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Abstract. A regression problem is separable if the model can be represented as a linear combi-
nation of functions which have a nonlinear parametric dependence. The Gauss-Newton algorithm is
a method for minimizing the residual sum of squares in such problems. It is known to be effective
both when residuals are small, and when measurement errors are additive and the data set is large.
The large data set result that the iteration asymptotes to a second order rate as the data set size
becomes unbounded is sketched here. Variable projection is a technique introduced by Golub and
Pereyra for reducing the separable estimation problem to one of minimizing a sum of squares in the
nonlinear parameters only. The application of Gauss-Newton to minimize this sum of squares (the
RGN algorithm) is known to be effective in small residual problems. The main result presented is that
the RGN algorithm shares the good convergence rate behaviour of the Gauss-Newton algorithm on
large data sets even though the errors are no longer additive. A modification of the RGN algorithm
due to Kaufman, which aims to reduce its computational cost, is shown to produce iterates which
are almost identical to those of the Gauss-Newton algorithm on the original problem. Aspects of the
question of which algorithm is preferable are discussed briefly, and an example is used to illustrate
the importance of the large data set behaviour.

1. Introduction. The Gauss-Newton algorithm is a modification of Newton’s
method for minimization developed for the particular case when the objective func-
tion can be written as a sum of squares. It has a cost advantage in that it avoids
the calculation of second derivative terms in estimating the Hessian. Other advan-
tages possessed by the modified algorithm are that its Hessian estimate is generically
positive definite, and that it actually has better transformation invariance properties
than those possessed by the original algorithm. It has the disadvantage that it has a
generic first order rate of convergence. This can make the method unsuitable except
in two important cases:

1. The case of small residuals. This occurs when the individual terms in the sum
of squares can be made small simultaneously so that the associated nonlinear
system is consistent or nearly so.

2. The case of large data sets. An important application of the Gauss-Newton
algorithm is to parameter estimation problems in data analysis. Nonlinear
least squares problems occur in maximizing likelihoods based on the normal
distribution. Here Gauss-Newton is a special case of the Fisher scoring al-
gorithm [6]. In appropriate circumstances this asymptotes to a second order
convergence rate as the number of independent observations in the data set
becomes unbounded.

The large data set problem is emphasised here. This seeks to estimate the true
parameter vector β ∈ Rp by solving the optimization problem

min
β

Fn (β, εn) (1.1)
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where

Fn (β, εn) =
1
2n
‖fn (β, εn)‖2 , (1.2)

fn ∈ Rn is a vector of smooth enough functions fn
i (β, εn) , i = 1, 2, · · · , n , ∇βfn

has full column rank p in the region of parameter space of interest, and εn ∈ Rn ∼
N

(
0, σ2In

)
plays the role of observational error. The norm is assumed to be the

Euclidean vector norm unless otherwise specified. It is assumed that the measurement
process that generated the data set can be conceptualised for arbitrarily large n, and
that the estimation problem is consistent in the sense that there exists a sequence{

β̂n

}
of local minimisers of (1.1) such that β̂n

a.s.→ β, n → ∞. Here the mode of
convergence is almost sure convergence. A good reference on asymptotic methods in
statistics is [12].

Remark 1.1. A key point is that the errors are assumed to enter the model
additively. That is the fn

i , i = 1, 2, · · · , n have the functional form

fn
i (β, ε) = yn

i − µn
i (β) (1.3)

where, corresponding to the case of observations made on a signal in the presence of
noise,

yn
i = µn

i

(
β

)
+ εn

i . (1.4)

Thus differentiation of fn
i removes the random component. Also Fn is directly pro-

portional to the problem log likelihood and the property of consistency becomes a con-
sequence of the other assumptions.

