

Make your way to CTAC08, ANU, Canberra http://wwwmaths.anu.edu.au/events/ctac08/

# ODE estimation - statistical properties and numerical problems 

M.R. Osborne<br>Mathematical Sciences Institute<br>Australian National University

## Statistical Methods for Modelling Dynamic Systems Montreal, July 9-15

## Outline

## Parameter estimation

Computation

ODE properties

Est. 1 - embedding

Est. 2 - Simultaneous

## Explicit parameters

Start with signal measured in the presence of noise giving independent event outcomes $\mathbf{y}_{t} \in R^{q}$ and associated pdf $g\left(\mathbf{y}_{t} ; \theta_{t}, \mathbf{t}\right)$ indexed by "points" $\mathbf{t} \in T_{n} \subset R^{\prime}$, and structural information provided by a known parametric model

$$
\boldsymbol{\theta}_{t}=\boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathcal{E}\left\{\mathbf{y}_{t}\right\}=\eta(\mathbf{x}, \mathbf{t})
$$

where $\boldsymbol{\theta} \in R^{q}$, and $\mathbf{x} \in R^{p}$. Given the event outcomes $\mathbf{y}_{t}$ it is required to estimate the actual parameter values $\mathbf{x}^{*}$.
A priori information is the condition for a planned experiment.
This is needed for asymptotics. Let $T_{n} \subset S(T),\left|T_{n}\right|=n$.
Require

$$
\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} f(\mathbf{t}) \rightarrow \int_{S(T)} f(\mathbf{t}) \rho(\mathbf{t}) d \mathbf{t}
$$

## Setting the objective

Likelihood: $\mathcal{G}_{n}\left(\mathbf{y} ; \mathbf{x}, T_{n}\right)=\prod_{\mathbf{t} \in T_{n}} g\left(\mathbf{y}_{t} ; \boldsymbol{\theta}_{t}, \mathbf{t}\right)$
Estimation principle: $\widehat{\mathbf{x}}_{n}=\arg _{\max }^{\mathbf{x}} \mathcal{G}_{n}\left(\mathbf{y} ; \mathbf{x}, T_{n}\right)$.
Target objective function is log likelihood:

$$
\begin{aligned}
\mathcal{F}_{n}\left(\mathbf{y} ; \mathbf{x}, T_{n}\right) & =\sum_{\mathbf{t} \in T_{n}} \log g\left(\mathbf{y}_{t} ; \boldsymbol{\theta}_{t}, \boldsymbol{t}\right) \\
& =\sum_{\mathbf{t} \in T_{n}} F\left(\mathbf{y}_{t} ; \boldsymbol{\theta}_{t}, \mathbf{t}\right)
\end{aligned}
$$

Assume:

- $\exists$ true model $\boldsymbol{\eta}$, parameter vector $\mathbf{x}^{*}$;
- $\mathbf{x}^{*}$ properly in interior of region in which $\mathcal{F}_{n}$ is well behaved;
- boundedness of integrals (computing expectations etc), adequate smoothness.


## Necessary conditions

The necessary conditions for a maximum plus an application of the law of large numbers lead to a limiting equation satisfied by $\mathbf{x}^{*}$.

$$
0=\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)
$$

go EXPP $\mathcal{E}^{*}$ corresponds to expectation computed with $\mathbf{x}=\mathbf{x}^{*}$.

## Necessary conditions

The necessary conditions for a maximum plus an application of the law of large numbers lead to a limiting equation satisfied by $\mathbf{x}^{*}$.

$$
\begin{aligned}
0 & =\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right), \\
& =\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)-\mathcal{E}^{*}\left\{\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)\right\} \\
& +\mathcal{E}^{*}\left\{\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)\right\}
\end{aligned}
$$

co ExpP $\mathcal{E}^{*}$ corresponds to expectation computed with $\mathbf{x}=\mathbf{x}^{*}$.

## Necessary conditions

The necessary conditions for a maximum plus an application of the law of large numbers lead to a limiting equation satisfied by $\mathbf{x}^{*}$.

$$
\begin{aligned}
0 & =\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right), \\
& =\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)-\mathcal{E}^{*}\left\{\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)\right\} \\
& +\mathcal{E}^{*}\left\{\frac{1}{n} \sum_{\mathbf{t} \in T_{n}} \nabla_{x} F\left(\mathbf{y}_{t} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t}\right)\right\} \\
& \xrightarrow{\text { a.s. }} \int_{S(T)} \mathcal{E}^{*}\left\{\nabla_{x} F(\mathbf{y} ; \boldsymbol{\eta}(\mathbf{x}, \mathbf{t}), \mathbf{t})\right\} \rho(\mathbf{t}) d \mathbf{t}, n \rightarrow \infty .
\end{aligned}
$$

co EXPP $\mathcal{E}^{*}$ corresponds to expectation computed with $\mathbf{x}=\mathbf{x}^{*}$.

## Consistency, limiting distribution

To prove $\widehat{\mathbf{x}}_{n} \xrightarrow{\text { a.s. }} \mathbf{x}^{*}$ can apply Newton's method to the necessary conditions

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\mathcal{J}_{n}\left(\mathbf{x}_{i}\right)^{-1} \frac{1}{n} \nabla_{x} \mathcal{F}_{n}\left(\mathbf{x}_{i}\right)^{T},
$$

with starting value $\mathbf{x}^{*}$ to give a small residual for $n$ large enough and use the Kantorovich theorem.
The limiting distribution of the parameter estimates is obtained by expanding the necessary conditions about $\mathbf{x}^{*}$. This gives

$$
\sqrt{n}\left(\widehat{\mathbf{x}}-\mathbf{x}^{*}\right) \sim N\left(0, \mathcal{I}\left(\mathbf{x}^{*}\right)^{-1}\right) .
$$

This is a very slow rate of convergence. If the actual parameter values are needed then so are lots of data.

