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Gauss-Newton algorithm
Seek

x̂ = arg min
x∈Rp

‖f (x)‖22 , f ∈ Rn, n > p,

by solving the sequence of problems

h i = arg min
h∈RP

‖f (x i) +∇x f (x i) h‖22 ,

x i+1 = x i + h i .

This is a fixed point iteration of the form x i+1 = Fn (x i) and x̂ is
a point of attraction provided ($(·) denotes spectral radius)

$
(
F′n
(
x̂
))

= $

((
∇x fT∇x f

)−1
(

n∑
i=1

fi∇2
x fi

))
< 1.

Second order convergence if f
(
x̂
)

= 0. Fast convergence in
large sample, data analytic problems.
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Generalised Gauss-Newton algorithm

Basic iteration is formally similar:

h i = arg min
h∈RP

‖f (x i) +∇x f (x i) h‖s ,

x i+1 = x i + h i .

where we work with norms ‖·‖s on Rn and ‖·‖t on Rp.
Important application to l1 and max norms. Nicest results have
to do with cases where second order convergence is possible.
Local strong uniqueness is an elegant sufficient condition
(Ludwig Cromme, Num. Math. 29, 179-94, 1978).

∃ γ > 0 ⇒
∥∥f
(
x̂ + v

)∥∥
s ≥

∥∥f
(
x̂
)∥∥

s+γ ‖v‖t , ∀ ‖v‖t small enough.

Implies ‖f‖s not smooth at x̂.
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Constrained problems

min
x

Φ(x), c(x) = 0, c ∈ Rm, m < p.

Introduce Lagrangian: L (x,λ) = Φ(x) + Σm
i=1λici (x).

Necessary conditions are:

∇xL = 0, ∇λL = cT = 0.

Newton correction (4x, 4λ) is given by

∇2
xxL4x +∇xcT4λ = −∇xLT ,

∇xc4x = −c.

Let

CT = ∇xcT =
[

Q1 Q2
] [ U

0

]
.

Then a sufficient condition for local convergence at x̂, λ̂ is

U full rank, QT
2∇2

xxLQ2 � 0
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Introducing the Bock iteration

In the case of interest the values of both p and m are
determined by discretization of an ODE system. Thus they are
potentially large. Two consequences are immediate:

1. Sparsity needs to be respected.

2. Calculation of
∑m

i=1 λi∇2
xxci is potentially a pain.

The iteration considered here sets ∇2
xxci , i = 1, 2 · · · , m→ 0.

The key to success in cases of non trivial constraint curvature
is the size of λ.
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Iterations formulated

Set ∇2
xxΦ = A,

∑m
i=1 λi∇2

xxci = B, ∇xc = C. Then basic
iteration calculations solve

Newton
[

A + B CT

C 0

] [
4x
4λ

]
=

[
−∇xL
−c

]
.

Bock
[

A CT

C 0

] [
4x
4λ

]
=

[
−∇xL
−c

]
.

Write Bock as a fixed point iteration[
x i+1

λi+1

]
= F

([
x i

λi

])
,

F =

[
x
λ

]
−
[

A CT

C 0

]−1 [ ∇xL
c

]
.

Condition for an attractive fixed point is $ (F′) < 1.
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Structure of F′ in Bock iteration

At
[

x̂
λ̂

]
necessary conditions give

F′ = I −
[

A CT

C 0

]−1 [
A + B CT

C 0

]
,

= −
[

A CT

C 0

]−1 [
B 0
0 0

]
.

Orthogonal similarity using Q is helpful. Let

QT AQ =

[
A11 A12

A21 A22

]
, QT BQ =

[
B11 B12

B21 B22

]
.

Then[
QT 0
0 I

]
F′
[

Q 0
0 I

]
=

 A11 A12 U
A21 A22 0
UT 0 0

−1  B11 B12 0
B21 B22 0
0 0 0

 .
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More algebra

Let G =

 A B C
D E 0
F 0 0

, then

G−1 =

 0 0 F−1

0 E−1 −E−1DF−1

C−1 −C−1BE−1 C−1BE−1DF−1 − AF−1

 .

Let W =

 R S 0
T Z 0
0 0 0

, then

G−1W =

 0 0 0
E−1T E−1Z 0

C−1R − C−1BE−1T C−1S − C−1BE−1Z 0

 .
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Key result

$
(

G−1W
)

= $
(

E−1Z
)

.

Here p is the number of variables, m is the number of
constraints. In the ODE application these ↑ ∞ as the
discretization is refined, but p −m is fixed and finite (equal to
the order of the ODE system). The significance is:

p −m = dim E−1Z .

Thus the rate of convergence question can be reduced to the
question of estimating the eigenvalues of a matrix of fixed and
finite dimension. go BCP
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Smoothing problem data
Estimate state variables x(ti) given differential equation

dx
dt

= f (t , x) , x, f ∈ Rm,

plus observations in presence of independent, N
(
0, σ2I

)
errors

y i = Ox∗ (ti) + εi , i = 1, 2, · · · , n,

y i ∈ Rk , O ∈ Rm → Rk , ti ∈ [0, 1] .