In a number of special cases there is additional structure in fn so it becomes a
legitimate question to ask if this can be used to advantage. A nonlinear regression
model is called separable if the problem residuals bn can be represented in the form

bn
i (α,β, εn) = yn

i −
m∑

j=1

φij (β)αj , i = 1, 2, · · · , n. (1.5)

Here the model has the form of a linear combination expressed by α ∈ Rm of nonlinear
functions φij (β) , β ∈ Rp, . The modified notation

fn
i (β, ε) → bn

i (α,β, εn) ,

µn
i (β) →

m∑

j=1

φij (β)αj ,

is used here to make this structure explicit. It is assumed that the problem functions
are φij (β) = φj (tni , β) , j = 1, 2, · · · ,m, where the tni , i = 1, 2, · · · , n are sample
points where observations on the underlying signal are made. There is no restriction
in assuming tni ∈ [0, 1]. One source of examples is provided by general solutions of
the m’th order linear ordinary differential equation with fundamental solutions given
by the φi (t,β). In [1] a systematic procedure (variable projection) is introduced for
reducing the estimation problem to a nonlinear least squares problem in the nonlinear
parameters β only. A recent survey of developments and applications of variable
projection is [2]. To introduce the technique let Φn : Rm → Rn, n > m be the matrix
with components φij . The rank assumption in the problem formulation now requires
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[
Φn ∇βΦnα

]
to have full column rank m + p. Also let Pn (β) : Rn → Rn be the

orthogonal projection matrix defined by

Pn (β)Φn (β) = 0. (1.6)

Here Pn (β) has the explicit representation

Pn (β) = In − Φn

(
ΦT

nΦn

)−1
ΦT

n . (1.7)

Then

Fn =
1
2n

{
‖Pnyn‖2 + ‖(In − Pn)bn‖2

}
. (1.8)

The first term on the right of this equation is independent of α and the second can
be reduced to zero by setting

α = α (β) =
(
ΦT

nΦn

)−1
ΦT

nyn. (1.9)

Thus an equivalent formulation of (1.1) in the separable problem is

min
β

1
2n
‖Pn (β)yn‖2 (1.10)

which is a sum of squares in the nonlinear parameters β only so that , at least formally,
the Gauss-Newton algorithm can be applied. However, now the random errors do not
enter additively but are coupled with the nonlinear parameters in setting up the
objective function.

The plan of the paper is as follows. The large data set rate of convergence analysis
appropriate to the Gauss-Newton method in the case of additive errors is summarized
in the next section. The third section shows why this analysis cannot immediately
be extended to the RGN algorithm. Here the rather harder work needed to arrive at
similar conclusions is summarised. Most implementations of the variable projection
method use a modification due to Kaufman [4] which serves to reduce the amount of
computation needed in the RGN algorithm. This modified algorithm also shows the
favourable large data set rates despite being developed using an explicit small residual
argument. However, it is actually closer to the additive Gauss-Newton method than is
the full RGN algorithm. A brief discussion of which form of algorithm is appropriate
in particular circumstances is given in the final section. This is complemented by an
example of a classic data fitting problem which is used to illustrate the importance of
the large sample convergence rate.

2. Large data set convergence rate analysis. The basic iterative step in
Newton’s method for minimizing Fn defined in (1.1) is

βi+1 = βi − Jn (βi)
−1∇βFn (βi)

T
, (2.1)

Jn (βi) = ∇2
βFn (βi) . (2.2)

In the case of additive errors the scoring/Gauss-Newton method replaces the Hessian
with an approximation which is constructed as follows. The true Hessian is

Jn (β) =
1
n

{
{∇βfn}T {∇βfn}+

n∑

i=1

fn
i ∇2

βfn
i

}
. (2.3)
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The stochastic component enters only through (1.4) so taking expectations gives

E {Jn} (β) = In (β)− 1
n

n∑

i=1

(
µi (β)− µi

(
β

))∇2
βfn

i (β) , (2.4)

where

In (β) =
1
n

{
{∇βfn}T {∇βfn}

}
. (2.5)

The Gauss-Newton method replaces Jn (β) with In (β) in (2.1). The key point to
notice is

In

(
β

)
= E {Jn

(
β

)}
. (2.6)

Several points can be made here:
1. It follows from the special form of (2.5) that the Gauss-Newton correction

βi+1 − βi solves the linear least squares problem

min
t
‖yn − µn (β)−∇βµn (β) t‖2 . (2.7)

2. It is an important result, conditional on an appropriate experimental setup,
that In (β) is generically a bounded, positive definite matrix for all n large
enough [6]. A similar result is sketched in Lemma 3.2.

