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Abstract

The asymptotic behaviour of a class of least squares problems when
subjected to structured perturbations is considered. It is permitted
that the number of rows (observations) in the design matrix can be
unbounded while the number of degrees of freedom (variables) is fixed.
It is shown that for certain classes of random data the solution sensi-
tivity depends asymptotically on the condition number of the design
matrix rather than on its square which is the generic result for incon-
sistent systems when the norm of the residual is not small. Extension
of these results to the case where the perturbations are due to round-
ing errors is considered.

1 Introduction

The linear least squares problem has the general form

min
x

rT r; r = Ax− b. (1)

where the design matrix A : Rp → Rn, the residual and observation vectors
r, b ∈ Rn, and the vector of model parameters x ∈ Rp. Typically p will
be fixed corresponding to a known model, while n will usually be assumed
”large enough”. Limiting processes will assume that p is fixed and n→∞.

This problem is a simple optimization problem subject to equality con-
straints. The necessary conditions for a minimum give

0 = ∇xr
T r = 2rTA. (2)
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Substituting for r from (1) gives the normal equations

ATAx = ATb. (3)

This system defines uniquely both the least squares estimator x(n) and the
corresponding residual vector r(n) providing the design matrix A has full
column rank p, and this condition is assumed.

An important modelling context which generates linear least squares
problems is the following. Assume noisy observations are made on a sys-
tem at a sequence of configurations labelled by a reference variable t which
could be time. Let these be summarised by

bi = y(ti) + εi, i = 1, 2, · · · , n, (4)

where y(t) is the error free signal (true model) which is assumed to be
expressible in parametric form as

y(t) =

p∑
i=1

x∗iφi(t), (5)

the x∗i , i = 1, 2, · · · , p, are the (hypothesised) true parameter values, the
φi(t), i = 1, 2, · · · , p are basis functions specifying the model class, and the εi
are random variables summarising the noise in the observations. A standard
assumption would be that the εi are independent and normally distributed
with mean 0, and standard deviation γ (ε v N(0, γ2I)). In this case the so-
lution of equation (3) is the maximum likelihood estimate and has important
minimum variance properties. However, the solution x provides consistent
parameter estimates for significantly more general families of distributions.
The property of (strong) consistency ensures that

x(n) → x∗, almost surely, n→∞.

It requires conditions on the choice of {ti, i = 1, · · · , n} which are satisfied
by the sampling properties required below. For this model

Aij = φj(ti), j = 1, 2, · · · , p, i = 1, 2, · · · , n.

Remark 1 Note that in this context 1
n
‖r‖2 estimates the variance γ2. This

means that the residual vector can be expected to be bounded away from zero
in norm for n > p. It follows that without further information this class of
problems would be expected to fall into the class in which a (condA)2 error
estimate is expected.

2



It is important to know how the estimate x(n) of x∗ given by (3) behaves
as the number of observations increases without limit because this permits
statements to be made about the rates of convergence implied by the consis-
tency of the estimates. This is not just a theoretical point because it informs
on how much data needs to be collected and so directly relates to the prac-
ticality of the measurement exercise. It is also important to know how the
computational algorithm chosen to solve (1) will behave on large data sets.
In this connection, the first point to make is that a systematic process capa-
ble of automation is required to generate the values of the reference variable
ti and record the observations bi associated with large data sets if an asymp-
totic analysis is to be possible. The nature of this recording process must
depend on the nature of the system being observed. It is assumed that the
system has the property that after a finite horizon, assumed to correspond
to values 0 ≤ t ≤ 1 for the labelling variable, no further information on
model structure is available. One case corresponds to signals decaying to
zero. However, the case of a finite observation window dictated by external
factors is also included. Such systems may be required to be controlled, and
may have quite complicated stability properties.

