.
The limiting distribution of the parameter estimates is obtained
by expanding the necessary conditions about x∗. This gives

√
n

(
x̂ − x∗

)
∼ N

(
0, I (x∗)−1

)
.

This is a very slow rate of convergence. If the actual parameter
values are needed then so are lots of data.
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Scoring/Gauss-Newton

This is a modified Newton iteration with the basic form:

x i+1 = x i + In (x i)
−1 1

n
∇xFn (x i)

T .

The logic in using the expected Hessian, which is independent
of the observed data, is as follows:

−Jn (x∗) a.s.→ I (x∗)
≈ ‖x∗ − x‖ small

In (x) → I (x)

Table: Scoring diagram
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Here is the relationship between these terms:

Jn (x∗) =
1
n

∑
t∈Tn

∇2
xF (x∗) a.s.→

∫
S(T )
E∗

{
∇2

xF (x∗)
}

ρ (t) d t

= −
∫

S(T )
E∗

{
∇xF (x∗)T ∇xF (x∗)

}
ρ (t) d t = −I (x∗) ,

In (x) =
1
n
E

∑
t∈Tn

∇xFt (x)T ∇xFt (x)

 , Fisher information,

→
∫

S(T )
E

{
∇xF (x)T ∇xF (x)

}
ρ (t) d t = I (x)
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Iteration properties

Advantages in using In include:
1.Avoids calculation of second derivatives.
2. Provides a generically positive definite replacement for the
Hessian Jn. This suggests enhanced convergence properties.
3. Possesses excellent transformation invariance properties.
4. Each iteration can be reduced to the solution of a linear least
squares problem by orthogonal transformation techniques.
Disadvantage is the generic first order convergence rate. Can
be serious except in cases:
1. accurate measurements (small σ),
2. large data sets (n large),
when asymptotic properties are good.
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Rate of convergence 1

Consider the unit step scoring iteration in fixed point form:

x i+1 = Qn (x i) ,

where

Qn (x) = x + In (x)−1 1
n
∇xFn (x)T .

The condition for convergence is

$
(
Q′

n

(
x̂n

))
< 1,

where $
(
Q′

n

(
x̂n

))
is the spectral radius of the variation

Q′
n = ∇xQn.

$
(
Q′

n

(
x̂n

))
is an invariant of the likelihood surface, is a

measure of the quality of the modelling, and can be estimated
by a modification of the power method.

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

Rate of convergence 2

To calculate $
(
Q′

n

(
x̂n

))
note that ∇xFn

(
x̂n

)
= 0. Thus

Q′
n

(
x̂n

)
= I + In

(
x̂n

)−1 1
n
∇2

xFn
(
x̂n

)
,

= In
(
x̂n

)−1
(
In

(
x̂n

)
+

1
n
∇2

xFn
(
x̂n

))
.

If the right hand side were evaluated at x∗ then the result
$ (Q′

n (x∗)) a.s.→ 0, n→∞ would follow from the strong law of
large numbers which shows that the matrix gets small (hence
$ gets small) almost surely as n→∞ . But, by consistency of
the estimates, we have

$
(
Q′

n

(
x̂n

))
= $

(
Q′

n (x∗)
)

+ O
(∥∥x̂n − x∗

∥∥)
,

and the desired result follows.
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The differential equation
Consider the differential equation:

dx
dt

= f (t , x,β) ,

where x, f ∈ Rm, β ∈ Rp, t ∈ [0, 1]. The general solution of this
equation has m implicit degrees of freedom that must be fixed
in any particular solution in addition to the p associated with the
explicit vector of parameters β . Thus the solution manifold
relevant to the parameter estimation problem has m + p
degrees of freedom. The implicit degrees of freedom are fixed
typically by satisfying explicit additional conditions. For
example, boundary conditions

B0x (0) + B1x (1) = b,

where B0, B1 : Rm → Rm, b ∈ Rm.
M.R. Osborne ODE estimation – statistical properties and numerical problems
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Approximating the ODE
go GNM A second problem is that the ODE solution manifold

can only be approximated. However, this is minor. The
procedure for integrating the ODE system is conditioned by two
important considerations:

I The asymptotic analysis of the effects of noisy data on the
parameters shows that this gets small no faster than
O

(
n−1/2

)
under planned experiment conditions.

