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Abstract

The Gauss-Newton algorithm for solving nonlinear least squares
problems proves particularly efficient for solving parameter estima-
tion problems when the number of independent observations is large
and the fitted model is appropriate. In this context the conventional
assumption that the residuals are small is not needed. The Gauss-
Newton method is a special case of the Fisher scoring algorithm for
maximizing log likelihoods and shares with this a number of desirable
properties. The formal structural correspondence is striking with the
linear subproblem for the general scoring algorithm having the form
of a linear least squares problem. This is an important observation
because it provides likelihood methods with a computational frame-
work which accords with computational orthodoxy. Both line search
and trust region algorithms are available and these are compared and
contrasted here. It is shown that the types of theoretical results which
have led to the wide acceptance of trust region methods have direct
equivalents in the line search case, while the latter have better trans-
formation invariance properties. Computational experiments for both
continuous and discrete distributions show no advantage for the trust
region approach.

1 Introduction

This paper has two main aims:

1. To show that a least squares framework is appropriate for the imple-
mentation of the Fisher scoring method for estimating parameters by
maximizing an important class of log likelihoods. These methods in-
clude the Gauss-Newton algorithm for solving non-linear least squares
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problems, but they also include parameter estimation problems for like-
lihoods associated with discrete probability distributions.

2. To compare and contrast the properties of line search and trust region
methods in the implementation of these methods.

There is even historical interest in the comparison of the line search and
trust region methods. The first trust region algorithm is probably Leven-
berg’s modification of the Gauss-Newton algorithm [4]. Good convergence
properties publicized for variants of this method ([5], [6]) served to draw
attention to the potential advantages of the general trust region approach.
The advantages in general are not denied, but it is suggested that the advan-
tages in this particular context are not as great as might have been thought
originally.

To establish the emphasis on a data analytic context in the algorithmic
developments it is convenient to start with the following assumptions which
serve to outline the problem context.

1. The experimental data consists of independent event outcomes yj ∈
Rq, j = 1, 2, · · · , n, but it is not assumed that the individual compo-
nents of yj are independent;

2. there is an associated probability density function (probability mass
function for discrete distributions) g (yt; θt, t) indexed by “points” t ∈
Tn ⊂ Rl where |Tn| = n; and

3. the structural information is provided by a known parametric model

θt = η (t,x)

where θ ∈ Rs, and x ∈ Rp. The true parameter vector, which is
assumed to exist, is denoted by x∗.

Expectations with respect to the density g are written

E {•} (t) =

∫

Y

(•) g (yt; θt, t) dy,

where Y = range(y) is assumed independent of x. If the correct density
associated with the observed event is needed then the expectation is indicated
by E∗.

A priori information is provided by the experimental design Tn. Here the
subscript n is included for the purpose of asymptotic analysis (so that it is
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typically assumed large), and the experimental design is required to satisfy
the condition for a designed experiment:

1

n

∑
t∈Tn

f(t) →
∫

S(T )

f(t)ρ(t)dt.

Here S (T ) is an appropriately measurable set which is filled out as n → ∞
by the sets of sample points Tn for each n. This really says no more than that
there exists an hypothesised mechanism for conducting experiments for large
values of n which is captured asymptotically by the limiting density ρ (t).
Here this is used typically in conjunction with the law of large numbers in
applications such as the following:

1

n

n∑
i=1

f(yi) =
1

n

n∑
i=1

f(yi)− 1

n
E∗

{
n∑

i=1

f(yi)

}
+

1

n
E∗

{
n∑

i=1

f(yi)

}
,

→
∫

S(T )

E∗ {f(y)} (t)ρ(t)dt, n →∞. (1)

The parameter estimation problem is: “given the event outcomes yt it is
required to estimate x∗”.

Example 1 All the densities to be considered belong to the exponential fam-
ily:

g

(
y;

[
θ
φ

])
= c (y,φ) exp

[{
yT θ − b (θ)

}
/a (φ)

]

Here expectation and variance follow directly from the form of the density:

E∗{y} = µ (x∗, t) = ∇b (θ)T ,

V∗{y} = a (φ)∇2b (θ) .