The refinement process used to increase n is one in which independent tri-

als are performed to obtain data for sequences of points
{
t
(n)
i , i = 1, 2, · · ·n

}
for an increasing sequence of values of n. The use of the descriptor systematic
is taken to mean that there is a limiting process such that

1

n

n∑
i=1

f(t
(n)
i )→

∫ 1

0

f(t)dw(t), n→∞, (6)

holds for all sufficiently smooth f(t) (f(t) ∈ C [0, 1] for example) where w(t)
is a weight function characteristic of the sampling regime. The left hand
side in (6) can be interpreted as a simple quadrature formula. For example,
w(t) = t in the two cases:

1. The ti are equispaced. The corresponding quadrature error for smooth
enough f(t) is strictly O(1/n).

2. The ti are uniformly distributed in [0, 1]. The corresponding quadrature
error is asymptotically normally distributed with variance O (1/n).

Such samplings are called regular to stress that there is a sense in which
the quadrature error is o(1), n → ∞. The associated convergence mode
is denoted “r.e.”. For example,

r.e.→
n→∞

. The particular sense appropriate is

implied.
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Now assume that the design matrix in (1) is constructed for each n using
a regular sampling procedure. Then the regularity condition gives

1

n
AT∗iA∗j =

1

n

n∑
k=1

φi(t
(n)
k )φj(t

(n)
k )

r.e.→
n→∞

∫ 1

0

φi(t)φj(t)dw(t) = Gij. (7)

This states that the normal matrix in (3) scaled by 1
n

approaches the Gram
matrix G : Rp → Rp of the set Φ = {φj(t), j = 1, 2, · · · , p} relative to the
weight w(t) with an error which is o(1), n → ∞. This rate is assumed fast
enough to ensure condA → condG, n → ∞. G is nonsingular and positive
definite by assumption. It need not be well conditioned. For example, values
of spectral condition numbers for Hilbert matrices corresponding to the case
when elements of Φ are monomials and the ti are equispaced are given in [4]
for 2 ≤ n ≤ 16 . One consequence of the above discussion is that there is no
real restriction in assuming that the subordinate matrix norm relative to the
euclidean norm of the design matrix satisfies ‖A‖ =

√
n. This amounts to a

rescaling of the design A by a quantity which is asymptotically constant.
The next section treats some consequences of perturbing the data of equa-

tion (1). The classic inequality of Golub and Wilkinson is derived and certain
asymptotic properties for large n are explored. In particular, the influence
of the stochastic components in the data vector b is considered. This adds
a somewhat different perspective to the usual worst case scenarios because
here the law of large numbers [6] in the (extended) form

1

n

n∑
i=1

Xniεni
a.s.→
n→∞

0 (8)

is available when the εni are independent and of bounded variance for all
n, and the constants Xni are bounded. This result permits the influence
of the “bad term” involving the square of the condition number of A to be
ignored in certain circumstances. The resulting perturbation behaviour then
becomes similar to that for consistent linear systems.

2 Perturbation of least squares problems

We consider the generic perturbed least squares problem (1) with data

r = (A+ τE) x− (b + τz)
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where perturbations E, z are fixed in the sense that they result from a well
defined rule for each n. The perturbation E is assumed to be independent
of any observational error. It is assumed that τ is a small parameter. The
component-wise scale of the perturbations is fixed by requiring

max
i,j
|Eij| = η ≤ 1, ‖z‖∞ ≤ 1. (9)

It follows that 1
n
ETA has uniformly bounded elements. We have

max
1≤i,j≤p

1

n
|(ETA)ij| ≤

1

n
max
i,j

n∑
s=1

|Esi||Asj| ≤ ηmax
i,j
|Aij| ≤ ηmax

i
‖φi‖∞.

(10)
It is assumed that τ is small enough for both A and A+ τE to have their

full rank p. The necessary conditions for the perturbed and unperturbed
least squares problems are

(A+ τE)T r̂ = 0, AT r(n) = 0

where the ̂ indicates the solution of the perturbed problem. Subtracting
gives

(A+ τE)T
(
r̂− r(n)

)
+ τET r(n) = 0,

and substituting for the residual vectors gives the basic relation

(A+ τE)T (A+ τE)
(
x̂− x(n)

)
= τ

{
(A+ τE)T

(
z− Ex(n)

)
− ET r(n)

}
.