## Scoring/Gauss-Newton

This is a modified Newton iteration with the basic form:

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\mathcal{I}_{n}\left(\mathbf{x}_{i}\right)^{-1} \frac{1}{n} \nabla_{x} \mathcal{F}_{n}\left(\mathbf{x}_{i}\right)^{T}
$$

The logic in using the expected Hessian, which is independent of the observed data, is as follows:

$$
\begin{array}{rlc}
-\mathcal{J}_{n}\left(\mathbf{x}^{*}\right) & \xrightarrow{\text { a.s. }} \mathcal{I}\left(\mathbf{x}^{*}\right) \\
& & \approx \\
\mathcal{I}_{n}(\mathbf{x}) & \rightarrow & \mathcal{I}(\mathbf{x})
\end{array}\left\|\mathbf{x}^{*}-\mathbf{x}\right\| \text { small }
$$

Table: Scoring diagram

Here is the relationship between these terms:

$$
\begin{aligned}
\mathcal{J}_{n}\left(\mathbf{x}^{*}\right) & =\frac{1}{n} \sum_{t \in T_{n}} \nabla_{x}^{2} F\left(\mathbf{x}^{*}\right) \stackrel{\text { a.s. }}{\rightarrow} \int_{S(T)} \mathcal{E}^{*}\left\{\nabla_{x}^{2} F\left(\mathbf{x}^{*}\right)\right\} \rho(\mathbf{t}) d \mathbf{t} \\
& =-\int_{S(T)} \mathcal{E}^{*}\left\{\nabla_{x} F\left(\mathbf{x}^{*}\right)^{T} \nabla_{x} F\left(\mathbf{x}^{*}\right)\right\} \rho(\mathbf{t}) d \mathbf{t}=-\mathcal{I}\left(\mathbf{x}^{*}\right) \\
\mathcal{I}_{n}(\mathbf{x}) & =\frac{1}{n} \mathcal{E}\left\{\sum_{t \in T_{n}} \nabla_{x} F_{t}(\mathbf{x})^{T} \nabla_{x} F_{t}(\mathbf{x})\right\}, \text { Fisher information } \\
& \rightarrow \int_{S(T)} \mathcal{E}\left\{\nabla_{x} F(\mathbf{x})^{T} \nabla_{x} F(\mathbf{x})\right\} \rho(\mathbf{t}) d \mathbf{t}=\mathcal{I}(\mathbf{x})
\end{aligned}
$$

## Iteration properties

Advantages in using $\mathcal{I}_{n}$ include:
1.Avoids calculation of second derivatives.
2. Provides a generically positive definite replacement for the Hessian $\mathcal{J}_{n}$. This suggests enhanced convergence properties.
3. Possesses excellent transformation invariance properties.
4. Each iteration can be reduced to the solution of a linear least squares problem by orthogonal transformation techniques.
Disadvantage is the generic first order convergence rate. Can be serious except in cases:

1. accurate measurements (small $\sigma$ ),
2. large data sets ( $n$ large),
when asymptotic properties are good.

## Rate of convergence 1

Consider the unit step scoring iteration in fixed point form:

$$
\mathbf{x}_{i+1}=Q_{n}\left(\mathbf{x}_{i}\right),
$$

where

$$
Q_{n}(\mathbf{x})=\mathbf{x}+\mathcal{I}_{n}(\mathbf{x})^{-1} \frac{1}{n} \nabla_{\mathbf{x}} \mathcal{F}_{n}(\mathbf{x})^{T} .
$$

The condition for convergence is

$$
\varpi\left(Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right)\right)<1,
$$

where $\varpi\left(Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right)\right)$ is the spectral radius of the variation $Q_{n}^{\prime}=\nabla_{x} Q_{n}$.
$\varpi\left(Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right)\right)$ is an invariant of the likelihood surface, is a measure of the quality of the modelling, and can be estimated by a modification of the power method.

## Rate of convergence 2

To calculate $\varpi\left(Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right)\right)$ note that $\nabla_{\mathbf{x}} \mathcal{F}_{n}\left(\widehat{\mathbf{x}}_{n}\right)=0$. Thus

$$
\begin{aligned}
Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right) & =I+\mathcal{I}_{n}\left(\widehat{\mathbf{x}}_{n}\right)^{-1} \frac{1}{n} \nabla_{\mathbf{x}}^{2} \mathcal{F}_{n}\left(\widehat{\mathbf{x}}_{n}\right), \\
& =\mathcal{I}_{n}\left(\widehat{\mathbf{x}}_{n}\right)^{-1}\left(\mathcal{I}_{n}\left(\widehat{\mathbf{x}}_{n}\right)+\frac{1}{n} \nabla_{\mathbf{x}}^{2} \mathcal{F}_{n}\left(\hat{\mathbf{x}}_{n}\right)\right) .
\end{aligned}
$$

If the right hand side were evaluated at $\mathbf{x}^{*}$ then the result $\varpi\left(Q_{n}^{\prime}\left(\mathbf{x}^{*}\right)\right) \xrightarrow{\text { a.s. }} 0, n \rightarrow \infty$ would follow from the strong law of large numbers which shows that the matrix gets small (hence $\varpi$ gets small) almost surely as $n \rightarrow \infty$. But, by consistency of the estimates, we have

$$
\varpi\left(Q_{n}^{\prime}\left(\widehat{\mathbf{x}}_{n}\right)\right)=\varpi\left(Q_{n}^{\prime}\left(\mathbf{x}^{*}\right)\right)+O\left(\left\|\widehat{\mathbf{x}}_{n}-\mathbf{x}^{*}\right\|\right),
$$

and the desired result follows.

## The differential equation

Consider the differential equation:

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(t, \mathbf{x}, \boldsymbol{\beta}),
$$

where $\mathbf{x}, \mathbf{f} \in R^{m}, \boldsymbol{\beta} \in R^{p}, t \in[0,1]$. The general solution of this equation has $m$ implicit degrees of freedom that must be fixed in any particular solution in addition to the $p$ associated with the explicit vector of parameters $\beta$. Thus the solution manifold relevant to the parameter estimation problem has $m+p$ degrees of freedom. The implicit degrees of freedom are fixed typically by satisfying explicit additional conditions. For example, boundary conditions

$$
B_{0} \mathbf{x}(0)+B_{1} \mathbf{x}(1)=\mathbf{b},
$$

where $B_{0}, B_{1}: R^{m} \rightarrow R^{m}, \mathbf{b} \in R^{m}$.