Particular cases include

1. normal density (continuous distribution):

g =
1√
2πσ

exp− 1

2σ2
(y − µ)2

c(y, φ) =
1√
2πσ

exp− y2

2σ2
, a(φ) = σ2

θ = µ, b(θ) = µ2.

Cases in which θ = µ are called “signal in noise” models.
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2. Poisson density (discrete distribution):

g(i, λ) =
exp (−λ) λi

i!
=

1

i!
exp (−λ) exp (i log (λ)) (2)

so that θ = log (λ), b (θ) = exp (θ), and µ = db
dθ

= λ.

3. multinomial (discrete distribution):

g (m; ω) =
m!∏p

j=1 mj!

p∏
j=1

ω
mj

j ,

=
m!∏p

j=1 mj!
e

∑p
j=1 mj log ωj , (3)

where
∑p

j=1 mj = m, and the frequencies must satisfy the condition∑p
j=1 ωj = 1. Eliminating ωp gives

p∑
j=1

mj log ωj =

p−1∑
j=1

mj log
ωj

1−∑p−1
i=1 ωi

+ m log

(
1−

p−1∑
j=1

ωj

)
. (4)

It follows that

θj = log
ωj

1−∑p−1
i=1 ωi

, (5)

b (θ) = m log

(
1 +

p−1∑
j=1

eθj

)
. (6)

Parameter estimation by the method of maximum likelihood starts with
the likelihood

G (y;x, T ) =
∏
t∈T

g (yt; θt, t) . (7)

This can be expected to be relatively large at the true parameter values in
the sense that the actual event outcomes observed will contain at most a
small proportion corresponding to events of low probability, and this can
be expected to be true, in particular, for large data sets. This leads to the
estimation principle:

x̂ = arg max
x
G (y;x, T ) . (8)

In practice it is more convenient to use the log likelihood

Ln (y;x, T ) =
∑
t∈T

log g (yt; θt, t),

=
∑
t∈T

Lt (yt; θt, t) . (9)
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The method of estimating parameters by maximizing Ln (y;x, T ) is called
the method of maximum likelihood. The following assumptions simplify the
application of this method.

• There exists both a true model η, and a unique correct parameter
vector x∗;

• x∗ is properly in the interior of a compact region in which Ln is well
behaved; and

• any required boundedness of integrals needed for computing expecta-
tions etc is available.

The important theoretical results that follows from all this [3] include the
consistency of the maximum likelihood estimator in the sense of almost sure
convergence

x̂
as→ x∗, n →∞,

and the attractive property that the estimator asymptotically attains the
minimum variance lower bound given by the inverse of the Fisher information:

In =
1

n
E

{
∇xLn (y;x, Tn)T ∇xLn (y;x, Tn)

}
, (10)

→
∫

S(T )

E∗
{
∇xLt (y;x∗, t)T ∇xLt (y;x∗, t)

}
ρ (t) dt, n →∞,

= I. (11)

where Lt is defined in (9). These results are summarised in the form of the
limiting normal distribution for the parameter estimates:

√
n (x̂− x∗) ∼ N

(
0, I−1

)

This shows also that asymptotically the error in the computed estimate gets
small thanks to a factor 1/

√
n. The computational significance of this term

is that it indicates what is in practice a slow rate of convergence.
Key properties of the log likelihood needed for the connection to least

squares problems are:

•
E {∇xLn (y;x, T )} = 0; (12)

•
E {∇2

xLn (y;x, T )
}

= −E {∇xLT
n∇xLn

}
. (13)

Under the above assumptions they follow directly by reversing the order of
differentiation and integration.
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2 Algorithms

The types of method considered are all modifications of the basic Newton
algorithm. Here, at the current point x, a correction h is computed by
linearizing the problem. This leads to the algorithms:

Newton

Jn =
1

n
∇2

xLn (y;x, Tn) , (14)

h = −J −1
n

1

n
∇xLn (y;x, T )T , (15)

x ← x + h.

Scoring

h = I−1
n

1

n
∇xL (y;x, T )T , (16)

x ← x + h.