(11)
For small enough τ and each fixed n this gives

x̂− x(n) = τ
{(
ATA

)−1 (
AT
(
z− Ex(n)

)
− ET r(n)

)}
+O

(
τ 2
)
,

= τ


(

1√
n
U
)−1

1√
n
QT

1

(
z− Ex(n)

)
−
(

1
n
ATA

)−1 1
n
ET r(n)

+O
(
τ 2
)
, (12)

where A possesses the orthogonal Q times upper triangular U factorization

A = Q

[
U
0

]
=
[
Q1 Q2

] [ U
0

]
= Q1U,

and Q1 corresponds to the first p columns of Q. There are two ways of
looking at this relation. The first considers n fixed and worries about the
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size of cond (A) = σ1

σp
, the ratio of the largest to smallest singular values of

A. This leads to the basic inequality

∥∥x̂− x(n)
∥∥ ≤ τ

{
cond (A)√

n

∥∥z− Ex(n)
∥∥+

cond (A)2

n

∥∥ET r(n)
∥∥}+O

(
τ 2
)
,

(13)
where the assumption that ‖A‖ =

√
n = σ1 has been used. The original form

of this result is due to [3]. Equation (13) reveals the possible dominance of
the term cond (A)2. This is likely if 1

n

∥∥ET r(n)
∥∥ is not small. The importance

of the inequality (13) is that it is a generic result highlighting what is best
possible. For this reason computational algorithms in which the error takes
this form are said to have optimal error structure. Development of such
optimal algorithms based on the use of orthogonal transformations goes back
to [5], [2], and [1]. It follows from (12) that

r̂− r(n) = −τ
{

(I − P ) z + PEx(n) + A
(
ATA

)−1
ET r(n)

}
+O

(
τ 2
)
,

= −τ
{

(I − P ) z + PEx(n) +Q1U
−1ET r(n)

}
+O

(
τ 2
)

(14)

where P is the orthogonal projection A
(
ATA

)−1
AT onto the range of A.

Thus the result of the perturbation is a change of magnitude O (cond (A))
in the residual showing that a more satisfactory result is possible if the com-
puted residual is the required quantity.

However, there is an alternative way of considering this result which is
important when n is large and ε is a random vector. The Gram matrix G
(7) is used to write a limiting form of (12) as n

r.e.→ ∞. Contributions from
quadrature error terms in this approximation have been ignored ( Lemma 3
shows they contribute at most τ (o(1)) for large n given regular sampling),
and G1/2 is written for the large n approximation to 1√

n
U in (12).

x̂− x(n) = τ

{
G−1/2 1√

n
QT

1

(
z− Ex(n)

)
−G−1 1

n
ET r(n)

}
+O

(
τ (o(1)) , τ 2

)
.

(15)
We have the following bounds for the interesting terms in this equation.

Lemma 2

1√
n

∥∥QT
1

(
z− Ex(n)

)∥∥ ≤ ∥∥z− Ex(n)
∥∥
∞ ,

1

n

∥∥ET r(n)
∥∥ ≤√p

n
η
∥∥r(n)

∥∥
∞ .
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Proof. The first part applies the standard inequality relating the 2 and
∞ norms. The second part follows in similar fashion from the inequality

‖E‖ ≤ √npη, (16)

where the right hand side is a simple bound for the Frobenius norm of E.
Also it is important when fixing the order of dependence on τ that the

n dependence of the O (τ) terms is appropriately bounded as n
r.e.→ ∞. The

key is the following result.

Lemma 3
1

n
(A+ τE)T (A+ τE)

r.e.→
n→∞

G+O (τ) .

It follows that the normal matrix associated with the perturbed least squares
problem has a suitably bounded inverse under regular sampling.

Proof.

1

n
(A+ τE)T (A+ τE) =

1

n
UT
{
I + τ

{
QT

1EU
−1 + U−TETQ1

}
+τ 2U−TETEU−1

}
U.