## Approximating the ODE

$\square$ go GNM A second problem is that the ODE solution manifold can only be approximated. However, this is minor. The procedure for integrating the ODE system is conditioned by two important considerations:

- The asymptotic analysis of the effects of noisy data on the parameters shows that this gets small no faster than $O\left(n^{-1 / 2}\right)$ under planned experiment conditions.
- It is not difficult to obtain ODE discretizations that give solution errors at most $O\left(n^{-2}\right)$.


## Approximating the ODE

(goe enN A second problem is that the ODE solution manifold can only be approximated. However, this is minor. The procedure for integrating the ODE system is conditioned by two important considerations:

- The asymptotic analysis of the effects of noisy data on the parameters shows that this gets small no faster than $O\left(n^{-1 / 2}\right)$ under planned experiment conditions.
- It is not difficult to obtain ODE discretizations that give solution errors at most $O\left(n^{-2}\right)$.
This suggests that the trapezoidal rule provides an adequate integration method. It is known to be endowed with attractive properties. Let $\mathbf{x}_{c}$ be the composite vector with components $\mathbf{x}_{i}, i=1,2, \cdots, n$.

$$
\mathbf{c}_{i}\left(\mathbf{x}_{c}\right)=\mathbf{x}_{i+1}-\mathbf{x}_{i}-\frac{h}{2}\left(\mathbf{f}_{i+1}+\mathbf{f}_{i}\right), \quad i=1,2, \cdots, n-1,
$$

## Linear case

$$
\mathbf{f}(t, \mathbf{x})=A(t) \mathbf{x}+\mathbf{q}(t)
$$

Let fundamental matrix $X(t, \xi)$ satisfy the IVP

$$
\frac{d X}{d t}=A(t) X, \quad X(\xi, \xi)=I
$$

then BVP has a solution provided $\left(B_{0}+B_{1} X(1,0)\right)$ has a bounded inverse. The Green's matrix is

$$
\begin{aligned}
G(t, s) & =X(t)\left[B_{0} X(0)+B_{1} X(1)\right]^{-1} B_{0} X(0) X^{-1}(s), t>s \\
& =-X(t)\left[B_{0} X(0)+B_{1} X(1)\right]^{-1} B_{1} X(1) X^{-1}(s), t<s
\end{aligned}
$$

Note $G$ does not depend on the initial condition on $X$. The magnitude of $G$ is an indicator of problem stability. Set stability constant $\alpha=\max _{t, s}\|G(t, s)\|_{2}$.

## Dichotomy: Key paper is de Hoog and Mattheij

This is the structural property that connects linear BVP stability with the detailed behaviour of the range of possible solutions. Weak form: $\exists$ projection $P$ depending on choice of $X$ such that, given

$$
\begin{gathered}
S_{1} \leftarrow\left\{X P \mathbf{w}, \mathbf{w} \in R^{m}\right\}, \quad S_{2} \leftarrow\left\{X(I-P) \mathbf{w}, \mathbf{w} \in R^{m}\right\}, \\
\phi \in S_{1} \Rightarrow \frac{\|\phi(t)\|_{2}}{\|\phi(s)\|_{2}} \leq \kappa, \quad t \geq s, \\
\phi \in S_{2} \Rightarrow \frac{\|\phi(t)\|_{2}}{\|\phi(s)\|_{2}} \leq \kappa, \quad t \leq s .
\end{gathered}
$$

Computational context happy with modest $\kappa$ for $t, s \in[0,1]$. If $X$ satisfies $B_{0} X(0)+B_{1} X(1)=/$ then $P=B_{0} X(0)$ is a suitable projection in sense that for separated boundary conditions can take $\kappa=\alpha$. Dichotomy is sufficient for BVP stability.

## BVS restricts possible discretizations

- Sense in which dichotomy projection separates increasing and decreasing solutions. dichotomy compatible BC's pin down decreasing solutions at 0 , growing solutions at 1 .


## BVS restricts possible discretizations

- Sense in which dichotomy projection separates increasing and decreasing solutions. dichotomy compatible BC's pin down decreasing solutions at 0 , growing solutions at 1 .
- Discretization needs similar property so given BC's exercise same control.


## BVS restricts possible discretizations

- Sense in which dichotomy projection separates increasing and decreasing solutions. dichotomy compatible BC's pin down decreasing solutions at 0 , growing solutions at 1.
- Discretization needs similar property so given BC's exercise same control.
- This requires solutions of ODE which are increasing (decreasing) in magnitude to be mapped into solutions of discretization which are increasing (decreasing) in magnitude.


## BVS restricts possible discretizations

- Sense in which dichotomy projection separates increasing and decreasing solutions. dichotomy compatible BC's pin down decreasing solutions at 0 , growing solutions at 1 .
- Discretization needs similar property so given BC's exercise same control.
- This requires solutions of ODE which are increasing (decreasing) in magnitude to be mapped into solutions of discretization which are increasing (decreasing) in magnitude.

This property called di-stability by England and Mattheij who showed the TR is di-stable in constant coefficient case. ©go Mailex

$$
\lambda(A)>0 \Rightarrow\left|\frac{1+h \lambda(A) / 2}{1-h \lambda(A) / 2}\right|>1 .
$$

## Bob Mattheij's example 1

Consider the differential system defined by

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
1-19 \cos 2 t & 0 & 1+19 \sin 2 t \\
0 & 19 & 0 \\
-1+19 \sin 2 t & 0 & 1+19 \cos 2 t
\end{array}\right], \\
& \mathbf{q}(t)=\left[\begin{array}{c}
e^{t}(-1+19(\cos 2 t-\sin 2 t)) \\
-18 e^{t} \\
e^{t}(1-19(\cos 2 t+\sin 2 t))
\end{array}\right] .
\end{aligned}
$$

Here the right hand side is chosen so that $\mathbf{z}(t)=e^{t} \mathbf{e}$ satisfies the differential equation. The fundamental matrix displays the fast and slow solutions:

$$
X(t, 0)=\left[\begin{array}{ccc}
e^{-18 t} \cos t & 0 & e^{20 t} \sin t \\
0 & e^{19 t} & 0 \\
-e^{-18 t} \sin t & 0 & e^{20 t} \cos t
\end{array}\right]
$$

## Bob Mattheij's example 2

For boundary data with two terminal conditions and one initial condition :

$$
B_{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], B_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
e \\
e \\
1
\end{array}\right],
$$

the trapezoidal rule discretization scheme gives the following results.

|  | $\Delta t=.1$ |  |  | $\Delta t=.01$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}(0)$ | 1.0000 | .9999 | .9999 | 1.0000 | 1.0000 | 1.0000 |
| $\mathbf{x}(1)$ | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183 |

Table: Boundary point values - stable computation

These computations are apparently satisfactory.