I It is not difficult to obtain ODE discretizations that give
solution errors at most O

(
n−2

)
.

This suggests that the trapezoidal rule provides an adequate
integration method. It is known to be endowed with attractive
properties. Let xc be the composite vector with components
x i , i = 1, 2, · · · , n.

c i(xc) = x i+1 − x i −
h
2

(f i+1 + f i) , i = 1, 2, · · · , n − 1,

M.R. Osborne ODE estimation – statistical properties and numerical problems
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Linear case

f(t , x) = A(t)x + q(t).

Let fundamental matrix X (t , ξ) satisfy the IVP

dX
dt

= A(t)X , X (ξ, ξ) = I

then BVP has a solution provided (B0 + B1X (1, 0)) has a
bounded inverse. The Green’s matrix is

G (t , s) = X (t) [B0X (0) + B1X (1)]−1 B0X (0)X−1(s), t > s,

= −X (t) [B0X (0) + B1X (1)]−1 B1X (1)X−1(s), t < s.

Note G does not depend on the initial condition on X . The
magnitude of G is an indicator of problem stability. Set stability
constant α = maxt ,s ‖G(t , s)‖2.

M.R. Osborne ODE estimation – statistical properties and numerical problems
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Dichotomy: Key paper is de Hoog and Mattheij
This is the structural property that connects linear BVP stability
with the detailed behaviour of the range of possible solutions.
Weak form: ∃ projection P depending on choice of X such that,
given

S1 ← {XPw, w ∈ Rm} , S2 ← {X (I − P) w, w ∈ Rm} ,

φ ∈ S1 ⇒
‖φ(t)‖2
‖φ(s)‖2

≤ κ, t ≥ s,

φ ∈ S2 ⇒
‖φ(t)‖2
‖φ(s)‖2

≤ κ, t ≤ s.

Computational context happy with modest κ for t , s ∈ [0, 1].
If X satisfies B0X (0) + B1X (1) = I then P = B0X (0) is a
suitable projection in sense that for separated boundary
conditions can take κ = α. Dichotomy is sufficient for BVP
stability.

M.R. Osborne ODE estimation – statistical properties and numerical problems
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BVS restricts possible discretizations

I Sense in which dichotomy projection separates increasing
and decreasing solutions. dichotomy compatible BC’s pin
down decreasing solutions at 0, growing solutions at 1.

I Discretization needs similar property so given BC’s
exercise same control.

I This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.
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This property called di-stability by England and Mattheij who
showed the TR is di-stable in constant coefficient case. go MatEx

λ(A) > 0⇒
∣∣∣∣1 + hλ(A)/2
1− hλ(A)/2

∣∣∣∣ > 1.
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Bob Mattheij’s example 1
Consider the differential system defined by

A(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

q(t) =

 et (−1 + 19 (cos 2t − sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))

 .

Here the right hand side is chosen so that z(t) = ete satisfies
the differential equation. The fundamental matrix displays the
fast and slow solutions:

X (t , 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .
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Bob Mattheij’s example 2
For boundary data with two terminal conditions and one initial
condition :

B0 =

 0 0 0
0 0 0
1 0 0

 , B1 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the following
results.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Table: Boundary point values - stable computation

These computations are apparently satisfactory.
M.R. Osborne ODE estimation – statistical properties and numerical problems
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Bob Mattheij’s example 3
For two initial and one terminal condition:

B0 =

 0 0 1
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1

 .

The results are given in following Table.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Table: Boundary point values - unstable computation

The effects of instability are seen clearly in the first and third
solution components. go EMDS

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

Nonlinear stability

The IVP/BVP stability requirements are restrictive in sense that
the classification into increasing/decreasing solutions is
emphasised.