3. The use of the form of the expectation which holds at the true parameter val-
ues is a characteristic simplification of the scoring algorithm and is available
for more general likelihoods [7]. Here it leads to the same result as ignoring
small residual terms in (2.3).

The full-step Gauss-Newton method has the form of a fixed point iteration:

βi+1 = Qn (βi) ,

Qn (β) = β − In (β)−1∇βFn (β)T
. (2.8)

The condition for β̂n to be an attractive fixed point is

$
(
Q′n

(
β̂n

))
< 1, (2.9)

where $ denotes the spectral radius of the variational matrix Q′
n. This quantity

determines the first order convergence multiplier of the Gauss-Newton algorithm.
The key to the good large sample behaviour is the result

$
(
Q′

n

(
β̂n

))
a.s.→ 0, n →∞. (2.10)

which shows that the algorithm tends to a second order convergent process as n →∞.
The derivation of this result will now be outlined. As ∇βFn

(
β̂n

)
= 0, it follows that

Q′n
(
β̂n

)
= Ip − In

(
β̂n

)−1

∇2
βFn

(
β̂n

)
.

Now define Wn (β) : Rp → Rp by

Wn (β) = In (β)−1 {In (β)−∇2
βFn (β)

}
. (2.11)
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Then

Wn

(
β̂n

)
= Q′n

(
β̂n

)
= Wn

(
β

)
+ O

(∥∥∥β̂n − β
∥∥∥
)

, (2.12)

by consistency. By (2.6),

Wn

(
β

)
= −In

(
β

)−1 {∇2
βFn

(
β

)− E {∇2
βFn

(
β

)}}
. (2.13)

It has been noted that In

(
β

)
is bounded, positive definite. Also, a factor 1

n is implicit
in the second term of the right hand side of (2.13), and the components of ∇2

βFn

(
β

)
are sums of independent random variables. Thus it follows by an application of the
law of large numbers [12] that Wn

(
β

) a.s.→ 0 component-wise as n →∞. An immediate
consequence is that

$
(
Wn

(
β

)) a.s.→ 0, n →∞. (2.14)

The desired convergence rate result (2.10) now follows from (2.12). Note that the
property of consistency that derives from the maximum likelihood connection is an
essential component of the argument. Also, that this is not a completely straightfor-
ward application of the law of large numbers because a sequence of sets of observation
points {tni , i = 1, 2, · · · , n} is involved. For this case see [13].

3. Rate estimation for separable problems. Variable projection leads to
the nonlinear least squares problem (1.10) where

fn (β, εn) = Pn (β)yn, (3.1)

Fn (β, εn) =
1
2n

(yn)T
Pn (β)yn (3.2)

Implementation of the Gauss-Newton algorithm (RGN algorithm) has been discussed
in detail in [11]. It uses an approximate Hessian computed from (2.5) and requires
derivatives of Pn (β). The derivative of P in the direction defined by t ∈ Rp is

∇βP [t] = −P∇βΦ [t] Φ+ − (
Φ+

)T ∇βΦT [t] P, (3.3)

= A (β, t) + AT (β, t) , (3.4)

where A ∈ Rn → Rn, the matrix directional derivative dΦ
dt is written ∇βΦ[t] to

emphasise both the linear dependence on t and that t is held fixed in this operation,
explicit dependence on both n and β is understood, and Φ+ denotes the generalised
inverse of Φ. Note that Φ+P = Φ+ − Φ+ΦΦ+ = 0 so the two components of ∇βP [t]
in (3.4) are orthogonal. Define matrices K,L : Rp → Rn by

A (β, t)y = K (β,y) t, (3.5)

AT (β, t)y = L (β,y) t. (3.6)

Then the RGN correction solves

min
t
‖Py + (K + L) t‖2 , (3.7)

where

LT K = 0 (3.8)
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as a consequence of the orthogonality noted above.
Remark 3.1. Kaufman [4] has examined these terms in more detail. We have

tT KT Kt = yT AT Ay = O
(‖α‖2) ,

tT LT Lt = yT AAT y = O
(‖Py‖2) .