## Bob Mattheij's example 3

For two initial and one terminal condition:

$$
B_{0}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], B_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
e \\
1
\end{array}\right] .
$$

The results are given in following Table.

|  | $\Delta t=.1$ |  |  | $\Delta t=.01$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}(0)$ | 1.0000 | .9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| $\mathbf{x}(1)$ | $-7.9+11$ | 2.7183 | $-4.7+11$ | $2.03+2$ | 2.7183 | $1.31+2$ |

Table: Boundary point values - unstable computation
The effects of instability are seen clearly in the first and third solution components.

## Nonlinear stability

The IVP/BVP stability requirements are restrictive in sense that the classification into increasing/decreasing solutions is emphasised.

## Nonlinear stability

The IVP/BVP stability requirements are restrictive in sense that the classification into increasing/decreasing solutions is emphasised. Important conflicting examples occur in dynamical systems. These

- can have a stable character - for example, limiting trajectories which attract neighboring orbits;
- clearly cannot satisfy the IVP/BVP stability requirements.


## Nonlinear stability

The IVP/BVP stability requirements are restrictive in sense that the classification into increasing/decreasing solutions is emphasised. Important conflicting examples occur in dynamical systems. These

- can have a stable character - for example, limiting trajectories which attract neighboring orbits;
- clearly cannot satisfy the IVP/BVP stability requirements. Limit cycle behavior provides a familiar example that is of this type.


## Example 1 - Van der Pol equation

$$
\frac{d^{2} x}{d t^{2}}-\lambda\left(1-x^{2}\right) \frac{d x}{d t}+x=0 .
$$

Reliable,"difficult" ODE example with difficulty increasing with $\lambda$.
scilab plot shows convergence to limit cycle for $\lambda=1,10$.


## Example 1 - BVP formulation 1

Transformation $s=4 t / T$ puts $1 / 2$ period onto $[0,2]$. Set $x_{3}=T / 4$. The ODE becomes

$$
\begin{aligned}
& \frac{d x_{1}}{d s}=x_{2}, \quad \frac{d x_{3}}{d s}=0 \\
& \frac{d x_{2}}{d s}=\lambda\left(1-x_{1}^{2}\right) x_{2} x_{3}-x_{1} x_{3}^{2} .
\end{aligned}
$$

Boundary data is

$$
B_{0}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], B_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \mathbf{b}=0 .
$$

Solution for $\lambda=0$ provides initial estimate for $\lambda=1$.
Continuation with $\Delta \lambda=1$ used for higher values. $n=1001$. DE discretized at shifted Chebyshev extrema.

## Example 1 - BVP formulation 2

BVP results for $\lambda=10$. Extra values by reflection.



## Iteration details

Newton iteration, tolerance $=1 . e^{-10}$, line search based on $\left\{\sum\left\|\mathbf{c}_{i}\right\|^{2} /\left(t_{i+1}-t_{i}\right)+\left\|B_{0} \mathbf{x}_{1}+B_{1} \mathbf{x}_{n}-\mathbf{b}\right\|^{2}\right\}^{1 / 2}$.

| $\lambda$ | $($ LS $) / \mathrm{NI}$ | (Approx. Cnd.) $* 10^{-2}$ | $T / 4$ |
| :---: | :---: | :---: | :---: |
| 1 | $(1) / 5$ | 0.2199 | 1.6658 |
| 2 | $(1,2) / 5$ | 0.1986 | 1.9075 |
| 3 | $(2,3) / 6$ | 0.3106 | 2.2148 |
| 4 | $(2,3) / 6$ | 0.4622 | 2.5509 |
| 5 | $(2,3) / 6$ | 0.6264 | 2.9030 |
| 6 | $(2,3) / 6$ | 0.7969 | 3.2654 |
| 7 | $(2,3) / 6$ | 0.9677 | 3.6349 |
| 8 | $(2,3) / 6$ | 1.1407 | 4.0095 |
| 9 | $(1,2) / 5$ | 1.3142 | 4.3881 |
| 10 | $(1,2) / 5$ | 1.4879 | 4.7697 |

## Stability consequences

The ODE stability conditions provide sharp distinctions - in part because they are specifying global properties. Computational requirements force compromise.
In the IVP this is provided by various control devices: for example, automatic step length control.

## Stability consequences

The ODE stability conditions provide sharp distinctions - in part because they are specifying global properties. Computational requirements force compromise.
In the IVP this is provided by various control devices: for example, automatic step length control.
In BVP fudge dichotomy considerations to finite interval and ask for "moderate" $\kappa$. There is an exact discretization (multiple shooting). Can write down the inverse of this matrix as $h \rightarrow 0$. It is limit of corresponding inverses of discretization matrices. Components in this limit can be interpreted using the Green's matrix and bounded by the stability constant. In practice a more unstable BVP is associated with larger bounds and a more sensitive Newton iteration. Available tools include:

- adaptive mesh control;
- continuation.


## The objective

Estimation principles (least squares, (-) maximum likelihood) consider the objective:

$$
\mathcal{F}_{n}\left(\mathbf{x}_{c}, \boldsymbol{\beta}\right)=\frac{1}{2} \sum_{t \in T_{n}}\left\|\mathbf{y}_{t}-H \mathbf{x}(t, \boldsymbol{\beta})\right\|_{2}^{2}=\frac{1}{2} \sum_{t \in T_{n}}\left\|\mathbf{r}_{t}\right\|_{2}^{2} .
$$

Here the observations are assumed to have the form

$$
\mathbf{y}_{t}=H \mathbf{x}_{t}^{*}+\varepsilon_{t}, t \in[0,1],
$$

where $H: R^{m} \rightarrow R^{q}$, and $\varepsilon_{t} \sim N\left(0, \sigma^{2} I_{q}\right)$.
For simplicity of presentation it is assumed that the points at which the observations are made coincide with the points at which the ODE is discretized.
Methods for estimating $\beta$ differ in the way in which comparison function values $\mathbf{x}\left(t_{i}, \boldsymbol{\beta}\right), i=1,2, \cdots, n$ are generated in the minimization problem.