(17)

To show that the terms multiplying both τ and τ 2 in this expression are
O (1) , n

r.e.→ ∞, requires a bound for ‖EU−1‖ valid for large n. Note
‖EU−1‖ ≥

∥∥QT
1EU

−1
∥∥. The required bound can be constructed as follows:

∥∥U−TETEU−1
∥∥ = sup

v

vTU−TETEU−1v

vTv
,

= sup
w

wTETEw

wTUTUw
,

≤ ‖E‖2

nσmin
{

1
n
ATA

} ,
≤ pη2

σmin {G}
+ o(1), n

r.e.→∞,

where the estimate of ‖E‖ given in the previous Lemma has been used. Thus∥∥∥∥ 1

n
(A+ τE)T (A+ τE)−G

∥∥∥∥ ≤ τ
{

3 ‖G‖1/2
√
p cond (G) + o(1)

}
, n

r.e.→∞.

The last step uses τ 2 ‖EU−1‖2 ≤ τ ‖EU−1‖ when τ ‖EU−1‖ ≤ 1.
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Remark 4 This result has the consequence that all “Big O” terms in the
basic relation (15) have the orders claimed as n

r.e.→∞. More can be said.We
have

ET r(n) = ET
{
A
(
x(n) − x∗

)
− ε
}
.

It is necessary to use both consistency and the law of large numbers to esti-
mate these contributions. Consistency gives

1

n
ETA

(
x(n) − x∗

)
→ 0, almost surely,

using the boundedness of the elements of the p× p matrix 1
n
ETA (10); and

1

n
ETε→ 0, almost surely,

by the law of large numbers (8). It follows that there is a sense in which the
term in G−1/2 dominates in (15) for large n.

3 What about rounding error?

This section considers the possibility of applying the previous results to the
important class of problems in which E, z, τ are determined by the compu-
tational procedure and the characteristics of floating point arithmetic. We
consider the Golub orthogonal factorization algorithm based on Householder
transformations [2]. An appropriate error analysis from [4], Theorem 20.3, is
summarised here.

“Let A ∈ Rn×p (n ≥ p) have full rank. The computed solution x̂ of (1) is
the exact least squares solution of the perturbed problem

min
x
‖b + τz− (A+ τE) x‖,

where the perturbations satisfy the component wise bounds

|τE| ≤ npγcmG|A|, |τz| ≤ npγcmG|b|,

where ‖G||F = 1 and it is assumed that the constant γcm satisfies npγcm < 1
2
.”

The perturbation scale τ is determined by the requirement that the
component-wise scaling conditions (9) are satisfied. It is clear that it is re-
lated to γcm and so to bounds for accumulated round-off error. This presents
little practical difficulty until it comes to consideration of asymptotic be-
haviour for very large n. Practical experience would seem to indicate that
the asymptotics do work for large but practical values of n.
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However, rounding errors give rise to another class of questions as the
dependence of b on ε means that stochastic and rounding errors must be
coupled to some extent. Clearly this affects z. But it also affects E. This is
expressed in [4] as

τE = ∆A+Q1∆R

where ∆A comes from the computed factorization of A and is independent
of b, Q is an orthogonal matrix, and ∆R takes account of the contribution
from the back substitution and so involves some coupling between rounding
and stochastic errors. It follows that the argument of the previous section
can be applied to show that the contribution from the term ∆A can be made
small. However, it also means that the condition of independence implicit
in the consistency and law of large numbers estimates no longer applies so
that these tools do not suffice to show the contribution from ∆R is similarly
small.

The importance of the law of large numbers is that it gives a method
for quantifying cancellation in statistical calculations. There seems to be
abundant evidence that cancellation to reduce the impact of rounding error
accumulation is also a significant aid in large scale computations. It would be
distinctly useful to have some form of analogue of the law of large numbers
as a tool in these circumstances. Note that the law of large numbers does not
preclude exceptional cases. It just guarantees they are very small in number.
A computational analogue would similarly have to permit a small number of
worst case scenarios.
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