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Problem data

Differential equation:

dx
dt

= f (t , x,β) , x, f ∈ Rm, β ∈ Rp.

“Observed” data:

y i = Ox∗ (ti ,β
∗) + εi , i = 1, 2, · · · , n,

O ∈ Rm → Rk , y i ∈ Rk , k ≤ m,

εi ∈ Rk , ∼ N
(

0, σ2Ik
)

, independent

ti ∈ [0, 1], i = 1, 2, · · · , n.
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Problem
It is required to estimate “true” vector of parameters β∗ by

β̂n = arg min
β∈Rp

Σn
i=1 ‖y i −Ox i‖2

where the x i = x (ti ,β), and the values of x = x (t ,β) are
constrained by the differential equation.
Trapezoidal rule frequently a good enough discretization of
ODE:

x i+1 − x i =
h
2

(f (ti+1, x i+1,β) + f (ti , x i ,β)) , i = 1, 2, · · · , n − 1.

This has the form go Sim

c (xc)i = c ii (x i) + c i(i+1) (x i+1) = 0,

where (xc)i = x i , i = 1, 2, · · · , n, xc ∈ Rn×m. Sparsity!
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Embedding

The embedding approach leads to an unconstrained
optimization problem which can be solved by standard methods
e.g. Gauss-Newton. It removes the differential equation
constraint on the state variable x (t ,β) by embedding the
differential equation into a parametrised family of boundary
value problems which is solved explicitly at each step to
generate trial values. It imposes boundary conditions:

B1x (0) + B2x (1) = b,

where B1, B2 ∈ Rm → Rm are assumed known while b is a
vector of additional parameters which is sought as part of the
estimation process. The key requirement is that the resulting
system has a numerically well determined solution x (t ,β, b) for
all β, b in a large enough neighborhood of
β∗, b∗ = B1x∗ (0) + B2x∗ (1).
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Selection of B1, B2

Calculation of x (t ,β, b) and ∇βx, ∇bx are required at each
Gauss-Newton step. Typical is sequence of linear problems

d
dt
∇bx −∇x f∇bx = 0,

B1∇bx (0) + B2∇bx (1) = I

These linear systems have matrix

F =


C11 C12

C22 C23
. . .

C(n−1)(n−1) C(n−1)n
B1 B2


where Cij = ∇xc ij .

Idea: Choose B1, B2 so this matrix is well conditioned at
x∗ (t ,β∗).
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Computation
Begin by permuting the first block column of F to the last
position. A transformation of the first n − 1 block rows of the
permuted matrix to upper triangular form by orthogonal S yields

ST FP =


R11 R12 0 · · · 0 R1n

R22 R23 · · · 0 R2n

· · ·
...

...
R(n−1)(n−1) R(n−1)n

B2 B1

 .

The last two block rows now determine the conditioning of the
transformed matrix. Make a second orthogonal factorization[

R(n−1)(n−1) R(n−1)n
]

=
[

UT 0
] [

QT
1

QT
2

]
.

then
[

B2 B1
]

= QT
2 provides the desired conditions.
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Advantages

I Given initial x0
c can compute estimate of optimal boundary

conditions.
I Readily adapted to make use of standard Gauss-Newton

nonlinear least squares and BVP software.
I Availability of good BVP software important if ODE is

difficult.

Disadvantages:
I Good initial conditions are important. What happens if

1−
∥∥∥QT

2

(
x0

c

)T
Q2 (x∗c)

∥∥∥ is close to 1?

I The economics of solving a nonlinear BVP for every
function evaluation needs watching.

I The extra parameters b are not directly relevant to the
problem formulation.
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Simultaneous

Constrained least squares formulation. Let

r i = y i −Ox i ,

Φ (xc) =
1

2n

n∑
i=1

‖r i‖2 .

Then the simultaneous method formulates the estimation
problem as the constrained nonlinear least squares problem

β̂n = arg min
β

Φ (xc) ; c (xc ,β) = 0.

go Pro Standard methods of sequential quadratic programming
are available. Important to exploit sparsity. Note the number of
constraints increases as the discretization of the ODE is
refined.
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Computation

Introduce Lagrangian

L (xc ,β) = Φ (xc) +
n−1∑
i=1

λT
i c i (xc ,β) .

Necessary conditions give ∇(x ,λ)L = 0. Corresponding
Newton iteration is[

∇2
xxL CT

C 0

] [
4x
4λ

]
= −

[
∇xLT

cc

]
,

where C = ∇xcc ∈ Rnm → R(n−1)m.
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Advantages

I Completely specified given initial estimates.
I Economy - avoids the inner iterations needed to solve BVP

in embedding method.