## Embedding

The embedding method introduces boundary matrices $B_{0}, B_{1}$ and extra parameters $\mathbf{b} \in R^{m}$ so that $\beta, \mathbf{b}$ parametrise the solution manifold. Comparison values $\mathbf{x}\left(t_{i}, \boldsymbol{\beta}, \mathbf{b}\right)$ satisfy BVP

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(t, \mathbf{x}, \boldsymbol{\beta}), \quad B_{0} \mathbf{x}(0)+B_{1} \mathbf{x}(1)=\mathbf{b} .
$$

The resulting estimation problem has some advantages:

- It can adapt standard BVP software which can provide adaptive meshing and continuation facilities.

The cost involved is that the BVP must be solved for each function value required.

## Embedding

The embedding method introduces boundary matrices $B_{0}, B_{1}$ and extra parameters $\mathbf{b} \in R^{m}$ so that $\beta, \mathbf{b}$ parametrise the solution manifold. Comparison values $\mathbf{x}\left(t_{i}, \boldsymbol{\beta}, \mathbf{b}\right)$ satisfy BVP

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(t, \mathbf{x}, \boldsymbol{\beta}), \quad B_{0} \mathbf{x}(0)+B_{1} \mathbf{x}(1)=\mathbf{b} .
$$

The resulting estimation problem has some advantages:

- It can adapt standard BVP software which can provide adaptive meshing and continuation facilities.
- Similarly some modification may be needed to use a standard nonlinear least squares program.
The cost involved is that the BVP must be solved for each function value required.


## System factorization

First problem is to set suitable boundary conditions $B_{0}, B_{1}$.
Expect good choice of boundary conditions should lead to a relatively well conditioned linear system for the Newton iteration. Write the trapezoidal rule discretization as cosve

$$
\mathbf{c}_{i}\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right)=\mathbf{c}_{i j}\left(\mathbf{x}_{i}\right)+\mathbf{c}_{i(i+1)}\left(\mathbf{x}_{i+1}\right), C_{i j}=\nabla_{\mathbf{x}_{j}} \mathbf{c}_{i} .
$$

Consider the orthogonal factorization of the difference equation (gradient) matrix with first column permuted to end:

$$
\left[\begin{array}{lll|l}
C_{12} & & & C_{11} \\
C_{21} & C_{22} & & \\
& & & \\
\hline & & C_{(n-1)(n-1)} & C_{(n-1) n} \\
\hline
\end{array}\right] \rightarrow Q\left[\begin{array}{lll|l} 
& U & & V \\
\hline 0 & \cdots & H & G
\end{array}\right]
$$

This step is independent of the boundary conditions.

## Optimal boundary conditions

The boundary conditions can be inserted at this point. This gives the system with matrix $\left[\begin{array}{cc}H & G \\ B_{1} & B_{0}\end{array}\right]$ to solve for $\mathbf{x}_{n}, \mathbf{x}_{1}$.
Orthogonal factorization again provides a useful strategy.

$$
\left[\begin{array}{ll}
H & G
\end{array}\right]=\left[\begin{array}{ll}
L & 0
\end{array}\right]\left[\begin{array}{l}
S_{1}^{T} \\
S_{2}^{T}
\end{array}\right]
$$

It follows that the system determining $\mathbf{x}_{n}, \mathbf{x}_{1}$ is best conditioned by choosing

$$
\left[\begin{array}{ll}
B_{1} & B_{0}
\end{array}\right]=S_{2}^{T} .
$$

These boundary conditions depend only on the ODE, and $S_{2}$ is well defined as $n \rightarrow \infty$.

## BC's for Mattheij example

The "optimal" boundary matrices corresponding to $h=.1$ are given in the Table. These confirm the importance of weighting the boundary data to reflect the stability requirements of a mix of fast and slow solutions. The solution does not differ from that obtained when the split into fast and slow was correctly anticipated.

| $B_{1}$ |  |  | $B_{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .99955 | 0.0000 | .02126 | -.01819 | 0.0000 | -.01102 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
| .02126 | 0.0000 | .00045 | .85517 | 0.0000 | .51791 |

Table: Optimal boundary matrices when $h=.1$

## Gauss-Newton details

Let $\nabla_{(\beta, b)} \mathbf{x}=\left[\frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}, \frac{\partial \mathbf{x}}{\partial \mathbf{b}}\right], \mathbf{r}_{i}=\mathbf{y}_{i}-H \mathbf{x}\left(t_{i}, \boldsymbol{\beta}, \mathbf{b}\right)$ then the gradient of $\mathcal{F}_{n}$ is

$$
\nabla_{(\beta, b)} \mathcal{F}_{n}=-\sum_{i=1}^{n} \mathbf{r}_{i}^{T} H \nabla_{(\beta, b)} \mathbf{x}_{i}
$$

The gradient terms wrt $\beta$ are found by solving the BVP's

$$
\begin{array}{r}
B_{0} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}(0)+B_{1} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}(1)=0 \\
\frac{d}{d t} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}=\nabla_{\chi} \mathbf{f} \frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}+\nabla_{\beta} \mathbf{f},
\end{array}
$$

## Gauss-Newton details

Let $\nabla_{(\beta, b)} \mathbf{x}=\left[\frac{\partial \mathbf{x}}{\partial \boldsymbol{\beta}}, \frac{\partial \mathbf{x}}{\partial \mathbf{b}}\right], \mathbf{r}_{i}=\mathbf{y}_{i}-H \mathbf{x}\left(t_{i}, \boldsymbol{\beta}, \mathbf{b}\right)$ then the gradient of $\mathcal{F}_{n}$ is

$$
\nabla_{(\beta, b)} \mathcal{F}_{n}=-\sum_{i=1}^{n} \mathbf{r}_{i}^{T} H \nabla_{(\beta, b)} \mathbf{x}_{i}
$$

while the gradient terms wrt b satisfy the BVP's

$$
\begin{gathered}
B_{0} \frac{\partial \mathbf{x}}{\partial \mathbf{b}}(0)+B_{1} \frac{\partial \mathbf{x}}{\partial \mathbf{b}}(1)=l \\
\frac{d}{d t} \frac{\partial \mathbf{x}}{\partial \mathbf{b}}=\nabla_{x} \mathbf{f} \frac{\partial \mathbf{x}}{\partial \mathbf{b}}
\end{gathered}
$$

## Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with parameters $\beta_{1}^{*}=\gamma$, and $\beta_{2}^{*}=2$ corresponding to the solution $\mathbf{x}\left(t, \beta^{*}\right)=e^{t} \mathbf{e}:$

$$
\begin{aligned}
& A(t)=\left[\begin{array}{ccc}
1-\beta_{1} \cos \beta_{2} t & 0 & 1+\beta_{1} \sin \beta_{2} t \\
0 & \beta_{1} & 0 \\
-1+\beta_{1} \sin \beta_{2} t & 0 & 1+\beta_{1} \cos \beta_{2} t
\end{array}\right], \\
& \mathbf{q}(t)=\left[\begin{array}{c}
e^{t}(-1+\gamma(\cos 2 t-\sin 2 t)) \\
-(\gamma-1) e^{t} \\
e^{t}(1-\gamma(\cos 2 t+\sin 2 t))
\end{array}\right] .
\end{aligned}
$$

In the numerical experiments optimal boundary conditions are set at the first iteration. The aim is to recover estimates of $\beta^{*}, \mathbf{b}^{*}$ from simulated data $e^{t_{i}} H \mathbf{e}+\varepsilon_{i}, \varepsilon_{i} \sim N(0, .01 /)$ using Gauss-Newton, stopping when $\nabla \mathcal{F}_{n} \mathbf{h}<10^{-8}$.

## Embedding: Again the Mattheij example

## go NSMM

$$
\begin{array}{cc}
H=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] & H=\left[\begin{array}{ccc}
.5 & 0 & .5 \\
0 & 1 & 0
\end{array}\right] \\
\hline n=51, \gamma=10, \sigma=.1 \\
14 \text { iterations } \\
n=51, \gamma=20, \sigma=.1 \\
11 \text { iterations } \\
n=251, \gamma=10, \sigma=.1 \\
9 \text { iterations } \\
n=251, \gamma=20, \sigma=.1 \\
8 \text { iterations }
\end{array} \quad \begin{gathered}
n=51, \gamma=10, \sigma=.1 \\
5 \text { iterations } \\
n=51, \gamma=20, \sigma=.1 \\
9 \text { iterations } \\
n=251, \gamma=10, \sigma=.1 \\
4 \text { iterations } \\
n=251, \gamma=20, \sigma=.1 \\
5 \text { iterations }
\end{gathered}
$$

Here $\left\|\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right]_{1}\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right]_{k}^{T}-I\right\|_{F}<10^{-3}, k>1$.

## The constrained problem

For purposes of presentation only note $\frac{d \beta}{d t}=0$. We introduce the parameters as extra solution variables
$\left\{\mathbf{x}_{i}\right\}_{m+1}, \cdots,\left\{\mathbf{x}_{i}\right\}_{m+p}, i=1,2, \cdots, n$, and set $m \leftarrow m+p$. The simultaneous method treats the discretized ODE as a set of constraints so the estimation problem becomes

$$
\min _{\mathbf{x}_{c}} \frac{1}{n} \mathcal{F}_{n}\left(\mathbf{x}_{c}\right) ; \mathbf{c}_{i}\left(\mathbf{x}_{c}\right)=0, i=1,2, \cdots, n-1 .
$$

The problem Lagrangian is

$$
\mathcal{L}\left(\mathbf{x}_{c}\right)=\frac{1}{n} \mathcal{F}_{n}\left(\mathbf{x}_{c}\right)+\sum_{i=1}^{n-1} \boldsymbol{\lambda}_{i}^{T} \mathbf{c}_{i}\left(\mathbf{x}_{c}\right) .
$$

where the $\lambda_{i}$ are the Lagrange multipliers. Must solve:

$$
\nabla_{\mathbf{x}_{i}} \mathcal{L}=0, i=1,2 \cdots, n ; \mathbf{c}_{i}=0, i=1,2, \cdots, n-1 .
$$

## Solving the necessary conditions

Here the gradient of the Lagrangian gives the equations

$$
\begin{aligned}
& \quad-\frac{1}{n} \mathbf{r}_{1}^{T} H+\boldsymbol{\lambda}_{1}^{T} \nabla_{\mathbf{x}_{1}} \mathbf{c}_{11}=0, \\
& -\frac{1}{n} \mathbf{r}_{i}^{T} H+\boldsymbol{\lambda}_{i-1}^{T} \nabla_{\mathbf{x}_{i}} \mathbf{c}_{(i-1) i}+\boldsymbol{\lambda}_{i}^{T} \nabla_{\mathbf{x}_{i}} \mathbf{c}_{i i}=0, \quad i=2,3, \cdots, n-1, \\
& -\frac{1}{n} \mathbf{r}_{n}^{T} H+\boldsymbol{\lambda}_{n-1}^{T} \nabla_{\mathbf{x}_{n}} \mathbf{c}_{(n-1) n}=0, .
\end{aligned}
$$

The Newton equations determining corrections $\mathbf{d x} \mathbf{x}_{c}, \mathbf{d} \lambda_{c}$ to current estimates of state and multiplier vector solutions of these equations are:

$$
\begin{aligned}
\nabla_{\mathbf{x}}^{2} \mathcal{L} \mathbf{d} \mathbf{x}_{c}+\nabla_{\mathbf{x} \lambda} \mathcal{L} \mathbf{d} \lambda_{c} & =-\nabla_{\mathbf{x}} \mathcal{L}^{\top}, \\
\nabla_{\mathbf{x}} \mathbf{c}\left(\mathbf{x}_{c}\right) \mathbf{d} \mathbf{d x}_{c}=C \mathbf{d} \mathbf{x}_{c} & =-\mathbf{c}\left(\mathbf{x}_{c}\right),
\end{aligned}
$$