If the orthogonality noted above is used then the second term in the design matrix in
(3.7) corresponds to a small residual term when ‖Py‖2 is relatively small and can be
ignored . The resulting correction solves

min
t
‖Py + Kt‖2 . (3.9)

This modification was suggested by Kaufman. It can be implemented with less com-
putational cost, and it is favoured for this reason. Numerical experience is reported
to be very satisfactory [2].

The terms in the sum of squares in the reduced problem (1.10) are

fi =
n∑

i=1

Pijyj , i = 1, 2, · · · , n. (3.10)

Now, because the noise ε is coupled with the nonlinear parameters and so does not
disappear under differentiation, In is quadratic in the noise contributions. An imme-
diate consequence is that

In 6= 1
n
E {∇βfT∇βf

}
. (3.11)

Thus it is not possible to repeat exactly the rate of convergence calculation of the
previous section. Instead it is convenient to rewrite equation (2.11):

Wn (β) = −
(

1
n
∇βfT∇βf

)−1 1
n

{
n∑

i=1

fi∇2
βfi

}
, (3.12)

where the right hand side is evaluated at β. The property of consistency is unchanged
so the asymptotic convergence rate is again determined by $

(
Wn

(
β

))
. We now

examine this expression in more detail.
Lemma 3.2.

1
n

ΦT
nΦn → G, n →∞, (3.13)

where

Gij =
∫ 1

0

φi (t)φj (t) % (t) dt, 1 ≤ i, j ≤ m,

and the density ρ is determined by the asymptotic properties of the method for gener-
ating the sample points tni , i = 1, 2, · · · , n for large n. The Gram matrix G is bounded
and generically positive definite. Let Tn = I − Pn. Then

(Tn)ij =
1
n

φT
i G−1φj + o

(
1
n

)
, (3.14)
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where

φi =
[

φ1 (ti) φ2 (ti) · · · φm (ti)
]T

This gives an O
(

1
n

)
component-wise estimate which applies also to derivatives of both

Pn and Tn with respect to β.
Proof. The result (3.13) is discussed in detail in [6]. It follows from

(
1
n

ΦT
nΦn

)

ij

=
1
n

n∑

k=1

φi (tk)φj (tk) = Gij + O

(
1
n

)

by interpreting the sum as a quadrature formula. Positive definiteness is a consequence
of the problem rank assumption. To derive (3.14) note that

Tn = Φn

(
ΦT

nΦn

)−1
ΦT

n ,

=
1
n

ΦnG−1ΦT
n + o

(
1
n

)
.

The starting point for determining the asymptotics of the convergence rate of the
RGN algorithm as n →∞ is the computation of the expectations of the numerator and
denominator matrices in (3.12). The expectation of the denominator is bounded and
generically positive definite. The expectation of the numerator is O

(
1
n

)
as n → ∞.

This suggests strongly that the spectral radius of Q′
(
β

) → 0, n → ∞, a result of
essentially similar strength to that obtained for the additive error case. To complete
the proof requires showing that both numerator and denominator terms converge to
their expectations with probability 1.

Consider first the denominator term.
Lemma 3.3. Fix β = β.

1
n
E {∇βfT∇βf

}
= σ2M1 + M2, (3.15)

where M1 = O
(

1
n

)
, n → ∞ and M2 tends to a limit which is a bounded, positive

definite matrix when the problem rank assumption is satisfied. In detail, these matrices
are

M1 =
σ2

n

n∑

i=1

n∑

j=1

(∇βPij)
T ∇βPij , (3.16)

M2 =
1
n





n∑

j=1

∇βµT
j ∇βµj −

n∑

j=1

n∑

k=1

∇βµT
j ∇βµkTjk



 . (3.17)

Proof. Set

∇fT∇f =
n∑

i=1

∇fT
i ∇fi,

=
n∑

i=1

n∑

j=1

(∇Pij)
T

yj

n∑

k=1

∇Pikyk. (3.18)
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To calculate the expectation note that it follows from equation (1.4) that

E {yjyk} = σ2δjk + µj

(
β

)
µk

(
β

)
, (3.19)

where

µj (β) = eT
j Φα (β) .

