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Estimation

Given the ODE:
dx
dt

= f (t , x,β) ,

where x ∈ Rm, β ∈ Rp, f ∈ R × Rm × Rp → Rm smooth
enough, together with data

y i = Hx(ti ,β
∗) + εi , i = 1, 2, · · · , n,

where H : Rm → Rk , εi ∼ N
(
0, σ2I

)
, estimate β.

Equivalent smoothing problem: x ←
[

x(t)
β

]
, f ←

[
f(t , x)

0

]
.

Assume problem has a well determined solution for n, the
number of observations, large enough.
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The problem setting

Mesh selection for integrating the ODE system is conditioned
by two important considerations:

I The asymptotic analysis of the effects of noisy data on the
parameter estimates shows that this gets small no faster
than O

(
n−1/2

)
.

I It is not difficult to obtain ODE discretizations that give
errors at most O

(
n−2

)
.

This suggests:
I That the trapezoidal rule provides an adequate integration

method.
I That it should be possible even to integrate the ODE on a

mesh coarser than that provided by the observation points
{ti} (here we wont!).
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The objective

Estimation principles (least squares, maximum likelihood)
consider the objective:

F (xc ,β) =
n∑

i=1

‖y i − Hx (ti ,β) ‖2.

Methods differ in manner of generating comparison function
values x(ti ,β), i = 1, 2, · · · , n.
Embedding: x(ti ,β, b) satisfies BVP

dx
dt

= f(t , x,β), B0x(0) + B1x(1) = b.

Introduces extra parameters b. Needs method for choosing
B0, B1. Must solve boundary value problem at each
step. go GNM
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The objective
Estimation principles (least squares, maximum likelihood)
consider the objective:

F (xc ,β) =
n∑

i=1

‖y i − Hx (ti ,β) ‖2.

Methods differ in manner of generating comparison function
values x(ti ,β), i = 1, 2, · · · , n.

Simultaneous: ODE discretization information added as
constraints

c i(xc) = x i+1 − x i −
h
2

(f i+1 + f i) , i = 1, 2, · · · , n − 1,

with x i = x(ti ,β). Methods typically correct solution and
parameter estimates simultaneously. go SQP

M.R. Osborne Stability problems in ODE estimation



The estimation problem ODE stability The embedding method The simultaneous method In conclusion

Initial value stability (IVS)
Here the problem considered is:

dx
dt

= f (t , x) , x(0) = b.

The stability requirement is that solutions with close initial
conditions x1(0), x2(0) remain close in an appropriate sense.

I ‖x1(t)− x2(t)‖ → 0, t →∞. strong IVS.

I ‖x1(t)− x2(t)‖ remains bounded as t →∞. weak IVS.
I Computation introduces idea of stiff discretizations which

preserve the stability characteristics of the original
equation. Computations not limited by IVS. Important for
multiple shooting - permits reasonably accurate
fundamental matrices to be computed over short enough
time intervals in relatively unstable problems by taking h
small enough.
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Constant coefficient case
Here

f (t , x) = Ax − q

If A is non-defective then weak IVS requires the eigenvalues
λi(A) to satisfy Reλi ≤ 0 while this inequality must be strict for
strong IVS.
A one-step discretization of the ODE (ignoring q contribution)
can be written

x i+1 = Th (A) x i .

where Th(A) is the amplification matrix. Here a stiff
discretization requires the stability inequalities to map into the
condition |λi (Th) | ≤ 1.
For the trapezoidal rule

|λi (Th)| =
∣∣∣∣1 + hλi(A)/2
1− hλi(A)/2

∣∣∣∣ ,

≤ 1 if Re {λi (A)} ≤ 0.
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Boundary value stability (BVS)
Here the problem is

dx
dt

= f (t , x) , B (x) = B0x(0) + B1x(1) = b.

Behaviour of perturbations about a solution trajectory x∗(t) is
governed to first order by the linearized equation

L (z) =
dz
dt
−∇x f (t , x∗(t)) z = 0.

Here (computational) stability is closely related to existence of a
modest bound for the Green’s matrix:

G (t , s) = Z (t) [B0Z (0) + B1Z (1)]−1 B0Z (0)Z−1(s), t > s,

= −Z (t) [B0Z (0) + B1Z (1)]−1 B1Z (1)Z−1(s), t < s.