Important conflicting examples occur in dynamical systems.
These

I can have a stable character - for example, limiting
trajectories which attract neighboring orbits;

I clearly cannot satisfy the IVP/BVP stability requirements.

Limit cycle behavior provides a familiar example that is of this
type.
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Example 1 - Van der Pol equation

d2x
dt2 − λ

(
1− x2

) dx
dt

+ x = 0.

Reliable,"difficult" ODE example with difficulty increasing with
λ.
scilab plot shows convergence to limit cycle for λ = 1, 10.
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Example 1 - BVP formulation 1
Transformation s = 4t/T puts 1/2 period onto [0, 2]. Set
x3 = T/4. The ODE becomes

dx1

ds
= x2,

dx3

ds
= 0

dx2

ds
= λ

(
1− x2

1

)
x2x3 − x1x2

3 .

Boundary data is

B0 =

 0 1 0
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
1 0 0

 , b = 0.

Solution for λ = 0 provides initial estimate for λ = 1.
Continuation with ∆λ = 1 used for higher values. n = 1001. DE
discretized at shifted Chebyshev extrema.

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

Example 1 - BVP formulation 2

BVP results for λ = 10. Extra values by reflection.
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Iteration details
Newton iteration, tolerance = 1.e−10, line search based on{∑
‖c i‖2 / (ti+1 − ti) + ‖B0x1 + B1xn − b‖2

}1/2
.

λ (LS)/NI (Approx. Cnd.) ∗ 10−2 T/4
1 (1)/5 0.2199 1.6658
2 (1,2)/5 0.1986 1.9075
3 (2,3)/6 0.3106 2.2148
4 (2,3)/6 0.4622 2.5509
5 (2,3)/6 0.6264 2.9030
6 (2,3)/6 0.7969 3.2654
7 (2,3)/6 0.9677 3.6349
8 (2,3)/6 1.1407 4.0095
9 (1,2)/5 1.3142 4.3881

10 (1,2)/5 1.4879 4.7697

M.R. Osborne ODE estimation – statistical properties and numerical problems
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Stability consequences

The ODE stability conditions provide sharp distinctions - in part
because they are specifying global properties. Computational
requirements force compromise.
In the IVP this is provided by various control devices: for
example, automatic step length control.

In BVP fudge dichotomy considerations to finite interval and
ask for "moderate" κ. There is an exact discretization (multiple
shooting). Can write down the inverse of this matrix as h→ 0.
It is limit of corresponding inverses of discretization matrices.
Components in this limit can be interpreted using the Green’s
matrix and bounded by the stability constant. In practice a more
unstable BVP is associated with larger bounds and a more
sensitive Newton iteration. Available tools include:

I adaptive mesh control;
I continuation.
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The objective
Estimation principles (least squares, (-) maximum likelihood)
consider the objective:

Fn (xc ,β) =
1
2

∑
t∈Tn

‖yt − Hx (t ,β) ‖22 =
1
2

∑
t∈Tn

‖rt‖22 .

Here the observations are assumed to have the form

yt = Hx∗t + εt , t ∈ [0, 1] ,

where H : Rm → Rq, and εt ∼ N
(
0, σ2Iq

)
.

For simplicity of presentation it is assumed that the points at
which the observations are made coincide with the points at
which the ODE is discretized.
Methods for estimating β differ in the way in which comparison
function values x(ti ,β), i = 1, 2, · · · , n are generated in the
minimization problem.
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Embedding

The embedding method introduces boundary matrices B0, B1

and extra parameters b ∈ Rm so that β, b parametrise the
solution manifold. Comparison values x(ti ,β, b) satisfy BVP

dx
dt

= f(t , x,β), B0x(0) + B1x(1) = b.

The resulting estimation problem has some advantages:
I It can adapt standard BVP software which can provide

adaptive meshing and continuation facilities.

I Similarly some modification may be needed to use a
standard nonlinear least squares program.