It follows that

1
n
E {∇βfT∇βf

}
=

1
n

n∑

i=1



σ2

n∑

j=1

(∇βPij)
T ∇βPij +

n∑

j=1

n∑

k=1

µjµk (∇βPij)
T ∇βPik



 ,

= σ2M1 + M2

To show M1 → 0 is a counting exercise. M1 consists of the sum of n2 terms each of
which is an p × p matrix of O (1) gradient terms divided by n3 as a consequence of
Lemma 3.2. M2 can be simplified somewhat by noting that

∑n
j=1 Pijµj = 0 identically

in β by (1.6) so that
n∑

j=1

µj∇βPij = −
n∑

j=1

∇βµjPij .

This gives, using the symmetry of P = I − T ,
n∑

i=1

n∑

j=1

n∑

k=1

µjµk (∇βPij)
T ∇βPik =

n∑

i=1

n∑

j=1

n∑

k=1

∇βµT
j ∇βµkPijPik,

=
n∑

j=1

n∑

k=1

∇βµT
j ∇βµkPjk, (3.20)

=
n∑

j=1

∇βµT
j ∇βµj −

n∑

j=1

n∑

k=1

∇βµT
j ∇βµkTjk.

Boundedness of M2 as n →∞ now follows using the estimates for the size of the Tij

computed in Lemma 3.2. To show that M2 is positive definite note that it follows
from (3.20) that

tT M2t =
dµ

dt

T

{I − T} dµ

dt
≥ 0.

As
∥∥∥T dµ

dt

∥∥∥ ≤
∥∥∥dµ

dt

∥∥∥, this expression can vanish only if there is a direction t ∈ Rp such

that dµ
dt = γµ for some γ 6= 0. This requirement is contrary to the Gauss-Newton

rank assumption that
[

Φ ∇βΦα
]

has full rank m + p.
Lemma 3.4. The numerator in the expression (3.12) defining Wn(β) is

n∑

i=1

fi∇2
βfi =

n∑

i=1

n∑

j=1

n∑

k=1

yjykPij∇2
βPik. (3.21)

Let M3 = 1
nE

{∑n
i=1 fi∇2

βfi

}
then

M3 =
1
n

n∑

i=1

σ2



∇

2
βPii −

n∑

j=1

Tij∇2
βPij



 , (3.22)
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and M3 → 0, n →∞.
Proof. This is similar to that of Lemma 3.3. The new point is that the contribution

to M3 from the signal terms µj(β) in the expectation (3.19) is

n∑

i=1

n∑

j=1

n∑

k=1

µjµkPij∇2
βPik = 0

by summing over j keeping i and k fixed. The previous counting argument can be
used again to give the estimate M3 = O

(
1
n

)
, n →∞.

The final step required is to show that the numerator and denominator terms in
(3.12) approach their expectations as n → ∞. Only the case of the denominator is
considered here.

Lemma 3.5.
(

1
n
∇βfT∇βf

)
a.s.→ M2, n →∞. (3.23)

Proof. The basic quantities are:

(
1
n
∇βfT∇βf

)
=

1
n

n∑

i=1

∇βfT
i ∇βfi,

=
1
n

n∑

i=1

n∑

j=1

(∇βPij)
T

yj

n∑

k=1

∇βPikyk,

=
1
n

n∑

i=1

n∑

j=1

n∑

k=1

{µjµk + (µjεk + µkεj) + εjεk} (∇βPij)
T ∇βPik

The first of the three terms in this last expansion is M2. Thus the result requires
showing that the remaining terms tend to 0. Let

πn
i =

n∑

j=1

εj (∇βPij)
T

, πn
i ∈ Rp.

As, by Lemma 3.2, the components of ∇βPij = O
(

1
n

)
, it follows by applications of

the law of large numbers that

πn
i

a.s.→ 0, n →∞

componentwise. Specifically, given δ > 0, there is an n0 such that

∀i, ‖πn
i ‖∞ < δ ∀n > n0 with probability 1.

Consider the third term. Let

Sn =
1
n

n∑

i=1

n∑

j=1

n∑

k=1

εjεk (∇βPij)
T ∇βPik,

=
1
n

n∑

i=1

πn
i (πn

i )T
.
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Then, in the maximum norm, with probability 1 for n > n0,

‖Sn‖∞ ≤ pδ2,

showing that the third sum tends to 0, n → ∞ almost surely. A similar argument
applies to the second term which proves to be O (δ).

