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Estimation

Given the ODE: q
X
E - f (tv Xa /6) 3

where x e RM, 3 € RP,f e R x R™ x RP — R™ smooth
enough, together with data

yi:HX(ti7/8*)+€i7 i:1727"'7n7
where H : R™ — RK, &; ~ N (0,52l), estimate 3.
Equivalent smoothing problem: x «— Xg) T f(tc,)x) }

Assume problem has a well determined solution for n, the
number of observations, large enough.
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The problem setting

Mesh selection for integrating the ODE system is conditioned
by two important considerations:

» The asymptotic analysis of the effects of noisy data on the
parameter estimates shows that this gets small no faster
than O (n~1/2),

» It is not difficult to obtain ODE discretizations that give
errors at most O (n—2).
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The problem setting

Mesh selection for integrating the ODE system is conditioned
by two important considerations:

» The asymptotic analysis of the effects of noisy data on the
parameter estimates shows that this gets small no faster
than O (n~1/2),

» It is not difficult to obtain ODE discretizations that give
errors at most O (n—2).

This suggests:

» That the trapezoidal rule provides an adequate integration
method.

» That it should be possible even to integrate the ODE on a
mesh coarser than that provided by the observation points
{ti} (here we wont!).
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The estimation problem

The objective

Estimation principles (least squares, maximum likelihood)
consider the objective:

(Xc, B Z lyi — Hx (t;, 8) ||>.

Methods differ in manner of generating comparison function
values x(t,83), i=1,2,---,n
Embedding: x(t;, 3, b) satisfies BVP

dx

P =f(t,x,8), Boex(0)+Bix(1)=Db.

Introduces extra parameters b. Needs method for choosing
By, B1. Must solve boundary value problem at each
step.
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The estimation problem

The objective

Estimation principles (least squares, maximum likelihood)
consider the objective:

F (Xc,8) Z lyi — Hx (t;, 8) ||>.

Methods differ in manner of generating comparison function
values x(t,3), i =1,2,---,n

Simultaneous: ODE discretization information added as
constraints

h .
Ci(XC):Xi+l_Xi_E(fi+1+fi)7 |:1727"'7n_17

with x; = Xx(tj, 3). Methods typically correct solution and
parameter estimates simultaneously.
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Initial value stability (IVS)

Here the problem considered is:

dx

dt
The stability requirement is that solutions with close initial
conditions x1(0), X2(0) remain close in an appropriate sense.

> |X1(t) — X2(t)|| — 0, t — oco. strong IVS.
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Initial value stability (IVS)

Here the problem considered is:

dx
dt
The stability requirement is that solutions with close initial
conditions x1(0), X2(0) remain close in an appropriate sense.
> |[X1(t) — X2(t)]] — 0, t — oo. strong IVS.
> ||x1(t) — x2(t)|| remains bounded as t — oco. weak IVS.
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Initial value stability (IVS)

Here the problem considered is:

dx
ot =f(t,x), x(0)=hb.

The stability requirement is that solutions with close initial
conditions x1(0), X2(0) remain close in an appropriate sense.

> |X1(t) — X2(t)|| — 0, t — oco. strong IVS.
> ||x1(t) — x2(t)|| remains bounded as t — oco. weak IVS.

» Computation introduces idea of stiff discretizations which
preserve the stability characteristics of the original
equation. Computations not limited by IVS. Important for
multiple shooting - permits reasonably accurate
fundamental matrices to be computed over short enough
time intervals in relatively unstable problems by taking h
small enough.
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ODE stability

Constant coefficient case
Here
f(t,x) =Ax —¢
If A is non-defective then weak IVS requires the eigenvalues
Ai(A) to satisfy Re\; < 0 while this inequality must be strict for
strong IVS.
A one-step discretization of the ODE (ignoring g contribution)
can be written
Xit1 = Th (A) Xj.
where Ty(A) is the amplification matrix. Here a stiff
discretization requires the stability inequalities to map into the
condition |A; (Ty) | < 1.
For the trapezoidal rule
1+ hX(A)/2
1—hx\i(A)/2
<1lifRe{)\ (A)} <O.
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Boundary value stability (BVS)
Here the problem is
dx
dt
Behaviour of perturbations about a solution trajectory x*(t) is
governed to first order by the linearized equation

L(z) = % LV (LX) Z = 0.

=f(t,x), B(x)=Bx(0)+Bix(1) =b.

Here (computational) stability is closely related to existence of a
modest bound for the Green’s matrix:

G (t,s) = Z(t)[BoZ(0) + B1Z(1)] 1 BoZ (0)Z1(s), t>s,
= —Z(t)[BoZ(0) +B1Z(1)] 1 B1Z(1)Z7(s), t<s.