Where Z (t) is a fundamental matrix for the linearised equation.
Let α be a bound for |G(t , s)|.
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Dichotomy

Weak form: ∃ projection P depending on choice of Z such that,
given

S1 ← {ZPw, w ∈ Rm} , S2 ← {Z (I − P) w, w ∈ Rm} ,

φ ∈ S1 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≥ s,

φ ∈ S2 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≤ s.

Computational context requires modest κ for t , s ∈ [0, 1].
If Z satisfies B0Z (0)+ B1Z (1) = I then P = B0Z (0) is a suitable
projection in sense that for separated boundary conditions can
take κ = α. There is a basic equivalence between stability and
dichotomy. Key paper is de Hoog and Mattheij.
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BVS restricts possible discretizations

I Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

I Discretization needs similar property so given BC’s
exercise same control.

I This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.
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BVS restricts possible discretizations

I Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

I Discretization needs similar property so given BC’s
exercise same control.

I This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.

This property called di-stability by England and Mattheij who
show the TR is di-stable in constant coefficient case.

λ(A) > 0⇒
∣∣∣∣1 + hλ(A)/2
1− hλ(A)/2

∣∣∣∣ > 1.
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Bob Mattheij’s example
Consider the differential system defined by

A(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

q(t) =

 et (−1 + 19 (cos 2t − sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))

 .

Here the right hand side is chosen so that z(t) = ete satisfies
the differential equation. The fundamental matrix displays the
fast and slow solutions:

Z (t , 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .

go OBC
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Bob Mattheij’s example
For boundary data with two terminal conditions and one initial
condition :

B0 =

 0 0 0
0 0 0
1 0 0

 , B1 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the following
results.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Table: Boundary point values - stable computation

These computations are apparently satisfactory.
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Bob Mattheij’s example
For two initial and one terminal condition:

B0 =

 0 0 1
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1

 .

The results are given in following Table.

∆t = .1 ∆t = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Table: Boundary point values - unstable computation

The effects of instability are seen clearly in the first and third
solution components.
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Nonlinear stability - preprint Hooker et al
FitzHugh-Nagumo equations α = .2, β = .2.

dV
dt

= γ

(
V − V 3

3
+ R

)
,

dR
dt

= −1
γ

(V − α− βR) .
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System factorization

go OPT1 First problem is to set suitable boundary conditions.
Expect good boundary conditions should lead to a relatively
well conditioned linear system. Assume the ODE discretization
is

c i (x i , x i+1) = c ii(x i) + c i(i+1)(x i+1).

Consider the factorization of the difference equation (gradient)
matrix with first column permuted to end:

C12 C11

C21 C22

C(n−1)(n−1) C(n−1)n 0

→ Q
[

U V
0 · · · H G

]

This step is independent of the boundary conditions. go SVE
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Optimal boundary conditions

The boundary conditions can be inserted at this point. This

gives the system with matrix
[

H G
B1 B0

]
to solve for x1, xn.

Orthogonal factorization again provides a useful strategy.

[
H G

]
=

[
L 0

] [
ST

1
ST

2

]
It follows that the system determining x1, xn is best conditioned
by choosing [

B1 B0
]

= ST
2 .

The conditions depend only on the ODE.
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BC’s for Mattheij example

go MatEx The “optimal” boundary matrices corresponding to
h = .1 are given in the Table. These confirm the importance of
weighting the boundary data to reflect the stability requirements
of a mix of fast and slow solutions. The solution does not differ
from that obtained when the split into fast and slow was
correctly anticipated.

B1 B2

.99955 0.0000 .02126 -.01819 0.0000 -.01102
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
.02126 0.0000 .00045 .85517 0.0000 .51791

Table: Optimal boundary matrices when h = .1
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i H∇(β,b)x i .

The gradient terms wrt β are found by solving the BVP’s

B0
∂x
∂β

(0) + B1
∂x
∂β

(1) = 0,

d
dt

∂x
∂β

= ∇x f
∂x
∂β

+∇βf,
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Gauss-Newton details

Let ∇(β,b)x =
[

∂x
∂β , ∂x

∂b

]
, r i = y i − Hx (ti ,β, b) then the gradient

of F is

∇(β,b)F = −2
n∑

i=1

rT
i H∇(β,b)x i .

while the gradient terms wrt b satisfy the BVP’s

B0
∂x
∂b

(0) + B1
∂x
∂b

(1) = I,

d
dt

∂x
∂b

= ∇x f
∂x
∂b

.
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Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with
parameters β∗1 = γ, and β∗2 = 2 corresponding to the solution
x (t ,β∗) = ete:

A(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

q(t) =

 et (−1 + γ (cos 2t − sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))

 .