These results can now be put together to give the desired convergence result.
Theorem 3.6.

Wn

(
β

) a.s.→ 0, n →∞. (3.24)

Proof. The idea is to write each component term Ω in (3.12) in the form

Ω = E {Ω}+ (Ω− E {Ω}) ,

and then to appeal to the asymptotic convergence results established in the preceding
lemmas.

Remark 3.7. This result when combined with consistency suffices to establish
the analogue of (2.10) in this case. The asymptotic convergence rate of the RGN
algorithm can be expected to be similar to that of the full Gauss-Newton method.
While the numerator expectation in the Gauss-Newton method is 0, and that in the
RGN algorithm is O

(
1
n

)
by Lemma 3.4, these are both smaller than the discrepancies

(Ω− E {Ω}) between their full expressions and their expectations. Thus it is these
discrepancy terms that are critical in determining the convergence rates. Here these
correspond to law of large numbers rates for which a scale of O

(
n−1/2

)
is appropriate.

4. The Kaufman modification. As the RGN algorithm possesses similar con-
vergence rate properties to Gauss-Newton in large sample problems, and, as the Kauf-
man modification is favoured in implementation, it is of interest to ask if it too shares
the same good large sample convergence rate properties. Fortunately the answer is
in the affirmative. This result can be proved in the same way as the main lemmas in
the previous section. This calculation is similar to the preceding and is relegated to
the Appendix. In this section the close connection between the modified algorithm
and the full Gauss-Newton method is explored. That both can be implemented with
the same amount of work is shown in [11]. First note that equation (2.7) for the
Gauss-Newton correction here becomes

min
δα,δβ

∥∥∥∥y − Φα− [
Φ ∇β (Φα)

] [
δα
δβ

]∥∥∥∥
2

. (4.1)

Introducing the variable projection matrix P permits this to be written:

min
δβ

‖Py − P∇β (Φα) δβ‖2 +min
δα

‖(I − P ) (y −∇β (Φα) δβ)− Φ(α + δα)‖2 . (4.2)

Comparison with (3.3) shows that the first minimization is just

min
δβ

‖Py −Kδβ‖ . (4.3)

Thus, given α, the Kaufman search direction computed using (3.9) is exactly the
Gauss-Newton correction for the nonlinear parameters. If α is set using (1.9) then
the second minimization gives

δα = −Φ+∇β (Φα) δβ,

= −Φ+∇βΦ [δβ] Φ+y, (4.4)
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while the increment in α arising from the Kaufman correction is

α (β + δβ)−α (β) =
(∇βΦ+y

)
δβ + O

(
‖δβ‖2

)
.

Note this increment is not computed as part of the algorithm. To examine (4.4) in
more detail we have

dΦ+

dt
= − (

ΦT Φ
)−1

(
dΦT

dt
Φ + ΦT dΦ

dt

) (
ΦT Φ

)−1
ΦT +

(
ΦT Φ

)−1 dΦT

dt
,

= − (
ΦT Φ

)−1 dΦT

dt
T − Φ+ dΦ

dt
Φ+ +

(
ΦT Φ

)−1 dΦT

dt
,

=
(
ΦT Φ

)−1 dΦT

dt
P − Φ+ dΦ

dt
Φ+.

The second term in this last equation occurs in (4.4). Thus, setting δβ = ‖δβ‖ t,

δα− (∇βΦ+y
)
δβ = −‖δβ‖ (

ΦT Φ
)−1 dΦT

dt
Py + O

(
‖δβ‖2

)
,

=
‖δβ‖

n
G−1

(
dΦT

dt
P

(
Φ(β)− Φ(β)

)
α− ΦT dP

dt
ε

)

+ O
(
‖δβ‖2

)
.

The magnitude of this resulting expression can be shown to be small almost surely
compared with ‖δβ‖ when n is large enough using the law of large numbers and
consistency as before. The proximity of the increments in the linear parameters plus
the identity of the calculation of the nonlinear parameter increments demonstrates
the close alignment between the Kaufman and Gauss-Newton algorithms. The small
residual result is discussed in [11].