Where Z(t) is a fundamental matrix for the linearised equation.
Let « be a bound for |G(t,s)|.
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Dichotomy

Weak form: 3 projection P depending on choice of Z such that,
given

Sy — {ZPw, weR™}, S, —{Z(I-P)w, we R™},

|(t)]
peEST = —F=<k, t>s,
|¢(s)]
|(t)]
PpES = =<k, t<s.
&(s)]
Computational context requires modest « for t, s € [0, 1].
If Z satisfies BoZ (0) +B1Z(1) = | then P = ByZ(0) is a suitable
projection in sense that for separated boundary conditions can
take « = a. There is a basic equivalence between stability and

dichotomy. Key paper is de Hoog and Mattheij.
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BVS restricts possible discretizations

» Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.
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ODE stability

BVS restricts possible discretizations

» Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

» Discretization needs similar property so given BC'’s
exercise same control.
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ODE stability

BVS restricts possible discretizations

» Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

» Discretization needs similar property so given BC'’s
exercise same control.

» This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.
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ODE stability

BVS restricts possible discretizations

» Dichotomy projection separates increasing and decreasing
solutions. Compatible BC’s pin down decreasing solutions
at 0, growing solutions at 1.

» Discretization needs similar property so given BC'’s
exercise same control.

» This requires solutions of ODE which are increasing
(decreasing) in magnitude to be mapped into solutions of
discretization which are increasing (decreasing) in
magnitude.

This property called di-stability by England and Mattheij who
show the TR is di-stable in constant coefficient case.

1+hA(A)/2

)\(A)>O:>‘1_h)\(A)/2

1
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Bob Mattheij's example

Consider the differential system defined by

[ 1-19cos2t 0 1+ 19sin2t
A(t) = 0 19 0 ,
| —1+19sin2t 0 1+ 19cos2t

[ e (—1+19(cos2t —sin2t))

q(t) = —18e!

| e'(1-19(cos2t + sin2t))

Here the right hand side is chosen so that z(t) = e'e satisfies
the differential equation. The fundamental matrix displays the
fast and slow solutions:

e 18cost 0 eltsint
Z(t,0) = 0 el 0
—e Btsint 0 e2tcost
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Bob Mattheij's example

For boundary data with two terminal conditions and one initial

condition ;
0 0O 1 00 e
Bb=|1000|,Bi=]1]010]|,b=|¢e],
1 00 0 0O 1

the trapezoidal rule discretization scheme gives the following
results.

At=.1 At = .01
x(0) | 1.0000 | .9999 | .9999 | 1.0000 | 1.0000 | 1.0000
x(1) | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183 | 2.7183

Table: Boundary point values - stable computation

These computations are apparently satisfactory.
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Bob Mattheij's example

For two initial and one terminal condition:

001 000 1
Bo=|00O0]|,Bi=|010/|,b=]|¢e].
10 0 000 1

The results are given in following Table.

At =.1 At = .01
x(0) | 1.0000 | .9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
x(1) | -7.9+11 | 2.7183 | -4.7+11 | 2.03+2 | 2.7183 | 1.31+2

Table: Boundary point values - unstable computation

The effects of instability are seen clearly in the first and third
solution components.
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Nonlinear stability - preprint Hooker et al
FitzHugh-Nagumo equations o = .2, § = .2.
av V3
— =vy(V-=+R
dt ! < 3" > ’

dR 1
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Nonlinear stability - preprint Hooker et al
FitzHugh-Nagumo equations o = .2, § = .2.

3
dV—Py(V—V—l-R),

dt 3
dR 1

500

icoo

S5E

S0

0s

0s

.:l
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The embedding method

System factorization

First problem is to set suitable boundary conditions.
Expect good boundary conditions should lead to a relatively
well conditioned linear system. Assume the ODE discretization
is
Ci (Xi, Xit1) = Cii(Xi) + Ci(i1)(Xi+1)-
Consider the factorization of the difference equation (gradient)
matrix with first column permuted to end:

ClZ Cll
Co Cyp

Cin-1)(n-1) C(n_l)n\ 0

This step is independent of the boundary conditions.
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Optimal boundary conditions

The boundary conditions can be inserted at this point. This

gives the system with matrix H
B1 Bo

Orthogonal factorization again provides a useful strategy.

] to solve for X1, Xn.

[H G]=]L o][gg]

It follows that the system determining X1, Xn is best conditioned
by choosing
[B1 By | =85;.

The conditions depend only on the ODE.
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The embedding method

BC'’s for Mattheij example

The “optimal” boundary matrices corresponding to
h = .1 are given in the Table. These confirm the importance of
weighting the boundary data to reflect the stability requirements
of a mix of fast and slow solutions. The solution does not differ
from that obtained when the split into fast and slow was
correctly anticipated.