Sample

Sn =
1

n

∑
t∈Tn

∇xLt (yt;x, t)T ∇xLt (yt;x, t) , (17)

h = S−1
n

1

n
∇xL (y;x, T )T , (18)

x ← x + h.

Remark 2 The key feature of these modified Newton methods is the replace-
ment of the Hessian of the log likelihood objective by its expectation in the
scoring algorithm and by a sample estimate in the sample algorithm. These
replacements have the attractive structural property of being generically pos-
itive definite. An important result here is the asymptotic equivalence of the
Hessian and its modifications when evaluated at the true solution. The proof
employs the law of large numbers which is distinctly useful in this context.

Theorem 3 In the sense of almost sure convergence:

lim
n→∞

In(x∗)= lim
n→∞

Sn(x∗)=− lim
n→∞

Jn(x∗) = I.
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Proof. Only the equivalences relating Jn and In are considered as the
same basic form of argument is used in all cases. We have by (10), (13)

Jn = Jn − E {Jn}+ E {Jn} ,

= Jn + In − In.

Now Jn + In = Jn − E {Jn} as→ 0, n →∞ by the law of large numbers, and
In → I by the designed experiment condition (compare (1)).

This result has immediate computational implications for if one of the
modified Hessians is strictly positive definite for n large enough then in each
of the cases (15), (16), and (18), the step estimation problem is associated
with a bounded condition number for n large enough. In the Newton iteration
there is the added requirement that x is sufficiently close to x̂.

An important feature of the scoring and sample algorithms not shared
by the Newton algorithm in general is a strong transformation invariance
property. Let w = w(x), W = ∂w

∂x
then scoring gives:

∇xL = ∇wLW, Ix = W TIwW (19)

hx =
(
W TIwW

)−1 1

n
W T∇wLT , (20)

= W−1(Iw)−1 1

n
∇wLT . (21)

Thus hw = Whx. This result only applies to the Newton algorithm when the
transformation is linear because the transformed Hessian involves derivatives
of the transformation in general.

Implementation requires:

1. A method for computing the current correction h. Both the scoring and
sample algorithms are guaranteed to generate a direction in which the
objective is increasing provided the weak condition that the modified
Hessian is positive definite is assumed. In this sense they determine
effective search directions.

∇xLnh =
1

n
∇xLnI−1

n ∇xLT
n > 0, x 6= x̂. (22)

2. A method for estimating progress. A full step need not be satisfactory,
and a more conservative approach is needed if the implementation is to
have good global properties . This is needed especially for initial steps
when good initial parameter estimates are not available.
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To measure progress introduce a monitor function Φ(x). To be satis-
factory this needs to have both the same local stationary points and to be
increasing when the objective Ln is increasing. Thus it must satisfy

∇Lnh ≥ 0 ⇒ ∇Φh ≥ 0.

It is also very desirable that it reflect the good transformation properties of
the basic algorithms.

Remark 4 Both the scoring and sample algorithms have the important prop-
erty that the objective function Ln provides a suitable monitor. This follows
from (22). Transformation invariance follows from (20) and (21). In gen-
eral, Ln is not a suitable monitor for the Newton iteration because it cannot
be assumed that Jn is globally positive definite.

We consider two different strategies for using the monitor.

Line search Assume that an effective search direction has been computed
using (16) or (18). The monitor is used to gauge a profitable length of
step in this direction.

Trust region This strategy modifies the basic step by requiring it to lie in
an adaptively defined control region - typically one in which the lin-
earization of Ln does not depart too far from true nonlinear behaviour.
Here the monitor is used to control the adaptation.

These are presented in sections 3 and 5. Section 4 introduces the least squares
formulation and some of its properties. The final sections presents numerical
results and conclusions.

3 Properties of the line search methods

In the line search based computation two approaches are considered in de-
termining a suitable step λ in the computed search direction . Both seek to
choose λ relatively large in the set of values that permit Φ to increase.