5. Discussion. It has been shown that both of the variants of the Gauss-Newton
algorithm considered possess similar convergence properties in large data set problems.
However, that does not help resolve the question of the method of choice in any
particular application. There is agreement that the Kaufman modification of the
RGN algorithm has an advantage in being cheaper to compute, but it is not less
expensive than the full Gauss-Newton algorithm [11]. Thus a choice between variable
projection and Gauss-Newton must depend on other factors. These include flexibility,
ease of use, and global behaviour. Flexibility tends to favour the full Gauss-Newton
method because it can be applied directly to solve a range of maximum likelihood
problems [7] so it has strong claims to be provided as a general purpose procedure.
Ease of use is just about a draw. While Gauss-Newton requires starting values for
both α and β, given β the obvious approach is to compute α (β) by solving the linear
least squares problem. Selecting between the methods on some a priori prediction of
effectiveness appears much harder. It is argued in [2] that variable projection can take
fewer iterations in important cases. There are two significant points to be made here.

1. Nonlinear approximation families need not be closed. Especially if the data is
inadequate then the iterates generated by the full Gauss-Newton may tend to
a function in the closure of the family. In this case some parameter values will
tend to∞ and divergence is the correct answer. The nonlinear parameters can
be bounded so it is possible for variable projection to yield a well determined
answer. However, it still needs to be interpreted correctly. An example
involving the Gauss-Newton method is discussed in [7].
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Fig. 5.1. No convergence: fit after 50 iterations case σ = 4, n = 64

2. There is some evidence that strategies which eliminate the linear parameters
in separable models can be spectacularly effective in exponential fitting prob-
lems with small numbers of variables [5], [9]. Similar behaviour has not been
observed for rational fitting [8] which is also a separable regression problem.
It seems there is something else going on in the exponential fitting case as ill-
conditioning of the computation of the linear parameters affects directly both
the conditioning of the linear parameter correction in Gauss-Newton and the
accuracy of the calculation of Pn in variable projection in both these classes of
problems. It should be noted that maximum likelihood is not the way to esti-
mate frequencies which are just the nonlinear parameters in a closely related
problem [10]. Some possible directions for developing modified algorithms are
considered in [3].

The importance of large sample behaviour, and the need for appropriate instru-
mentation for data collection are consequences of the result that maximum likelihood
parameter estimates have the property that

√
n

(
β̂n − β

)
is asymptotically normally

distributed [12]. The effect of sample size on the convergence rate of the Gauss-Newton
method is illustrated in Table 5.1 for an estimation problem involving fitting three
Gaussian peaks plus an exponential background term. Such problems are common in
scientific data analysis and are well enough conditioned if the peaks are reasonably
distinct. In such cases it is relatively easy to set adequate initial parameter estimates.
Here the chosen model is

µ (x, t) = 5e−10t + 18e−
(t−.25)2

.015 + 15e−
(t−.5)2

.03 + 10e−
(t−.75)2

.015 .

Initial conditions are chosen such that there are random errors of up to 50% in
the background parameters and peak heights, 12.5% in peak locations, and 25%
in peak width parameters. Numbers of iterations are reported for an error pro-
cess corresponding to a particular sequence of independent, normally distributed
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n σ = 1 σ = 2 σ = 4
64 7 16 nc
256 11 21 50
1024 7 17 18
4096 6 6 7
16384 6 6 7

Table 5.1
Iteration counts for peak fitting with exponential background

random numbers, standard deviations σ = 1, 2, 4, and equispaced sample points
n = 64, 256, 1024, 4096, 16384. The most sensitive parameters prove to be those
determining the exponential background, and they trigger the lack of convergence
that occurred when σ = 4, n = 64. The apparent superior convergence behaviour
in the n = 64 case over the n = 256 case for the smaller σ values can be explained
by the sequence of random numbers generated producing more favourable residual
values in the former case. The sequence used here corresponds to the first quarter of
the sequence for n = 256.