B, B,
199955 | 0.0000 | .02126 | -.01819 | 0.0000 | -.01102
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000
.02126 | 0.0000 | .00045 | .85517 | 0.0000 | .51791

Table: Optimal boundary matrices when h = .1
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Gauss-Newton details

Let V(50X = {g—g, g—g} . Ii =Yi — Hx (t;, 3, b) then the gradient
of F is .
V(ﬂ,b)F = -2 Z riTHV(B’b)xi
i=1
The gradient terms wrt 3 are found by solving the BVP’s

OX OX

B =
Bogy (0)+Big5 (1) =0,
dé?x 8x
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Gauss-Newton details

Let V(5 )X = {% 3—3} . Ii =yi — Hx (i, 3. b) then the gradient
of F is .
V(/&b)F = -2 Z I’;I—HV(@b)Xi
i=1
while the gradient terms wrt b satisfy the BVP’s

a X

ab (0)+Blab (1) =1,
d Ox OX

dt ob foab
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The embedding method

Embedding: Again the Mattheij example

Consider the modification of the Mattheij problem with
parameters 3; = v, and 35 = 2 corresponding to the solution
X (t, 3*) = e'e:

[ 1 —pBicospt O 14 Bysinpfot
A(t) = 0 3 0 ,
L -1+ 61sinGt 0 14 (31cosfot

[ e (—1+ v (cos2t —sin2t))

q(t) = —(y - 1)e'
| e'(1—v(cos2t+sin2t))

In the numerical experiments optimal boundary conditions are
set at the first iteration. The aim is to recover estimates of
B*,b* from simulated data eHe + ¢, ; ~ N(0, .01l1) using
Gauss-Newton, stopping when VFh < 1078,
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Embedding: Again the Mattheij example

5 0 5
H=[1/3 1/3 1/3] H:[Olo]
n=51~vy=10,0=.1 n=51~v=10,0=.1
14 iterations 5 iterations
n=51,~v=20,0=.1 n=51,7=20,0=.1
11 iterations 9 iterations
n=251,y=10,0=.1 n=2351,vy=10,0=.1
9 iterations 4 iterations
n=251,~vy=20,0=.1 n=251,y=20,0=.1
8 iterations 5 iterations

Here ||[ By B, |, [ B1 By |; —Illr <1073k > 1.
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Lagrangian

Associated with the equality constrained problem is the
Lagrangian

The necessary conditions give:
Vi L=0,i=1,2,---,n, c(Xc)=0.
The Newton equations determining corrections dx.,d\. are:

V2 LdXc + V2, LdAe = — VLT,

VxC (X¢) dxe = Cdxe = —C (Xc),
Note sparsity! V2, £ is block diagonal, V2, £ = CT is block
bidiagonal.
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SQP formulation

The Newton equations also correspond to necessary conditions
for the QP:

. 1
min ViFdxc + deIdeC; c + Cdx. =0,
X

in case M = Vixﬁ, AY = X¢ +dX¢. A standard approach is to
use the constraint equations to eliminate variables.

dxij = vj + Vidx1 + Wijdxn, i=2,3,---,n—1.
The reduced constraint equation is
Gdx1 + Hdx, = w.

Is this variable elimination restricted by BVS considerations?
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The simultaneous method

Null space method

Standard SQP approach. LetCT = [ Q1 Q; | [ g } then

Newton equations can be written

Q'vieQ |y ] Qe ] (%]
[UuT 0] o A ¢

These can be solved in sequence

uTQ/dx. = —c,
Q Vax £Q2Q] dxc = —QJ V4, LQ1Q{ dxc — Q] VxF T,
UXY = —Q] V&, Ldx. — Q] VxF .
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The simultaneous method

Stability test using Mattheij problem

Q] dx estimates Q] vec {e' } when x¢ = 0.

test results n = 11

.87665 -.97130 -1.0001
.74089 -1.0987 -1.3432
47327 -1.2149 -1.6230
11498 -1.3427 -1.8611
-.32987 -1.4839 -2.0366
-.85368 -1.6400 -2.1250
-1.4428 -1.8125 -2.1018
-2.0773 -2.0031 -1.9444
-2.7309 -2.2137 -1.6330
-3.3719 -2.4466 -1.1526

particular integral Q] x

.87660 -.97134 -1.0001
.74083 -1.0988 -1.3432
47321 -1.2150 -1.6231
11491 -1.3428 -1.8612
-.32994 -1.4840 -2.0367
-.85376 -1.6401 -2.1250
-1.4429 -1.8125 -2.1019
-2.0774 -2.0032 -1.9444
-2.7310 -2.2138 -1.6331
-3.3720 -2.4467 -1.1527
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In conclusion

Conclusion

» Embedding makes use of carefully constructed, explicit
boundary conditions. Thus BVS restrictions must apply.
The system is special
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In conclusion

Conclusion

» Embedding makes use of carefully constructed, explicit
boundary conditions. Thus BVS restrictions must apply.
The system is special

» The variable eliminations form of the simultaneous method
partitions variables into sets {x1, Xn}, and {Xo, -+ ,Xn_1}
which are found sequentially. It relies implicitly on a form of
BVS although the system is special.
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In conclusion

Conclusion

» Embedding makes use of carefully constructed, explicit
boundary conditions. Thus BVS restrictions must apply.
The system is special

» The variable eliminations form of the simultaneous method
partitions variables into sets {x1, Xn}, and {Xo, -+ ,Xn_1}
which are found sequentially. It relies implicitly on a form of
BVS although the system is special.

» The null space variant partitions the variables into the sets
{Qixc}, {Q] xc}. It appears at least as stable as the
variable elimination procedure. Sparsity preserving
implementation is straightforward.
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