The cost involved is that the BVP must be solved for each
function value required.
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System factorization

First problem is to set suitable boundary conditions B0, B1.
Expect good choice of boundary conditions should lead to a
relatively well conditioned linear system for the Newton
iteration. Write the trapezoidal rule discretization as go SVE

c i (x i , x i+1) = c ii(x i) + c i(i+1)(x i+1), Cij = ∇x j c i .

Consider the orthogonal factorization of the difference
equation (gradient) matrix with first column permuted to end:

C12 C11

C21 C22

C(n−1)(n−1) C(n−1)n 0

→ Q
[

U V
0 · · · H G

]

This step is independent of the boundary conditions.

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

Optimal boundary conditions

The boundary conditions can be inserted at this point. This

gives the system with matrix
[

H G
B1 B0

]
to solve for xn, x1.

Orthogonal factorization again provides a useful strategy.

[
H G

]
=

[
L 0

] [
ST

1
ST

2

]
It follows that the system determining xn, x1 is best conditioned
by choosing [

B1 B0
]

= ST
2 .

These boundary conditions depend only on the ODE, and S2 is
well defined as n→∞.
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BC’s for Mattheij example

The “optimal” boundary matrices corresponding to h = .1 are
given in the Table. These confirm the importance of weighting
the boundary data to reflect the stability requirements of a mix
of fast and slow solutions. The solution does not differ from that
obtained when the split into fast and slow was correctly
anticipated.

B1 B2

.99955 0.0000 .02126 -.01819 0.0000 -.01102
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
.02126 0.0000 .00045 .85517 0.0000 .51791

Table: Optimal boundary matrices when h = .1
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of Fn is

∇(β,b)Fn = −
n∑

i=1

rT
i H∇(β,b)x i .

The gradient terms wrt β are found by solving the BVP’s

B0
∂x
∂β

(0) + B1
∂x
∂β

(1) = 0,

d
dt

∂x
∂β

= ∇x f
∂x
∂β

+∇βf,
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of Fn is

∇(β,b)Fn = −
n∑

i=1

rT
i H∇(β,b)x i .

while the gradient terms wrt b satisfy the BVP’s

B0
∂x
∂b

(0) + B1
∂x
∂b

(1) = I,

d
dt

∂x
∂b

= ∇x f
∂x
∂b

.
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Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with
parameters β∗1 = γ, and β∗2 = 2 corresponding to the solution
x (t ,β∗) = ete:

A(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

q(t) =

 et (−1 + γ (cos 2t − sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))

 .

In the numerical experiments optimal boundary conditions are
set at the first iteration. The aim is to recover estimates of
β∗, b∗ from simulated data eti He + εi , εi ∼ N(0, .01I) using
Gauss-Newton, stopping when ∇Fnh < 10−8. go NSMM
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Embedding: Again the Mattheij example
go NSMM

H =
[

1/3 1/3 1/3
]

n = 51, γ = 10, σ = .1
14 iterations

n = 51, γ = 20, σ = .1
11 iterations

n = 251, γ = 10, σ = .1
9 iterations

n = 251, γ = 20, σ = .1
8 iterations

H =

[
.5 0 .5
0 1 0

]

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations

Here ‖
[

B1 B2
]

1

[
B1 B2

]T
k − I‖F < 10−3, k > 1.
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The constrained problem
For purposes of presentation only note dβ

dt = 0. We introduce
the parameters as extra solution variables
{x i}m+1 , · · · , {x i}m+p , i = 1, 2, · · · , n, and set m← m + p.
The simultaneous method treats the discretized ODE as a set
of constraints so the estimation problem becomes

min
xc

1
n
Fn (xc) ; c i (xc) = 0, i = 1, 2, · · · , n − 1.