Goldstein The new point x → x + λh is accepted provided

% ≤ Ψ(λ,x,h) ≤ 1− %, 0 < ρ < .5, (23)

where

Ψ =
Φ(x + λh)− Φ(x)

λ∇xΦ(x)h
. (24)

Can always choose λ to satisfy this test under modest conditions on Φ.
There are effective methods for computing λ to satisfy (23) [1].
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Simple Let 0 < $ < 1, and λ = $k where k ∈ {0, 1, 2, · · · } is the smallest
value such that

Φ(x + $k−1h) ≤ Φ(x) < Φ(x + $kh). (25)

There are some useful connections between the two line search strategies.
Typically, if Φ (x + h) > Φ (x) then λ = 1 is accepted corresponding to the
Simple test being satisfied with k = 0. The argument uses that this step can
yield a fast rate of convergence for the transformation invariant algorithms
under appropriate conditions so that it makes sense to use it to set the search
scale. Equation (23) appears to express a somewhat more stringent condition.
However, if successive iterates are contained in a bounded region R in which
In is positive definite and k̂ is an upper bound to the values of k computed

in the Simple steps then a simple Taylor series analysis shows that $k̂ ≈ %
satisfies the left hand inequality in (23) for each step provided the Hessian
is negative definite. Also, if λ = $k is accepted for a Simple step with k > 1
then at the previous step it follows that in (24)

Ψ
(
$k−1,x,h

)
< 0 < % (26)

for any % > 0 which satisfies the requirements in the Goldstein test as the
numerator in Ψ is ≤ 0 for every failed Simple step.

Discussion of convergence for the scoring (alternatively sample) algo-
rithm in the case that the sequence of line search steps {λi} generated
by either strategy is bounded away from 0 is now routine. The sequence
{Ln (y;xi, Tn)} is increasing and bounded above and therefore converges.
Consider the Goldstein test. This shows that the numerator in (24) tends to
zero. Now (23) can be inverted to give an upper bound for ∇xLn (y;xi, Tn)hi

that tends to 0 as i → ∞ . Because In (alternatively Sn) is positive defi-
nite in R it follows that ‖∇xLn (y;xi, Tn) ‖ → 0. Thus limit points of the
sequence of iterates {xi} are stationary points of Ln.

What happens if inf{λi} = 0? If this occurs with the Goldstein line
search then, because the right hand inequality in (23) must be satisfied at
each iteration, it follows that mean values of the Hessian must be becoming
unbounded. The corresponding result for the Simple line search makes for a
closer comparison with the trust region methods.

Theorem 5 Let the sequence of iterates {xi} produced by the scoring algo-
rithm implemented using the Simple line search be contained in a bounded
region R in which In has full rank and inf{λi} = 0. Then 1

n
∇2

xLn is un-
bounded in R.
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Proof. For inf{λi} = 0 to hold there must be an infinite sequence of points

x̃i = xi+λ̃ihi where the Simple test fails so that, by (26) and any % compatible
with the requirements of the Goldstein test,

% >
Ln (x̃i)− Ln (xi)

λ̃i∇xLn (xi)hi

, inf
i

{
λ̃i

}
= 0.

Using the mean value theorem and the property that hi is a direction of
ascent gives

% >
λ̃i∇xLn(xi)hi − λ̃2

i

2
|hT

i ∇2
xLn(x)hi|

λ̃i∇xLn(xi)hi

,

where the bar denotes that a mean value is appropriate. Thus

λ̃i|hT
i

1

n
∇2

xLn(x)hi| > 2(1− %)
1

n
∇xLn(xi)hi,

so that

‖ 1

n
∇2

xLn(x)‖ >
2(1− %)

λ̃i

1
n
∇xLn(xi)hi

‖hi‖2

=
2(1− %)

λ̃i

hT
i Inhi

‖hi‖2

>
2(1− %)

λ̃i

σmin(In), (27)

where σmin is the smallest eigenvalue. The result now follows from the defi-
nition of λ̃i.

These convergence results amount almost to a global result for if Ln is
at least twice continuously differentiable in R then it follows that necessarily
inf{λi} > 0 so that limit points must be stationary points of the objective
function. The key assumption is that R is bounded. If this is relaxed then
the set of allowed approximations need not be closed. Consider the simple
exponential model

η = x(1) + x(2) exp (−x(3)t). (28)

Let data be given by sampling the independent variable t. For large n the
parameter estimates can be deduced from the relation

t = lim
n→∞

(n− n exp

(
− 1

n
t

)
).