Trapezoidal rule discretization gives constraints

c i = x i+1 − x i −
4t
2

(f (ti , x i) + f (ti+1, x i+1)) = 0.

Note
1. dimension change p = n ∗m, m← (n − 1) m.
2. introduce xc composite vector with block components

x i , i = 1, 2, · · · , n.
3. sparsity c i (xc) = c ii (x i) + c i(i+1) (x i+1).
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Parameter estimation as smoothing

The problem of estimating auxiliary parameters in the
differential equation can be reduced to smoothing problem form
by introducing additional state variables and augmenting the
differential equation. Not necessarily the way to compute the
solution. [

x
β

]
→ x,[

f (t , x,β)
0

]
→ f (t , x) .

Consider only the smoothing form here.
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Smoothing problem formulation
Set r i = y i −Ox i , r i ∈ Rk , and let

Φn (xc) =
1

2n

n∑
i=1

‖r i‖22 .

Smoothing problem in simultaneous form

min
xc

Φn (xc) ; c (xc) = 0.

Lagrangian is

Ln = Φn (xc) +
n−1∑
i=1

λT
i c i ,

= Φn (xc) + λT
1 c11 +

n−1∑
i=2

{
λT

i−1c(i−1)i + λT
i c ii

}
+ λT

n−1c(n−1)n.
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Lagrangian derivatives

Set λ0 = λn = 0 and define s (λc)i = λi−1 + λi then

∇2
xxL = diag

{
1
n
OTO +

4t
2
∇2

xx

(
sT

i f (ti , x i)
)

, i = 1, 2, · · · , n
}

,

∇2
xλLn = CT ,

Cii = −I − 4t
2
∇x f (ti , x i) ,

Ci(i+1) = I − 4t
2
∇x f (ti+1, x i+1) .

Here ∇2
xxL is m ×m block diagonal, and C is m ×m block

(upper) bidiagonal.
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Solving the necessary conditions
The gradient of the Lagrangian gives the equations

−1
n

rT
1O + λT

1∇xc11 = 0,

−1
n

rT
i O + λT

i−1∇xc(i−1)i + λT
i ∇xc ii = 0, i = 2, 3, · · · , n − 1,

−1
n

rT
nO + λT

n−1∇xc(n−1)n = 0, .

The Newton equations determining corrections dx c , dλc to
current estimates of state and multiplier vector solutions of
these equations are:

∇2
xxLdx c +∇2

xλLdλc = −∇xLT ,

∇xc (xc) dx c = Cdx c = −c (xc) ,

M.R. Osborne The Bock iteration for the ODE estimation problem
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There is some structure in λ
Grouping terms in the necessary conditions gives

−λi−1 + λi +
4t
2
∇x f (ti , x i)

T (λi−1 + λi) = −1
n
OT r i .

For simplicity consider the case where ri is a scalar and the
observation structure is based on a vector representer O = oT .
Then

riOT =
{

εi + oT (x∗i − x i)
}

o,

=
√

n
{

εi√
n

+
1√
n

oT (x∗i − x i)

}
o.

Let w i =
√

nλi , i = 1, 2, · · · , n − 1, then

−w i−1 + w i +
4t
2
∇x f (ti , x i)

T (w i−1 + w i) = − ri√
n

o.
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Multiplier estimate for normal errors

This equation is important!

−w i−1 + w i +
4t
2
∇x f (ti , x i)

T (w i−1 + w i) = − ri√
n

o. (1)

The variance of the stochastic forcing term in this rescaled
form is

(
σ2/n

)
ooT , and the remaining right hand side term is

essentially deterministic with scale O{1/n} when the generic
O{n−1/2} rate of convergence of the estimation procedure is
taken into account. This permits identification with a
discretization of the adjoint to the linearised constraint
differential equation system subject to a forcing term which
contains a stochastic component. go Stoch

The significant feature of this comparison is that it indicates that
the multipliers λi → 0, i = 1, 2, · · · , n − 1, on a scale which is
O
(
n−1/2

)
as n→∞ when the errors are normally distributed.
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Example of multiplier behaviour

The effect of the random walk term can be isolated in the
smoothing problem with data:

dx
dt

=

[
0 1
0 0

]
x,

yi =
[

1 0
]

x i + εi = 1 + εi , εi ∼ N (0, 1) ,

ti =
(i − 1)

(n − 1)
, i = 1, 2, · · · , n.

