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Abstract

The Bock iteration [2] is a method for the minimization of an ob-
jective function in the form of a sum of squares subject to a set of
equality constraints. It was formulated originally as a method for
solving the problem of estimating parameters in a system of ordinary
differential equations (ODE) posed in its simultaneous form, and this
remains its principal application. The simultaneous method requires
that the discretized ODE be imposed as equality constraints on the
objective function of the data fitting problem. However, not only is
the data fitting problem explicitly constrained, but the constraint sys-
tem possesses the key additional feature that it becomes unbounded in
size as the scale of the discretization ∆t→ 0, n→∞, where n is the
number of independent observations in the estimation problem. Con-
straints introduce Lagrange multipliers into the necessary conditions
for the simultaneous method, and it is required to estimate these in
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order to carry out an asymptotic convergence rate analysis of the Bock
iteration for large n. It is shown here that the Lagrange multipliers
are O

(
σn−1/2

)
, n → ∞, where σ is the standard deviation of the

measurement errors in the observations, and that a similar estimate
is valid for the multiplier characterizing the first order convergence
rate of the iteration. This shows that the Bock iteration has excellent
convergence rate properties in large sample problems. An interesting
feature of these estimates is that their derivation requires that the ob-
servational errors are normally distributed. The Lagrange multiplier
estimates are obtained by interpreting the necessary conditions for an
optimum of the estimation problem as a discretization of a stochastic
ODE system. The convergence rate analysis must take into account
the unbounded size of the constraint system. This is done by reducing
the calculation of the multiplier characterizing the first order conver-
gence rate of the Bock iteration to that of estimating the spectral
radius of a matrix of fixed dimension independent of n.

1 Introduction

The first point to make is that the Bock iteration differs significantly from
the Gauss-Newton method which proves ubiquitous in minimizing a sum of
squares objective function in unconstrained, nonlinear estimation problems.
This is despite the fact that an argument based on analogy with Gauss-
Newton proved important in the original derivation of the method. For this
reason a brief summary of Gauss-Newton and generalized Newton methods
is given.

The basic Gauss-Newton algorithm [5] seeks

x̂ = arg min
x∈Rp
‖φ (x)‖22 , φ ∈ Rn, n > p, (1)

by solving the sequence of problems

hi = arg min
h∈RP

‖φ (xi) +∇xφ (xi)h‖22 , (2)

xi+1 = xi + hi.

This is a fixed point iteration of the form

xi+1 = Fn (xi) , (3)

and x̂ is a point of attraction provided

$ (F′n (x̂)) = $

((
∇xφ

T∇xφ
)−1

(
n∑

i=1

φi∇2
xxφi

))
< 1. (4)
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where $(·) denotes the spectral radius of the indicated matrix. If convergence
is obtained then the iteration rate is generically first order with multiplier
determined by this spectral radius. Second order convergence requires that
$ (F′n (x̂)) = 0. This occurs if φ (x̂) = 0. However, small residuals are not
necessary for fast convergence in the Gauss-Newton iteration. It is known
that fast convergence can occur in large sample, data analytic problems pro-
vided the measurement errors are independent and have bounded variance
[7]. The development of similar large sample convergence results for the Bock
iteration applied to the simultaneous method is the main purpose of this pa-
per. The Bock results turn out to be somewhat more restrictive in that they
require the measurement errors to be not only independent but also normally
distributed.

The generalized Gauss-Newton iteration extends the basic Gauss-Newton
scheme to a wider class of norms than the Euclidean norm ‖�‖2. The under-
lying idea is that of minimizing the norm of a local linearization to provide
an iterative correction. This generates the iterative procedure:

hi = arg min
h∈RP

‖φ (xi) +∇xφ (xi)h‖s , (5)

xi+1 = xi + hi.

Here the norms are ‖�‖s on Rn and ‖�‖t on Rp. This iteration has important
application when the norms in Rn are the l1 and max norms, and the nicest
results have to do with cases where second order convergence is possible.
Local strong uniqueness provides an elegant sufficient condition [3]

∃ γ > 0 � ‖φ (x̂ + v)‖s ≥ ‖φ (x̂)‖s + γ ‖v‖t , ∀ ‖v‖t small enough.

Note that it implies that ‖φ‖s is not smooth at x̂. Necessary conditions are
considered in [4].

Consider now the constrained problem.

min
x

Φ(x), c(x) = 0, c ∈ Rq, q < p.

The Lagrangian for this problem is

L (x, λ) = Φ(x) + Σq
i=1λici (x) ,

where the λi, i = 1, 2, · · · , q are the Lagrange multipliers. The corresponding
necessary conditions for an optimum are

∇xL = 0, ∇λL = cT = 0.
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These can be solved by Newton’s method which gives corrections ∆x, ∆λ
determined by the linear system

∇2
xxL∆x +∇xc

T ∆λ = −∇xLT , (6)

∇xc∆x = −c. (7)

It proves convenient to make an orthogonal Q times upper triangular U
factorization of CT = ∇xc

T .

CT =
[

Q1 Q2

] [ U
0

]
. (8)

Here Q ∈ Rp → Rp, Q1 ∈ Rq → Rp, and U ∈ Rq → Rq. Then a sufficient
condition for local convergence at x̂, λ̂ is

U full rank, QT
2∇2

xxLQ2 � 0.

These conditions are a form of second order sufficiency. They ensure that
the Jacobian of the Newton iteration is nonsingular at the stationary point.