## Details

Setting $\mathbf{s}\left(\boldsymbol{\lambda}_{c}\right)_{i}=\boldsymbol{\lambda}_{i-1}+\boldsymbol{\lambda}_{i}, \lambda_{0}=\boldsymbol{\lambda}_{n}=0, i=1,2, \cdots, n$, and making use of the block separability of the Lagrangian:

$$
\begin{aligned}
\nabla_{\mathbf{x}}^{2} \mathcal{L} & =\operatorname{diag}\left\{\frac{1}{n} H^{\top} H-\frac{h}{2} \nabla_{\boldsymbol{x}_{i}}^{2}\left(\mathbf{s}\left(\lambda_{c}\right)_{i}^{T} \mathbf{f}\left(t_{i}, \mathbf{x}_{i}\right)\right), i=1,2, \cdots, n\right\}, \\
\nabla_{\lambda \mathbf{x}}^{2} \mathcal{L} & =C^{T}, \\
C_{i i} & =-I-\frac{h}{2} \nabla_{\mathbf{x}_{i}} \mathbf{f}\left(t_{i}, \mathbf{x}_{i}\right), \\
C_{i(i+1)} & =I-\frac{h}{2} \nabla_{\mathbf{x}_{i+1}} \mathbf{f}\left(t_{i+1}, \mathbf{x}_{i+1}\right) .
\end{aligned}
$$

Note that the choice of the trapezoidal rule makes $\nabla_{\mathrm{x}}^{2} \mathcal{L}$ block diagonal, and that the constraint matrix $C: R^{n m} \rightarrow R^{(n-1) m}$ is block bidiagonal.

## There is some structure in $\boldsymbol{\lambda}$

Grouping terms in the necessary conditions gives

$$
-\boldsymbol{\lambda}_{i}+\boldsymbol{\lambda}_{i+1}+\frac{h}{2} \nabla_{\mathbf{x}_{i}} \mathbf{f}_{i+1}^{T}\left(\boldsymbol{\lambda}_{i}+\boldsymbol{\lambda}_{i+1}\right)=-\frac{1}{n} H^{\top} \mathbf{r}_{i} .
$$

For simplicity consider the case where $r_{i}$ is a scalar and the observation structure is based on a vector representer $H=\mathbf{o}^{\top}$. Then

$$
\begin{aligned}
r_{i} H^{T} & =\left\{\varepsilon_{i}+\mathbf{o}^{T}\left(\mathbf{x}_{i}^{*}-\mathbf{x}_{i}\right)\right\} \mathbf{o}, \\
& =\sqrt{n}\left\{\frac{\varepsilon_{i}}{\sqrt{n}}+\frac{1}{\sqrt{n}} \mathbf{o}^{T}\left(\mathbf{x}_{i}^{*}-\mathbf{x}_{i}\right)\right\} \mathbf{o} .
\end{aligned}
$$

Let $\mathbf{w}_{i}=\sqrt{n} \boldsymbol{\lambda}_{i}, i=1,2, \cdots, n-1$, then

$$
-\mathbf{w}_{i}+\mathbf{w}_{i+1}+\frac{h}{2} \nabla_{\mathbf{x}_{i}} \mathbf{f}_{i+1}^{T}\left(\mathbf{w}_{i}+\mathbf{w}_{i+1}\right)=-\frac{r_{i}}{\sqrt{n}} \mathbf{0} .
$$

## Multiplier estimate

This equation is important!

$$
-\mathbf{w}_{i}+\mathbf{w}_{i+1}+\frac{h}{2} \nabla_{\mathbf{x}_{i}} \mathbf{f}_{i+1}^{T}\left(\mathbf{w}_{i}+\mathbf{w}_{i+1}\right)=-\frac{r_{i}}{\sqrt{n}} \mathbf{o}
$$

In this rescaled form the variance of the stochastic forcing term is $\left(\sigma^{2} / n\right) 0 \mathbf{0}^{T}$, and the remaining right hand side term is essentially deterministic with scale $O\{1 / n\}$ when the generic $O\left\{n^{-1 / 2}\right\}$ rate of convergence of the estimation procedure is taken into account. This permits identification with a discretization of the adjoint to the linearised constraint differential equation system subject to a forcing term which contains a stochastic component. go sioch The significant feature of this comparison is that it indicates that the multipliers $\lambda_{i} \rightarrow 0, i=1,2, \cdots, n-1$, on a scale which is $O\left(n^{-1 / 2}\right)$ as $n \rightarrow \infty$.

## Example of multiplier behaviour

The effect of the random walk term can be isolated in the smoothing problem with data:

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}, \\
y_{i} & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}_{i}+\varepsilon_{i}=1+\varepsilon_{i}, \varepsilon_{i} \sim N(0,1), \\
t_{i} & =\frac{(i-1)}{(n-1)}, i=1,2, \cdots, n .
\end{aligned}
$$

The trapezoidal rule is exact for this differential equation. The scaled solution $\mathbf{w}_{i}, i=1,2, \cdots, n-1$ obtained for a particular realisation of the $\varepsilon_{i}$ for $n=501, \sigma=5$ is plotted below. The relation between the scale of the standard deviation $\sigma$ and that of $w$ seems typical. This provides a good illustration that the $n^{-1 / 2}$ scaling leads to an $O(1)$ result.

## Scaled Lagrange multiplier plot



## The null space method

Let $C^{T}=S\left[\begin{array}{l}U \\ 0\end{array}\right]$, where $S$ is orthogonal and
$U: R^{(n-1) m} \rightarrow R^{(n-1) m}$ is upper triangular, $S=\left[\begin{array}{ll}S_{1} & S_{2}\end{array}\right]$,
$S_{1}: R^{(n-1) m} \rightarrow R^{n m}, S_{2}: R^{m} \rightarrow R^{n m}$. Then the Newton equations can be written

$$
\left[\begin{array}{cc}
S^{T} \nabla_{\mathbf{x}}^{2} \mathcal{L} S & {\left[\begin{array}{l}
U \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
U^{T} & 0
\end{array}\right]} & 0
\end{array}\right]\left[\begin{array}{c}
S^{T} \mathbf{d} \mathbf{x}_{c} \\
\mathbf{d} \lambda_{c}
\end{array}\right]=\left[\begin{array}{c}
-S^{T} \nabla_{\mathbf{x}} \mathcal{L}^{T} \\
-\mathbf{c}
\end{array}\right] .
$$