Disadvantages:
I The number of constraints grows without bound as the

discretization is refined.
I So does the number of constraint second derivatives that

must be computed in a Newton iteration.
I It is problematic to formulate such solution strategies as

mesh refinement as the state variables are only known
exactly at the solution.
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Equivalence
Let SE(xE) and SS(xS) be minimum sums of squares of
residuals achieved at single isolated points in a large enough
ball B (x∗, ρ(n)) by the embedding and simultaneous methods
respectively. Then xE satisfies the constraints on the
simultaneous method so that

SS (xS) ≤ SS (xE) = SE (xE) ,

but direct substitution gives

B1xS(0) + B2xS(1) = bS.

Thus xS can generates comparison quantities for the
embedding problem. It follows that

SE (xE) ≤ SE (xS) = SS (xS) .

Thus xE = xS provided the solutions are isolated and
B (x∗, ρ(n)) is large enough.
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Better results
The problem with this derivation of equivalence is the condition
on the size of ρ(n). More satisfactory would be results of the
kind:

I Satisfaction of necessary conditions for either the
embedding or simultaneous methods could be deduced
from satisfaction of the other. It would follow that both
problems have the same stationary points.

I If choice ρ(n) → 0 with n−α, α < 1/2 given consistency:

xE
a.s.→

n→∞
x∗, xS

a.s.→
n→∞

x∗,

then possibility of deducing identity for large enough n by
the preceding argument. Not always possible. A direct
proof of consistency for the simultaneous method is
lacking.
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Consistency of maximum likelihood estimates
If BVP is solved exactly then ODE estimation by the embedding
method becomes a conventional maximum likelihood
estimation problem.

β̂n = arg max
β

Ln (y,β) = arg max
β

n∑
i=1

L (y i , x (ti ,β)) .

Assume ti equispaced, then

1
n
∇βL (y,β)

a.s.→
n→∞

∫ 1

0
E∗ {∇βL (y, x (t ,β))}dt .

This gives a limiting form of the necessary conditions and it
follows from a standard identity that β = β∗ is a solution. To
show β̂n

a.s.→
n→∞

β∗ can use the Kantorovich form of Newton’s

method. The idea is to apply this to ∇βLn (y,β) = 0 starting
from β∗. Use Theorem to deduce from small residuals that β̂n
is close to β∗.
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Kantorovich Theorem
Let Jn = 1

n∇
2
ββL. If the following conditions are satisfied in a

ball S% = {β; ‖β − β0‖ < %}:

(i) ‖Jn (u)− Jn (v)‖ ≤ K1 ‖u − v‖ , ∀u, v ∈ S%,

(ii)
∥∥∥Jn (β0)

−1
∥∥∥ = K2,

(iii)
∥∥∥Jn (β0)

−1 1
n∇xLn (y;β0)

T
∥∥∥ = K3, and

(iv) ξ = K1K2K3 < 1
2 ,

then the Newton iteration converges to a point β̂ ∈ S% satisfying
the estimating equation, and β̂ is the only root in S%.
The step to the solution x̂ is bounded by∥∥∥β̂ − β0

∥∥∥
2

< 2K3 < %.
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Considering discretization error

The embedding consistency result can be extended to two
important cases:

1. when each differential equation discretization grid Kn

corresponds to the observation grid Tn; and

2. when the discretization is made on a fixed grid tj ∈ K
independent of Tn, n →∞.

In the first case the condition that the differential equation be
integrated satisfactorily ensures that the maximum mesh
spacing ∆t → 0, n →∞. In the second case ∆t is fixed and
finite. This means that truncation error effects persist in the
solution of the discretized problem as |Tn| → ∞.
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Types of results

1: If ∆t → 0 consistency follows using a similar argument. The
idea is to start the iteration for each n at the exact integration
solution β̂n, b̂n and use knowledge of the discretization error to
show K3 = O (∆t)2 so this start is close to βn

∆, bn
∆. Consistency

now follows from the consistency for exact integration.
2: If ∆t fixed, small enough, then best result possible starting
from the corresponding exact integration solution is

lim
n→∞

[
βn

∆

bn
∆

]
⊂ S

([
β∗

b∗

]
, O

(
∆t2

))
, n →∞.

It uses K3 = O (∆t)2 , ∀nlarge enough. Now n is number of
observations.
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Convergence rate results

The Gauss-Newton method for nonlinear least squares is
typically the method of choice in the embedding method. A key
result is that the convergence rate approaches second order
asymptotically if the discretization error tends to zero as
|Tn| → ∞. If ∆t fixed, small enough the rate reduces to fast first
order.
The Bock iteration is the method of choice in the simultaneous
method. Here the Newton iteration is modified by setting the
constraint second derivatives to 0. This iteration has similar
convergence rate behaviour provided the error terms are
normally distributed. This is a stronger condition than that on
the embedding method which requires only that the errors be
independent and have bounded variance.

M.R. Osborne On ODE estimation algorithms


	The estimation problem
	Methods
	Equivalence
	Consistency
	Algorithms

