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Basic multiple shooting
The basic problem addressed by the multiple shooting method
is the solution of the linear boundary value problem

dx
dt

= M(t)x + f(t),

B1x(0) + B2x(1) = b.

Let X (t , ti) be the fundamental matrix satisfying the condition
X (ti , ti) = I where 0 = t1 < t2 < · · · < tn = 1 defines a mesh on
[0, 1]. Then the basic equation to be solved is:

−X (t2, t1) I
. . .

−X (tn, tn−1) I
B1 B2




x1

x2
...

xn

 =


v1
...

vn−1

b


where the v i correspond to particular integral terms.
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Calculation of the X (ti+1, ti)

This requires both an algorithm for integrating the ODE
(assume it is of order m), and an algorithm for setting the {ti}.

I Use an initial value solver. Sufficient to choose ti+1 such
that ‖X (ti+1, ti) ‖ ≤ K .

I By use of collocation as in, for example, Colsys.
I By use of a finite difference discretization. For example,

the trapezoidal rule.

Methods which attempt an a priori set up of the MS matrix must
rely on general properties of the ODE in setting the mesh
points {ti}. In the case of a mix of fast and slow solutions this is
like using a non-stiff solver on a stiff problem.
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Calculation of the X (ti+1, ti)

This requires both an algorithm for integrating the ODE
(assume it is of order m), and an algorithm for setting the {ti}.

I Use an initial value solver. Sufficient to choose ti+1 such
that ‖X (ti+1, ti) ‖ ≤ K .

I By use of collocation as in, for example, Colsys.
I By use of a finite difference discretization. For example,

the trapezoidal rule.

Methods which attempt an a priori set up of the MS matrix must
rely on general properties of the ODE in setting the mesh
points {ti}. In the case of a mix of fast and slow solutions this is
like using a non-stiff solver on a stiff problem.
Is it possible to find finite difference discretizations which
behave in a stiffly stable manner in the context of a mix of fast
and slow solutions?

M.R. Osborne Multiple Shooting Revisited



A brief outline of multiple shooting The ODE estimation problem The NLBVP Are stiff solvers possible

Optimal boundary conditions
Intuitively fast solutions should be fixed at t = 1, slow at t = 0.
Expect good boundary conditions should lead to a relatively
well conditioned linear system. Consider factorization:

I −X1

−X2 I
. . .

−Xn−1 I 0

 → Q
[

U V
0 · · · H G

]

This step is independent of the boundary conditions. Must solve

system with matrix
[

H G
B2 B1

]
in order to compute x1, xn. Let

[
H G

]
=

[
L 0

] [
ST

1
ST

2

]
⇒

[
B2 B1

]
= ST

2 .
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Bob Mattheij’s example
Consider the differential system defined by

M(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

f(t) =

 et (−1 + 19 (cos 2t − sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))

 .

Here the right hand side is chosen so that x(t) = ete satisfies
the differential equation. The fundamental matrix displays the
fast and slow solutions:

X (t , 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .
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Bob Mattheij’s example
For boundary data with two terminal conditions and one initial
condition :

B1 =

 0 0 0
0 0 0
1 0 0

 , B2 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the following
results.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Table: Boundary point values - stable computation

These computations are apparently satisfactory.
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Bob Mattheij’s example
For two initial and one terminal condition:

B1 =

 0 0 1
0 0 0
1 0 0

 , B2 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1

 .

The results are given in following Table.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Table: Boundary point values - unstable computation

The effects of instability are seen clearly in the first and third
solution components.
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Bob Mattheij’s example

The “optimal” boundary matrices corresponding to h = .1 are
given in the Table. These confirm the importance of weighting
the boundary data to reflect the stability requirements of a mix
of fast and slow solutions. The solution does not differ from that
obtained when the split into fast and slow was correctly
anticipated.