The problem Lagrangian is

L (xc) =
1
n
Fn (xc) +

n−1∑
i=1

λT
i c i (xc) .

where the λi are the Lagrange multipliers. Must solve:

∇x iL = 0, i = 1, 2 · · · , n; c i = 0, i = 1, 2, · · · , n − 1.
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Solving the necessary conditions
Here the gradient of the Lagrangian gives the equations

−1
n

rT
1 H + λT

1∇x1c11 = 0,

−1
n

rT
i H + λT

i−1∇x i c(i−1)i + λT
i ∇x i c ii = 0, i = 2, 3, · · · , n − 1,

−1
n

rT
n H + λT

n−1∇xnc(n−1)n = 0, .

The Newton equations determining corrections dx c , dλc to
current estimates of state and multiplier vector solutions of
these equations are:

∇2
xLdx c +∇2

xλLdλc = −∇xLT ,

∇xc (xc) dx c = Cdx c = −c (xc) ,

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

Details

Setting s (λc)i = λi−1 + λi , λ0 = λn = 0, i = 1, 2, · · · , n, and
making use of the block separability of the Lagrangian:

∇2
xL = diag

{
1
n

HT H − h
2
∇2

x i

(
s (λc)

T
i f (ti , x i)

)
, i = 1, 2, · · · , n

}
,

∇2
λxL = CT ,

Cii = −I − h
2
∇x i f (ti , x i) ,

Ci(i+1) = I − h
2
∇x i+1 f (ti+1, x i+1) .

Note that the choice of the trapezoidal rule makes ∇2
xL block

diagonal, and that the constraint matrix C : Rnm → R(n−1)m is
block bidiagonal.
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There is some structure in λ
Grouping terms in the necessary conditions gives

−λi + λi+1 +
h
2
∇x i f

T
i+1 (λi + λi+1) = −1

n
HT r i .

For simplicity consider the case where ri is a scalar and the
observation structure is based on a vector representer H = oT .
Then

riH
T =

{
εi + oT (x∗i − x i)

}
o,

=
√

n
{

εi√
n

+
1√
n

oT (x∗i − x i)

}
o.

Let w i =
√

nλi , i = 1, 2, · · · , n − 1, then

−w i + w i+1 +
h
2
∇x i f

T
i+1 (w i + w i+1) = − ri√

n
o.
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Multiplier estimate

This equation is important!

−w i + w i+1 +
h
2
∇x i f

T
i+1 (w i + w i+1) = − ri√

n
o.

In this rescaled form the variance of the stochastic forcing term
is

(
σ2/n

)
ooT , and the remaining right hand side term is

essentially deterministic with scale O{1/n} when the generic
O{n−1/2} rate of convergence of the estimation procedure is
taken into account. This permits identification with a
discretization of the adjoint to the linearised constraint
differential equation system subject to a forcing term which
contains a stochastic component. go Stoch The significant feature
of this comparison is that it indicates that the multipliers
λi → 0, i = 1, 2, · · · , n − 1, on a scale which is O

(
n−1/2

)
as

n→∞.
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Example of multiplier behaviour

The effect of the random walk term can be isolated in the
smoothing problem with data:

dx
dt

=

[
0 1
0 0

]
x,

yi =
[

1 0
]

x i + εi = 1 + εi , εi ∼ N (0, 1) ,

ti =
(i − 1)

(n − 1)
, i = 1, 2, · · · , n.

The trapezoidal rule is exact for this differential equation. The
scaled solution w i , i = 1, 2, · · · , n − 1 obtained for a particular
realisation of the εi for n = 501, σ = 5 is plotted below. The
relation between the scale of the standard deviation σ and that
of w seems typical. This provides a good illustration that the
n−1/2 scaling leads to an O(1) result.
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Scaled Lagrange multiplier plot

M.R. Osborne ODE estimation – statistical properties and numerical problems



Parameter estimation Computation ODE properties Est. 1 – embedding Est. 2 – Simultaneous

The null space method

Let CT = S
[

U
0

]
, where S is orthogonal and

U : R(n−1)m → R(n−1)m is upper triangular, S =
[

S1 S2
]
,

S1 : R(n−1)m → Rnm, S2 : Rm → Rnm. Then the Newton
equations can be written ST∇2

xLS
[

U
0

]
[

UT 0
]

0

[
ST dx c

dλc

]
=

[
−ST∇xLT

−c

]
.