The solution of this system can be found by solving in sequence: (go ID2P

$$
\begin{aligned}
U^{T}\left(S_{1}^{T} \mathbf{d} \mathbf{x}_{c}\right) & =-\mathbf{c}, \\
S_{2}^{T} \nabla_{\mathbf{x}}^{2} \mathcal{L} S_{2}\left(S_{2}^{T} \mathbf{d} \mathbf{x}_{c}\right) & =-S_{2}^{T}\left(\nabla_{\mathbf{x}}^{2} \mathcal{L} S_{1}\left(S_{1}^{T} \mathbf{d} \mathbf{x}_{C}\right)+\nabla_{\mathbf{x}} \mathcal{L}^{T}\right), \\
U \mathbf{d} \lambda_{C} & =-S_{1}^{T}\left(\nabla_{\mathbf{x}}^{2} \mathcal{L} \mathbf{d} \mathbf{x}_{C}+\nabla_{\mathbf{x}} \mathcal{L}^{T}\right) .
\end{aligned}
$$

## Mattheij NSM example

Figure ๔omeer shows state variable and multiplier plots for a Newton's method implementation of the null space approach. These results complement the embedding results presented in Example ๘oеMMP. The data for the estimation problem is based on the observation functional representer $H=\left[\begin{array}{ccccc}.5 & 0 & .5 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0\end{array}\right]$ with the true signal values being perturbed by random normal values having standard deviation $\sigma=.5$. The number of observations generated is $n=501$. The initial values of the state variables are perturbed from their true values by up to $10 \%$, and the initial multipliers are set to 0 . The initial parameter values correspond to the true values 10, 2 perturbed also by up to $10 \%$. Very rapid convergence ( 4 iterations) is obtained.

## Mattheij NSM results



Figure: State variables $\mathbf{x}_{c}$ and multipliers $n \lambda_{c}$ for Mattheij Problem

## A scoring related algorithm

The Newton iteration works with the augmented matrix appropriate to the problem. This is necessarily indefinite even if $\nabla_{x}^{2} \mathcal{L}$ is positive definite. It follows that not all advantages of the Gauss-Newton iteration extend. However, the second derivative terms arising from the constraints are $O(1 / n)$ through the factor $h$. Thus their contribution is smaller than that of the terms arising from the objective function when the $O\left(1 / n^{1 / 2}\right)$ scale appropriate for the Lagrange multipliers is taken into account. Also, it is required that the initial Hessian (augmented) matrix be nonsingular if $\lambda_{c}=0$ is an acceptable initial estimate. This suggests that ignoring the strict second derivative contribution from the constraints should lead to an iteration with asymptotic convergence properties similar to Gauss-Newton. This behaviour has been observed by Bock (first-1983) and others.

## Sketch of justification

This time it is not sufficient to show that the elements of $Q^{\prime}$, the fixed point iteration variational matrix, are $O\left(n^{-1 / 2}\right)$. This is true, but $Q^{\prime} \in R^{2 n m-m} \rightarrow R^{2 n m-m}$. Structure is everything!
consws Here $W=\left[\begin{array}{cc}S^{\top} & 0 \\ 0 & 1\end{array}\right] Q^{\prime}\left[\begin{array}{ll}S & 0 \\ 0 & 1\end{array}\right]$ has the form

$$
\begin{aligned}
W & =\left[\begin{array}{lll}
x & x & x \\
X & X & 0 \\
X & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{lll}
x & x & 0 \\
X & X & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
X & Z & 0 \\
X & X & 0
\end{array}\right] \\
Z & =\left\{\frac{1}{n} S_{2}^{T} \operatorname{diag}\left\{H^{\top} H\right\} S_{2}\right\}^{-1}\left\{h S_{2}^{T} \nabla_{x}^{2}\left(\mathbf{s}\left(\lambda_{c}\right)^{T} f_{c}\right) S_{2}\right\} \in R^{m \times m} .
\end{aligned}
$$

The key result is:

$$
\varpi\left\{Q^{\prime}\left(\left[\begin{array}{c}
\widehat{\mathbf{x}}_{n} \\
\hat{\lambda}_{n}
\end{array}\right]\right)\right\}=\varpi\left\{z\left(\left[\begin{array}{c}
\widehat{\mathbf{x}}_{n} \\
\hat{\lambda}_{n}
\end{array}\right]\right)\right\} \xrightarrow{\text { a.s. }} 0, n \rightarrow \infty .
$$

## Loose ends

- The embedding and simultaneous algorithms are equivalent. Readily proved modulo some reasonable assumptions by assuming the contrary and deriving a contradiction.
- Consistency for the estimation problem follows most easily from the embedding algorithm. Set $\left[B_{1} B_{0}\right]=\lim _{n \rightarrow \infty} S_{2}\left(\mathbf{x}^{*}\right)^{T}$ and treat result as an explicit parameter estimation problem.
- Simultaneous method avoids explicit ODE solution steps. How can adaptive meshing be introduced?


## Stochastic ODE

Consider the linear stochastic differential equation

$$
d \mathbf{x}=M \mathbf{x} d t+\sigma \mathbf{b} d z
$$

where $z$ is a unit Wiener process. Variation of parameters gives the discrete dynamics equation

$$
\mathbf{x}_{i+1}=X\left(t_{i+1}, t_{i}\right) \mathbf{x}_{i}+\sigma \mathbf{u}_{i}
$$

where

$$
\mathbf{u}_{i}=\int_{t_{i}}^{t_{i+1}} X\left(t_{i+1}, s\right) \mathbf{b} \frac{d z}{d s} d s .
$$

From this it follows that

$$
\mathbf{u}_{i} \backsim N\left(0, \sigma^{2} R\left(t_{i+1}, t_{i}\right)\right),
$$

where

```
go SDES
```

$$
R\left(t_{i+1}, t_{i}\right)=\int_{t_{i}}^{t_{i+1}} X\left(t_{i+1}, s\right) \mathbf{b b}^{\top} X\left(t_{i+1}, s\right)^{T} d s=O\left(\frac{1}{n}\right) .
$$