This shows both the closure problem and its relationship with R unbounded.
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In practical algorithms rate of convergence ranks in importance with ac-
tual convergence. There is a good story [7], and it is summarized here for
completeness. Consider the unit step scoring iteration in fixed point form:

xi+1 = Fn (xi) ,

where

Fn (x) = x + In (x)−1 1

n
∇xLn (x)T .

The condition for convergence is

π (F ′
n (x̂)) < 1,

where π (F ′
n (x̂)) is the spectral radius of the variation F ′

n = ∇xFn.
To calculate π (F ′

n (x̂)) note that ∇xLn (x̂) = 0. Thus

F ′
n (x̂) = I + In (x̂)−1 1

n
∇2

xLn (x̂) ,

= In (x̂)−1

(
In (x̂) +

1

n
∇2

xLn (x̂)

)
.

If the right hand side were evaluated at x∗ then the result would follow from
the strong law of large numbers which shows that the matrix gets small
(hence π gets small) almost surely as n → ∞ . But, by consistency of the
estimates, we have

π (F ′
n (x̂)) = π (F ′

n (x∗)) + O (‖x̂− x∗‖) , a.s.,

and the desired result follows. Asymptotically, both the scoring and sample
algorithms approach a second order rate.

π (F ′
n (x̂)) is a curvature invariant of the likelihood surface. It is a measure

of the quality of the modelling, and can be estimated by a modification of
the power method.

4 Least squares formulation of the step com-

putation

In this section the least squares formulation of the step computation for the
scoring method is presented. This is adequate for present purposes because
needed expectations can be computed explicitly in the numerical examples
considered. However, there is an exactly parallel development for the sam-
ple method which has the advantage of avoiding the computation of these
expectations when analytic results are not available.
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The basic idea behind the least squares formulation is pretty simple. It
uses (13) to transform the expected Hessian and then notes the result has
the form of a normal matrix. This then permits (16) to be written as a linear
least squares problem. The key quantities in (16) are

In =
1

n

∑
t∈Tn

∇xη
TE{∇ηL

T
t ∇ηLt}∇xη, ∇xL

T
t = ∇xη

T∇ηL
T
t . (29)

Now set Vt = E{∇ηL
T
t ∇ηLt} = V T/2V 1/2. This reveals the required structure

in (29) and leads to the least squares formulation

min
h

rT r; r = IL
n h− b, (30)

where

IL
n =




...

V
1/2
t ∇xη

...


 , b =




...

V
−T/2
t ∇ηLt

...


 . (31)

Example 6 The best known example corresponds to the normal distribution.
Here

Lt = − 1

2σ2
(yt − µ(x, t))2, In =

1

nσ2

∑
t∈Tn

∇xµ
T
t ∇xµt.

In matrix terms this gives:

IL
n =




...
∇xµt

...


 , b =




...
yt − µ(x, t)

...


 .

Here σ cancels. The result is the Gauss-Newton method linear sub problem.

However, note that the approximation E {(yt − µ(x, t))2} = σ2 has been used.
This simplification is characteristic of the scoring algorithm.

Example 7 The multinomial distribution provides an example where the
component blocks in (31) are less trivial. Here Lt is given by (4), and b (θ)
by (6).

∂Lt

∂θi

= mi − ∂b (θ)

∂θi

= mi −mωi, (32)

Vij = −E
{

∂2Lt

∂θi∂θj

}
=

∂2b (θ)

∂θi∂θj

= m {ωiδij − ωiωj} . (33)
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To solve (30) it is convenient to make an orthogonal factorization of IL
n :

IL
n =

[
Q1 Q2

] [
U
0

]
, (34)

h = U−1QT
1 b.

Can get more value from this factorization:

∇xLh =
(
bT IL

n

)
h, (35)

= bT Q

[
U
0

]
U−1QT

1 b,

= ‖QT
1 b‖2 ≥ 0. (36)

This quantity → 0 as the iteration proceeds and so provides a scale invariant
quantity for testing convergence. It is expressed as a sum of squares and so
is necessarily non negative. If the Goldstein test is being used then this is
the way to evaluate the denominator.