The solution of this system can be found by solving in
sequence: go ID2P

UT
(

ST
1 dx c

)
= −c,

ST
2∇2

xLS2

(
ST

2 dx c

)
= −ST

2

(
∇2

xLS1

(
ST

1 dx c

)
+∇xLT

)
,

Udλc = −ST
1

(
∇2

xLdx c +∇xLT
)

.
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Mattheij NSM example

Figure go MEER shows state variable and multiplier plots for a
Newton’s method implementation of the null space approach.
These results complement the embedding results presented in
Example go EMMP . The data for the estimation problem is based
on the observation functional representer

H =

[
.5 0 .5 0 0
1 −1 1 0 0

]
with the true signal values being

perturbed by random normal values having standard deviation
σ = .5. The number of observations generated is n = 501. The
initial values of the state variables are perturbed from their true
values by up to 10%, and the initial multipliers are set to 0. The
initial parameter values correspond to the true values 10, 2
perturbed also by up to 10%. Very rapid convergence (4
iterations) is obtained.
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Mattheij NSM results

Figure: State variables xc and multipliers nλc for Mattheij Problem

go NSMM
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A scoring related algorithm

The Newton iteration works with the augmented matrix
appropriate to the problem. This is necessarily indefinite even if
∇2

xL is positive definite. It follows that not all advantages of the
Gauss-Newton iteration extend. However, the second derivative
terms arising from the constraints are O (1/n) through the
factor h. Thus their contribution is smaller than that of the terms
arising from the objective function when the O

(
1/n1/2

)
scale

appropriate for the Lagrange multipliers is taken into account.
Also, it is required that the initial Hessian (augmented) matrix
be nonsingular if λc = 0 is an acceptable initial estimate. This
suggests that ignoring the strict second derivative contribution
from the constraints should lead to an iteration with asymptotic
convergence properties similar to Gauss-Newton. This
behaviour has been observed by Bock (first-1983) and others.
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Sketch of justification
This time it is not sufficient to show that the elements of Q′, the
fixed point iteration variational matrix, are O

(
n−1/2

)
. This is

true, but Q′ ∈ R2nm−m → R2nm−m. Structure is everything!

go NSME Here W =

[
ST 0
0 I

]
Q′

[
S 0
0 I

]
has the form

W =

 X X X
X X 0
X 0 0

−1  X X 0
X X 0
0 0 0

 =

 0 0 0
X Z 0
X X 0

 ,

Z =

{
1
n

ST
2 diag{HT H}S2

}−1 {
hST

2∇2
x

(
s (λc)

T fc

)
S2

}
∈ Rm×m.

The key result is:

$

{
Q′

([
x̂n

λ̂n

])}
= $

{
Z

([
x̂n

λ̂n

])}
a.s.→ 0, n→∞.
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Loose ends

I The embedding and simultaneous algorithms are
equivalent. Readily proved modulo some reasonable
assumptions by assuming the contrary and deriving a
contradiction.

I Consistency for the estimation problem follows most easily
from the embedding algorithm. Set
[B1 B0] = limn→∞ S2 (x∗)T and treat result as an explicit
parameter estimation problem.

I Simultaneous method avoids explicit ODE solution steps.
How can adaptive meshing be introduced?
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Stochastic ODE
Consider the linear stochastic differential equation

dx = Mxdt + σbdz

where z is a unit Wiener process. Variation of parameters
gives the discrete dynamics equation

x i+1 = X (ti+1, ti) x i + σu i ,

where

u i =

∫ ti+1

ti
X (ti+1, s) b

dz
ds

ds.

From this it follows that

u i v N
(

0, σ2R (ti+1, ti)
)

,

where go SDES

R (ti+1, ti) =

∫ ti+1

ti
X (ti+1, s) bbT X (ti+1, s)T ds = O

(
1
n

)
.
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