B1 B2

.99955 0.0000 .02126 -.01819 0.0000 -.01102
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
.02126 0.0000 .00045 .85517 0.0000 .51791

Table: Optimal boundary matrices when ∆t = .1
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The problem setting
Let the ODE (model) have the general form:

dx
dt

= f (t , x,β)

where β ∈ Rp is a vector of parameters with "true" value β∗

which is to be estimated from problem data:

y i = Hx (ti ,β) , i = 1, 2, · · · , n, � m + p

where H : Rm → Rk , y ∈ Rk , 1 ≤ k ≤ m, and m + p is the
number of degrees of freedom in the model. If
y i ∼ N (Hx (ti ,β

∗) , V ) are independent observations then the
appropriate objective is

F (β) =
n∑

i=1

(y i − Hx (ti ,β))T V−1 (y i − Hx (ti ,β)) .

Mesh selection for integrating the ODE system is conditioned
by two important considerations:

I The asymptotic analysis of the effects of noisy data on the
parameter estimates shows that this gets small no faster
than O

(
n−1/2

)
.

I It is not difficult to obtain ODE discretizations that give
errors at most O

(
n−2

)
.

This suggests:
I That the trapezoidal rule provides an adequate integration

method.
I That it should be possible even to integrate the ODE on a

mesh coarser than that provided by the observation points
{ti} (here we wont!).
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Method 1 - embedding
Here boundary conditions

B1x(0) + B2x(1) = b

are adjoined to the ODE. The solutions x(t ,β, b) of the
resulting BVP provide comparison solutions for minimizing F .
Gauss-Newton (scoring) provides an appropriate algorithm. In
this formulation the estimation problem is unconstrained with
variables β, b.
It is necessary to choose B1, B2 to ensure stability in these
integrations. Selection of appropriate conditions appears to
require structural information about the ODE system. This is
where the optimal boundary conditions enter.

Let

∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient of F

is

∇(β,b)F = −2
n∑

i=1

rT
i V−1H∇(β,b)x i .
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Method 1 - embedding

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i V−1H∇(β,b)x i .

The gradient terms wrt β are found by solving the BVP’s

B1
∂x
∂β

(0) + B2
∂x
∂β

(1) = 0,

d
dt

∂x
∂β

= ∇x f
∂x
∂β

+∇βf,
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Method 1 - embedding

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i V−1H∇(β,b)x i .

while the gradient terms wrt b satisfy the BVP’s

B1
∂x
∂b

(0) + B2
∂x
∂b

(1) = I,

d
dt

∂x
∂b

= ∇x f
∂x
∂b

.
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Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with
parameters β∗1 = γ, and β∗2 = 2 corresponding to the solution
x (t ,β∗) = ete:

M(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

f(t) =

 et (−1 + γ (cos 2t − sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))

 .

In the numerical experiments optimal boundary conditions are
set at the first iteration. The aim is to recover estimates of
β∗, b∗ from simulated data eti He + εi , εi ∼ N(0, .01I) using
Gauss-Newton, stopping when ∇Fh < 10−8.
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Embedding: Again the Mattheij example

H =
[

1/3 1/3 1/3
]

n = 51, γ = 10, σ = .1
14 iterations

n = 51, γ = 20, σ = .1
11 iterations

n = 251, γ = 10, σ = .1
9 iterations

n = 251, γ = 20, σ = .1
8 iterations

H =

[
.5 0 .5
0 1 0

]

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations

Here ‖
[

B1 B2
]

1

[
B1 B2

]T
k − I‖F < 10−3, k > 1.
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The simultaneous method

This formulates a constrained estimation problem:

min
x,β

F (x,β) ; c i (x,β) = 0, i = 1, 2, · · · , n − 1,

where

c i (x,β) = x i+1 − x i −
∆t
2

[f (ti+1, x i+1,β) + f (ti , x i ,β)] .