In implementing the orthogonal factorization there are good arguments
for scaling the columns of IL

n to have unit norm [2].

5 Properties of trust region methods

The trust region methods accept a full step but control the length of the step
by requiring the next iterate to lie in a closed, adaptively defined control
region containing the current estimate. This is achieved by imposing a length
constraint on the least squares form of the linear subproblem (30). A typical
form for the resulting problem is

min
h,‖h‖2D≤γ

rT r; r = IL
n h− b, (37)

‖h‖2
D = hT D2h, D > 0 diagonal. (38)

Necessary conditions give
[

rT 0
]

= uT
[

I −IL
n

]− λ
[

0 hT D2
]
,

where
[
uT , λ

]
are the Lagrange multipliers, so h satisfies the perturbed scor-

ing equations (
In +

λ

n
D2

)
h =

1

n
∇xLT . (39)

It is necessary to solve the constraint inequality ‖h(λ)‖2
D ≤ γ for λ in order

to use γ as the control variable. An efficient method is given in [5]. However,
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it is also possible to use the multiplier λ for this purpose directly. The key
result is that h is a decreasing function of λ. This follows by differentiating
equation (39) with respect to λ. This gives

(
In +

λ

n
D2

)
dh

dλ
= − 1

n
D2h,

dh

dλ

T

D2h = −n
dh

dλ

T (
In +

λ

n
D2

)
dh

dλ
< 0,

⇒ − d

dλ
‖h‖2

D < 0.

The classical form of the algorithm goes back to [4]. Here two parameters
α, β are kept to adjust λ, and the basic sequence of operations is:

count=1: do while F(x+h(\lambda))<F(x)

count=count+1

\lambda=\alpha*\lambda

loop

x\leftarrow x+h(\lambda)

if count=1 then \lambda=\beta*\lambda

Successful steps will be taken eventually as

h → 1

λ
D−2∇xLT

n , λ →∞

Experience suggests the choices of α, β are not critical. Typically αβ < 1 so
the iteration approaches the Newton like methods as convergence is achieved.
The scoring and sample algorithms are not exact Newton methods, and both
can be regarded as regularized methods with λ as regularization parameter
because of their generic positive definiteness. In this context it is not com-
pletely obvious that setting λ = 0 will increase the rate of convergence over
that for λ small for given n in the data analysis context.

Basic theorems mirror the line search results [6].

Convergence Let {xi} produced by the α, β procedure be contained in a
bounded region R in which {λi} < ∞ then {Ln(y;xi, Tn)} converges,
and limit points of {xi} are stationary points of Ln.

Boundedness If the sequence {λi} determined by the α, β procedure is
unbounded while {xi} ⊂ R then the norm of ∇2

xLn is also unbounded
in R.
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The necessary conditions (39) for the trust region method can be written
as the linear least squares problem:

min
h

rT r; r =

[
XL

n√
λD

]
h−

[
b
0

]
. (40)

It is convenient to make the a preliminary factorization XL
n = Q

[
U
0

]
inde-

pendent of λ. Then h(λ) can be found by solving the typically much smaller
problem:

min
h

sT s; s =

[
U√
λD

]
h−

[
c1

0

]
,

where c1 = QT
1 b. This is a considerable advantage in general as an iteration

of the α, β method may require the solution of (39) for several values of λ.
Solution of the reduced problem requires making the further factorization

[
U√
λD

]
= Q′

[
U ′

0

]
,

Q′T
[

c1

0

]
→

[
c′1
c′2

]
.

The results corresponding to (34), (36) in the line search case are

h(λ) = (U ′)−1c′1,

∇xLnh(λ) = cT
1 Uh(λ),

=





[
cT

1 0
] [

U√
λD

] (
UT U + λD2

)−1

[
UT

√
λD

] [
c1

0

]
,

,

= ‖c′1‖2.

The form of the trust region constraint interferes with the good scaling
properties of the scoring algorithm. The best that can be hoped for in practi-
cal terms is that the linear subproblem has a useful invariance property with
respect to diagonal scaling. Introduce the new variables w = Wx where W
is diagonal. Then, using subscripts to distinguish x, w variables

W−1
(
UT

x Ux + λD2
)
W−1Whx = W−1∇xLT

n .