The trapezoidal rule is exact for this differential equation. The
scaled solution w i , i = 1, 2, · · · , n − 1 obtained for a particular
realisation of the εi for n = 501, σ = 5 is plotted below. The
relation between the scale of the standard deviation σ and that
of w seems typical. This provides a good illustration that the
n−1/2 scaling leads to an O(1) result.
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Scaled Lagrange multiplier plot

go P
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Bob Mattheij’s example
Consider the differential system defined by
f (t , x) = A (t , x) x + q (t) with

A(t) =


1− x4 cos x5t 0 1 + x4 sin x5t 0 0

0 x4 0 0 0
−1 + x4 sin x5t 0 1 + x4 cos x5t 0 0

0 0 0 0 0
0 0 0 0 0

 ,

q(t) =


et (−1 + 10 (cos 2t − sin 2t))

−9et

et (1− 10 (cos 2t + sin 2t))
0
0

 .

Here the right hand side is chosen so that
x(t)T =

[
et et et 10 2

]
satisfies the differential

equation.
M.R. Osborne The Bock iteration for the ODE estimation problem
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Mattheij example

Following Figure shows state variable and multiplier plots for a
Newton’s method implementation. The data for the estimation
problem is based on the observation functional representer

O =

[
.5 0 .5 0 0
1 −1 1 0 0

]
with the true signal values being

perturbed by random normal values having standard deviation
σ = .5. The number of observations generated is n = 501. The
initial values of the state variables are perturbed from their true
values by up to 10%, and the initial multipliers are set to 0. The
initial parameter values correspond to the true values 10, 2
perturbed also by up to 10%. Very rapid convergence (4
iterations) is obtained.

M.R. Osborne The Bock iteration for the ODE estimation problem



Basic algorithms Basic algebra Estimation problem The Bock iteration In conclusion

Mattheij NSM results

Figure: State variables xc and multipliers nwc for Mattheij Problem
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The approximate algorithm

The Newton iteration works with the augmented matrix
appropriate to the problem. This is necessarily indefinite even if
∇2

xL is positive definite and ties simultaneous methods to the
class of SQP algorithms. This means more complicated
behaviour when compared to minimising sums of squares.
However, the second derivative terms arising from the
constraints are O (1/n) through the factor 4t . Thus their
contribution is smaller than that of the terms arising from the
objective function when the O

(
1/n1/2

)
scale appropriate for the

Lagrange multipliers is taken into account. This suggests that
ignoring the strict second derivative contribution from the
constraints should lead to an iteration with asymptotic
convergence rate similar to Gauss-Newton. This behaviour has
been observed by Bock (first-1983) and others.
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Convergence rate analysis

Theorem
Assume

E =
[
QT

2 diag
{
OTO, i = 1, 2, · · · , n

}
Q2

]
has a bounded inverse for n large. Then

$

{
F ′n

([
x̂c

λ̂c

])}
a.s.→

n→∞
0.

Here x̂c , λ̂c indicate optimal values for the current n.
Note: The condition on E is an identifiability condition on the
estimation problem. If O = I then E = I.
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Outline of proof
go SBI Let

B = diag
{
∇2

xxs
(
λ̂c

)T

i
f
(
ti , x̂ i

)
, i = 1, 2, · · · , n

}
.

The critical quantity is

$

{(
QT

2 diag
{

1
n
OTO, i = 1, · · · , n

}
Q2

)−1

QT
2
4t
2

BQ2

}
As n4t = O (1) it follows that it is sufficient to show that∥∥∥QT

2 BQ2

∥∥∥ a.s.→
n→∞

0.

Here the spectral norm is dominated by the spectral radius of
the symmetric, m ×m block, block diagonal matrix B. The
desired result now follows because the diagonal blocks of this
matrix all tend to 0 with λ̂c , n→∞.
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Properties

I The figures suggest that there is scope for cancellation in
summations involving the computed multipliers. However,
there appears to be little scope for exploiting this
apparently random behaviour as sums in B are over fixed
panels of length m. go M1

I The assumption that the observational errors are normal is
required here explicitly. This is in contrast to
Gauss-Newton where independence (+ bounded variance)
is the key to fast convergence in large samples. go Stoch
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Performance

Computations with the Bock iteration on the Mattheij example
make for an interesting comparison with the Newton results. It
proves distinctly less satisfactory without a line search in case
σ = .5, and failure to converge was noted for a high percentage
of seed values for the random number generator. However,
when σ = .1 the behaviour of the two iterations is essentially
identical.
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Stochastic ODE
go SDES go P Consider the linear stochastic differential equation

dx = Mxdt + σbdz

where z is a unit Wiener process. Variation of parameters
gives the discrete dynamics equation

x i+1 = X (ti+1, ti) x i + σu i ,

where

u i =

∫ ti+1

ti
X (ti+1, s)−1 b

dz
ds

ds.

From this it follows that

u i v N
(

0, σ2R (ti+1, ti)
)

,

where

R (ti+1, ti) =

∫ ti+1

ti
X (ti+1, s)−1 bbT X (ti+1, s)−T ds = O

(
1
n

)
.
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