Plots for the fits obtained for σ = 4, n = 64 and σ = 4, n = 256 are given in
Figure 5.1 and Figure 5.2 respectively. The difficulty with the background estima-
tion in the former shows up in the sharp kink in the fitted (red) curve near t = 0.
This figure gives the result after 50 iterations when x(1) = 269 and x(2) = 327 so
divergence of the background parameters is evident. However, the rest of the signal is
being picked up pretty well. The quality of the signal representation suggests possible
non-compactness, but the diverging parameters mix linear and nonlinear making in-
terpretation of the cancellation occurring difficult. A similar phenomenon is discussed
in [7]. This involves linear parameters only, and it is easier to see what is going on.
The problem is attributed to lack of adequate parameter information in the given
data. The green curves give the fit obtained using the initial parameter values and is
the same in both cases. These curves manage to hide the middle peak fairly well, so
the overall fits obtained are quite satisfactory. The problem would be harder if the
number of peaks was not known a priori.

6. Appendix. The variational matrix whose spectral radius evaluated at β̂n

determines the convergence rate of the Kaufman iteration is

Q′ = I −
(

1
n

KT K

)−1

∇2
βF,

= −
(

1
n

KT K

)−1
(

1
n

n∑

i=1

fi∇2
βfi +

1
n

LT L

)
. (6.1)

It is possible here to draw on work already done to establish the key convergence
rate result (2.10). Lemmas 3.3 and 3.5 describe the convergence behaviour of In =
1
n

{
KT K + LT L

}
as n → ∞. Here it proves to be possible to separate out the

properties of the individual terms by making use of the orthogonality of K and L

once it has been shown that 1
nE

{
L

(
β, ε

)T
L

(
β, ε

)} a.s.→ 0, n → ∞. This calculation
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Fig. 5.2. Fit obtained: case σ = 4, n = 256

can proceed as follows. Let t ∈ Rp. Then

E
{

1
n
tT LT Lt

}
=

1
n
E

{
εT P∇βΦ [t] Φ+

(
Φ+

)T ∇βΦ [t]T Pε
}

,

=
1
n
E

{
εT P∇βΦ [t]

(
ΦT Φ

)−1∇βΦ [t]T Pε
}

,

=
1
n2

trace
{
∇βΦ [t]G−1∇βΦ [t]T PE {

εεT
}

P
}

+ smaller terms,

=
σ2

n2
trace

{
∇βΦ [t]G−1∇βΦ [t]T (I − T )

}
+ smaller terms.

This last expression breaks into two terms, one involving the unit matrix and the
other involving the projection T . Both lead to terms of the same order. The unit
matrix term gives

trace
{
∇βΦ [t] G−1∇βΦ [t]T

}
= tT

{
n∑

i=1

ΨiG
−1ΨT

i

}
t,

where

(Ψi)jk =
∂φij

∂βk
, Ψi : Rm → Rp.

It follows that

σ2

n2

n∑

i=1

ΨiG
−1ΨT

i = O

(
1
n

)
, n →∞.

To complete the story note that the conclusion of Lemma 3.5 can be written

1
n

(
KT K + LT L

) a.s.→ E
{

1
n

KT K +
1
n

LT L

}
, n →∞.
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If 1
nKT K is bounded, positive definite then, using the orthogonality (3.8),

1
n

KT K

(
1
n

KT K − E
{

1
n

KT K

})
a.s.→ 1

n
KT KE

{
1
n

LT L

}
, n →∞.

This shows that 1
nKT K tends almost surely to its expectation provided it is bounded,

positive definite for n large enough and so can be cancelled on both sides in the above
expression. Note first that the linear parameters cannot upset boundedness.

α (β) =
(
ΦT Φ

)−1
ΦT y,

= α +
1
n

(
G−1 + O

(
1
n

))
ΦT ε,

= α + δ, ‖δ‖∞ = o (1) , (6.2)

where α is the true vector of linear parameters. Positive definiteness follows from

tKT Kt = α (β)T dΦ
dt

T

P
dΦ
dt

α (β) ,

=
∥∥∥∥

dΦ
dt

α (β)
∥∥∥∥

2

−
∥∥∥∥T

dΦ
dt

α (β)
∥∥∥∥

2

≥ 0.

Equality can hold only if there is t such that dΦ
dt α (β) = γΦα (β). This condition was

met also in Lemma 3.3.
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