This is equivalent to
(
UT

w Uw + λW−1D2W−1
)
hw = ∇wLT

n .
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Thus if Di transforms with ∂
∂xi

then W−1
i Di transforms in the same way with

respect to ∂
∂wi

. This requirement is satisfied by

Di =
∥∥(

IL
n

)
∗i
∥∥ .

This transformation effects a rescaling of the least squares problem. We have

h =
((

IL
n

)T
IL
n + λD2

)−1 (
IL
n

)T
b,

⇒ Dh =
(
D−1

(
IL
n

)T
IL
n D−1 + λI

)−1

D−1
(
IL
n

)T
b.

The effect of this choice is to rescale the columns of IL
n to have unit length.

It is often sufficient to set λ = 1, and D = diag
{∥∥(

IL
n

)
∗i
∥∥ , i = 1, 2, · · · , p

}
initially . However, if there are significant fluctuations in the size of the
elements of IL

n then [5] recommends updating D by

Di = max
{
Di, ‖

(
IL
n

)
∗i ‖

}
.

6 Numerical Results

The first example is based on the simple exponential model

µ(t,x) = x(1) + x(2) exp (−x(3)t) . (41)

The values chosen for the parameters are x∗(1) = 1, x∗(2) = 5, and x∗(3) =
10. The model with this choice of parameters is not difficult in the sense
that dependence on each of the parameters is reflected strongly in different
features of the graph. Thus the interest is in the effects of simulated data
errors. Initial values are generated using

x(i)0 = x∗(i) + (1 + x(i)∗)(.5−Rnd)

where Rnd indicates a call to a uniform random number generator giving
values in [0, 1].

Two types of random numbers are used to simulate the experimental
data.

Normal data The data is generated by evaluating µ(t,x) on a uniform grid
with spacing ∆ = 1/(n + 1) and then perturbing these values using
normally distributed random numbers to give values

zi = µ(i∆,x) + εi, εi ∼ N(0, 2), i = 1, 2, · · · , n.
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The choice of standard deviation (σ2 = 2) was made so that small
sample problems (n = 32) are relatively difficult. The log likelihood
omits constant terms and is taken as

L(x) = −1

2

n∑
i=1

(zi − µ(i∆,x))2 .

While the scale σ is not evident here, it resurfaces in its effects on the
generated data.

Poisson data A Poisson random number generator is used to generate ran-
dom counts zi corresponding to µ(i∆,x∗) as the mean model according
to the probability distribution (2). The log likelihood used is

L(x) =
n∑

i=1

zi log

(
µ(i∆,x)

zi

)
+ (zi − µ(i∆,x)) .

Note that if zi = 0 then the contribution from the logarithm term to
the log likelihood is zero. The rows of the least squares problem design
matrix are given by

eT
i IL

n =
1

si

,
exp (−x(3)ti)

si

,
−x(2)ti exp (−x(3)ti)

si

, i = 1, 2, · · · , n

where si =
√

µ(i∆,x). The corresponding components of the right
hand side are

bi =
zi − µ(i∆,x)

si

.

Numerical experiments comparing the performance of the line search (LS)
and trust region (TR) methods are summarised in table 1. For each n the
computations were initiated with 10 different seeds for the basic random
number generator, and the average number of iterations is reported as a guide
to algorithm performance. The parameter settings used are α = 2.5, β = .1
for the trust region method and ρ = .25 for the Simple parameter used in
the line search. Experimenting with these values (for example, the choice
α = 1.5, β = .5) made very little difference in the trust region results.
Convergence is assumed if ∇xLh < 1.0e−8. This corresponds to final values
of ‖h‖ in the range 1.e−4 to 1.e−6.