This has the advantage - which could translate into faster
execution speeds - that repeated solution of BVP’s is not
required with the solution being part of the problem variables
(contrast embedding). Does it have stability advantages?
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The simultaneous method

This formulates a constrained estimation problem:

min
x,β

F (x,β) ; c i (x,β) = 0, i = 1, 2, · · · , n − 1,

where

c i (x,β) = x i+1 − x i −
∆t
2

[f (ti+1, x i+1,β) + f (ti , x i ,β)] .

Possible disadvantages are the potentially very large constraint
set - at least in theory - as n →∞, and the more complex
algorithmic questions associated with the constrained problem.
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The basic NLBVP algorithm

In outline, a modified Newton algorithm would go something
like this:

I Provide an initial guess at the solution.
I In estimation by embedding need to estimate (and check)

appropriate BC’s using linearised equations.
I Solve the linearized problem for the Newton correction h.
I Compute an improved solution estimate by line-searching

in the direction determined by the estimated correction.
I Update the solution estimate.
I Repeat iterative step if convergence test not satisfied.
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The line search
The new feature is the line-search. This needs an objective
function Φ to reduce in order to gauge improvement.
Possibilities include:

I Let r be the composite vector whose components are the
ODE residuals at the mesh points. Then
Φ (λ) = ‖r (x + λh) ‖2.

I Let the current step of the Newton iteration be written
J(x)h = −r, and set

J(x)h̃(λ) = −r (x + λh) .

In this case Φ (λ) = ‖h̃(λ)‖2.

It seems agreed that the "affine invariant" second case should
be superior to the first in general. However, convergence can
be proved in the first case but not the second.
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An example: rotating discs flow
The governing ODE’s for the similarity solutions to the flow
between two infinite rotating discs are:

dx1

dt
= −2x2,

dx2

dt
= x3,

dx3

dt
= x1x3 + x2

2 − x2
4 + x6,

dx4

dt
= x5,

dx5

dt
= 2x2x4 + x1x5,

dx6

dt
= 0.

+ boundary conditions:

x1(0) = 0,

x2(0) = 0,

x4(0) = 1,

x1(b) = 0,

x2(b) = 0,

x4(b) = s.
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An example: rotating discs flow

The next slide gives results of numerical computations. The
case reported corresponds to s = 0.0, b = 9. Starting values
are x i = 0, i = 1, 2, · · · , n. Other settings are n = 101, iteration
tolerance 1.e − 10, and Armijo parameter θ = .25. The iteration
tolerance is applied to the objective function which is defined as√

∆tΦ(x) where Φ(x) is the affine covariant objective in the first
case, and the sum of squares of residuals in the second. In
general, difficulty increases with increasing separation b and
decreasing rotation speed ratio s, but this is by no means the
full story.
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An example: rotating discs flow

it affine cov ss
λ objs objt λ obj

s=0.0
0 3.999-01
1 .25 1.7769 00 1.4134 00 1 1.2075-01
2 1 2.2370 00 1.5573 00 1 1.8768-02
3 .25 1.5529 00 5.6232-01 1 1.0154-03
4 .25 1.5421 00 1.0481 00 1 1.5290-04
5 1 5.3675-01 7.1059-02 1 1.6576-07
6 1 6.3186-02 3.5046-03 1 3.3204-12
7 1 3.4912-03 4.4195-06
8 1 4.4287-06 1.6675-11

Table: Rotating disc flow: numerical results for b = 9
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An example: rotating discs flow
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The Mattheij example yet again

go MatEx3 The size of the errors for the two meshes suggests
something more than instability is involved. For the DE

dx
dt

= λx

the trapezoidal rule gives(
1− λ∆t

2

)
xi+1 =

(
1 +

λ∆t
2

)
xi .

Stiff stability for λ ≤ 0 follows immediately. For λ > 0 it seems a
different story - the amplification factor passes through +∞ to
oscillate in sign, eventually tending to −1 as λ →∞.
Sometimes called "super stability". go MatEx2
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