In the numerical experiments optimal boundary conditions are
set at the first iteration. The aim is to recover estimates of
β∗, b∗ from simulated data eti He + εi , εi ∼ N(0, .01I) using
Gauss-Newton, stopping when ∇Fh < 10−8.
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Embedding: Again the Mattheij example

H =
[

1/3 1/3 1/3
]

n = 51, γ = 10, σ = .1
14 iterations

n = 51, γ = 20, σ = .1
11 iterations

n = 251, γ = 10, σ = .1
9 iterations

n = 251, γ = 20, σ = .1
8 iterations

H =

[
.5 0 .5
0 1 0

]

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations

Here ‖
[

B1 B2
]

1

[
B1 B2

]T
k − I‖F < 10−3, k > 1.
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Lagrangian
go OPT2 Associated with the equality constrained problem is the

Lagrangian

L = F (xc) +
n−1∑
i=1

λT
i c i .

The necessary conditions give:

∇x iL = 0, i = 1, 2, · · · , n, c (xc) = 0.

The Newton equations determining corrections dx c , dλc are:

∇2
xxLdx c +∇2

xλLdλc = −∇xLT ,

∇xc (xc) dx c = Cdx c = −c (xc) ,

Note sparsity! ∇2
xxL is block diagonal, ∇2

xλL = CT is block
bidiagonal.
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SQP formulation

The Newton equations also correspond to necessary conditions
for the QP:

min
dx
∇xFdx c +

1
2

dxT
c Mdx c ; c + Cdx c = 0,

in case M = ∇2
xxL, λu = λc + dλc . A standard approach is to

use the constraint equations to eliminate variables. go GNM

dx i = v i + Vidx1 + Widxn, i = 2, 3, · · · , n − 1.

The reduced constraint equation is

Gdx1 + Hdxn = w.

Is this variable elimination restricted by BVS considerations?
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Null space method

Standard SQP approach. Let CT =
[

Q1 Q2
] [

U
0

]
then

Newton equations can be written QT∇2
xxLQ

[
U
0

]
[

UT 0
]

0

[
QT dx c

λu

]
= −

[
QT∇xF T

c

]
.

These can be solved in sequence

UT QT
1 dx c = −c,

QT
2∇2

xxLQ2QT
2 dx c = −QT

2∇2
xxLQ1QT

1 dx c −QT
2∇xF T ,

Uλu = −QT
1∇2

xxLdx c −QT
1∇xF T .
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Stability test using Mattheij problem

QT
1 dx c estimates QT

1 vec
{

eti
}

when xc = 0.
test results n = 11

.87665 -.97130 -1.0001

.74089 -1.0987 -1.3432

.47327 -1.2149 -1.6230

.11498 -1.3427 -1.8611
-.32987 -1.4839 -2.0366
-.85368 -1.6400 -2.1250
-1.4428 -1.8125 -2.1018
-2.0773 -2.0031 -1.9444
-2.7309 -2.2137 -1.6330
-3.3719 -2.4466 -1.1526

particular integral QT
1 x

.87660 -.97134 -1.0001

.74083 -1.0988 -1.3432

.47321 -1.2150 -1.6231

.11491 -1.3428 -1.8612
-.32994 -1.4840 -2.0367
-.85376 -1.6401 -2.1250
-1.4429 -1.8125 -2.1019
-2.0774 -2.0032 -1.9444
-2.7310 -2.2138 -1.6331
-3.3720 -2.4467 -1.1527
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Conclusion

I Embedding makes use of carefully constructed, explicit
boundary conditions. Thus BVS restrictions must apply.
The system is special

I The variable eliminations form of the simultaneous method
partitions variables into sets {x1, xn}, and {x2, · · · , xn−1}
which are found sequentially. It relies implicitly on a form of
BVS although the system is special.

I The null space variant partitions the variables into the sets{
QT

1 xc
}

,
{

QT
2 xc

}
. It appears at least as stable as the

variable elimination procedure. Sparsity preserving
implementation is straightforward.
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