The starred entries in the table correspond to two cases of nonconver-
gence. Figure 1 shows (in red) the current estimate after 50 iterations to-
gether with the data and the starting estimate. This shows clearly that the
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Normal Poisson
n LS TR LS TR
32 10.3* 14* 11 12.3
128 9.3 11.9 7.6 7.9
512 7.3 7.3 7.1 6.9
2048 6.7 6.1 6.3 5.8

Table 1: Algorithm performance, mean of 10 runs

Figure 1: Result shows a straight line fit
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.05 32 128 512 2048

1 - 10 8 10
2 17 41 42 24
3 - 64 11 6
4 84 11 - 53
5 27 15 8 142
6 20 13 11 8
7 6 7 26 8
8 - 40 15 8
9 137 10 9 66
10 11 6 14 23

Table 2: Results for the peaks data

iteration is trying to approximate a straight line so that the set of approxi-
mations is not closed.

The second example uses as a model a sum of Gaussian peaks together
with an exponential background.

µ =

{
x(1) exp (−x(2)t) + x(3) exp (−(t− x(4))2/x(5))
+x(6) exp (−(t− x(7))2/x(8))

To generate the data the following parameter values are used:

{
x∗(1) = 5, x∗(2) = 10, x∗(3) = 18, x∗(4) = .3333,

x∗(5) = .05, x∗(6) = 15, x∗(7) = .6667, x∗(8) = .05

Starting values are perturbed by multiplying by 1 + .5 ∗ RND. Note that
this shifts the peaks in the initial approximation to the right. Results for
the line search algorithm are given in table 2. These are much more of a
mixed bag. The problems are closely related to the choice of starting values,
in particular, the values chosen for the initial peak locations. The problem
is illustrated in figure 2. This is produced using peak widths of .01 which
makes it easier to see what is going on. In this case the starting values do
not see the second peak which is badly positioned by the initial values. Both
the background and the first peak are picked up well.

The third example makes use of a trinomial distribution (multinomial
with m = 3). The data for this example is given in Table 3. It has its origin
in a consulting exercise. It is derived from a study of the effects of a cattle
virus on chicken embryos. The model suggested fits the frequencies explicitly
((42), (43), (44)). Thus it makes sense to develop the algorithm in terms of
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Figure 2: Initial conditions miss the second peak

log10(titre) dead normal deformed
-0.42 0 18 0
0.58 1 13 2
1.58 5 4 6
2.58 12 1 6
3.58 18 0 1
4.58 16 0 0

Table 3: Cattle virus data
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its L ∇Lh β1 β2 β3

0 -54.86 -4.597 -3.145 .7405
1 -47.70 .1401+2 -3.737 -2.200 .7555
2 -47.01 .1277+1 -4.373 -2.551 .8803
3 -46.99 .3829-1 -4.503 -2.618 .9056
4 -46.99 .1234-4 -4.505 -2.619 .9061
5 -46.99 .3085-8 -4.505 -2.619 .9061

Table 4: Results of computations for the trinomial data

these.

ω1 =
1

1 + exp (−β1 − β3 log (t))
, (42)

1− ω2 =
1

1 + exp (−β2 − β3 log (t))
, (43)

ω3 = 1− ω1 − ω2. (44)

Numerical results given in table 4 show an impressive rate of convergence for
a relatively small data set. This suggests the model chosen is good.

7 Conclusion

The use of least squares methods in implementing scoring and sample algo-
rithms has been exemplified. Numerical results have been presented illustrat-
ing algorithmic aspects such as the effects of initial values, the non closure of
sets of approximating functions, and the importance of asymptotic conver-
gence rates. Possibilities include both line search and trust region methods.
Work on the Levenberg algorithm in the 1970’s was responsible for at least
some of the encouragement for the shift from line search to trust region meth-
ods in optimization problems. However, evidence has been presented here
that conclusions derived from the nonlinear least squares problem area had
a somewhat dubious validity.

1. Use of the expected Hessian is already a “regularising” step. Improved
conditioning derived from the trust region parameter could be illusory
if the aim is small values for rapid convergence. If significant values of
λ are required then in the data analytic context the modelling could
well be suspect.

2. The early papers relied on a small residual argument to explain good
convergence rates. Again, in our context, this is not satisfactory. Here
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the mechanism has to do with cancellation in sums of independent
random variables. It is not completely obvious what the effect of small,
non zero trust region parameters are in any particular case.

3. The trust region algorithms do not scale as well as the linesearch algo-
rithms.

4. Global convergence results of similar power appear available for both
approaches.
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