The plan of the paper is as follows. The Bock iteration in a conventional
mathematical programming setting is introduced in the next section. The
principal result obtained relates the first order convergence rate multiplier to
the spectral radius of a (p−q)×(p−q) matrix. The ODE estimation problem
is introduced as a smoothing problem in Section 3. Here the unknowns are
the state variable estimates at the points at which the data is provided. The
exact constraint is the condition that the state variables satisfy the ODE
system. This system is approximated by the finite system which is obtained
by using the trapezoidal rule to discretize the ODE. The advantages of this
discretization in the estimation context, including advantages in sparsity in
formulating the Lagrangian, are summarised. The necessary conditions lead
to a recurrence for the Lagrange multipliers, and this, when suitably scaled, is
identified as a discretization of a stochastic differential equation with almost
sure O(1) solution. This permits the asymptotic scale of the Lagrange mul-
tipliers to be deduced. This scale is checked by two numerical computations.
The first makes use of an ODE which is integrated exactly by the trapezoidal
rule. The second makes use of the Mattheij differential equation [1] to pro-
vide a more serious test. These results are pulled together in the final section
to show that the convergence rate multiplier for the Bock iteration tends to
zero in large samples in much the same way as the corresponding multiplier
for the Gauss-Newton method provided the more restrictive assumption of
normally distributed measurement errors is made. This result underlines the
effectiveness of the Bock iteration in large sample data analysis problems.
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2 Introducing the Bock iteration

The Bock iteration modifies the basic Newton iteration by setting ∇2
xxci →

0, i = 1, 2 · · · , q in the linear system (6), (7). This is correct if the constraints
are linear functions of x. It is analogous to deriving (2) by ignoring second
derivatives in the full Newton formulation of the nonlinear least squares prob-
lem as these derivatives vanish in the Newton formulation if the φi(x) are
linear. However, what corresponds to small residuals in the Gauss-Newton
method are small values of λ, the Lagrange multipliers, in the Bock iteration.
This modification is very attractive in the simultaneous formulation of the
ODE estimation problem because here the values of both p, the number of
variables, and q, the number of constraints, are determined by ∆t−1 where
∆t is the grid scale in the discretization of the ODE system. Thus they are
potentially large. Two consequences in the ODE application are immediate:

1. Sparsity needs to be respected.

2. Calculation of
∑q

i=1 λi∇2
xxci is potentially a pain.

To formulate the Bock iteration set

∇2
xxΦ = A,

q∑
i=1

λi∇2
xxci = B, ∇xc = C.

Then the basic iteration calculations solve the following systems of equations.

Newton [
A + B CT

C 0

] [
∆x
∆λ

]
=

[
−∇xLT

−c

]
. (9)

Bock [
A CT

C 0

] [
∆x
∆λ

]
=

[
−∇xLT

−c

]
. (10)

The Bock iteration can be written in fixed point form[
xi+1

λi+1

]
= Fn

([
xi

λi

])
, (11)

where

Fn =

[
x
λ

]
−
[

A CT

C 0

]−1 [ ∇xLT

c

]
. (12)

Let F′n = ∇(x,λ)Fn. Then the condition for an attractive fixed point is

$

(
F′n

([
x̂

λ̂

]))
< 1.
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The form of F′n in the Bock iteration at

[
x̂

λ̂

]
can make use of the

necessary conditions ∇xL = 0, c = 0 to remove matrix derivatives. This
gives

F′n = I −
[

A CT

C 0

]−1 [
A + B CT

C 0

]
,

= −
[

A CT

C 0

]−1 [
B 0
0 0

]
. (13)

Orthogonal similarity using Q defined in (8) does not change $ (F′n). This
transformation is helpful in simplifying (13). Let

QT AQ =

[
A11 A12

A21 A22

]
, QT BQ =

[
B11 B12

B21 B22

]
.

Then[
QT 0
0 I

]
F′n

[
Q 0
0 I

]
=

 A11 A12 U
A21 A22 0
UT 0 0

−1  B11 B12 0
B21 B22 0
0 0 0

 . (14)

In these expressions A11, B11 ∈ Rq → Rq and A22, B22 ∈ Rp−q → Rp−q.
It is possible to exploit this zero pattern. As a preliminary two elementary

algebraic results are quoted.

Lemma 1 Let

G =

 H J K
L M 0
N 0 0

 ,

where the backward diagonal matrices K, M , N are all nonsingular. Then
G is invertible, and

G−1 =

 0 0 N−1

0 M−1 −M−1LN−1

K−1 −K−1JM−1 K−1JM−1LN−1 −HN−1

 . (15)

Lemma 2 Let

W =

 R S 0
T Z 0
0 0 0

 ,

then

G−1W =

 0 0 0
M−1T M−1Z 0

K−1R−K−1JM−1T K−1S −K−1JM−1Z 0

 . (16)
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An immediate consequence of Lemma 2 is:

Theorem 3
$
(
G−1W

)
= $

(
M−1Z

)
. (17)

Direct application to the Bock iteration gives the results:

Corollary 4

A−1
22 B22 ∈ Rp−q → Rp−q, (18)

$ (F′n) = $
(
A−1

22 B22

)
. (19)

Proof. The necessary identifications are made using (14). The result now
follows from (17).

Remark 5 This result is given in terms of p, the number of variables, and
q, the number of constraints. In the ODE application these ↑ ∞ as the
discretization is refined, but p − q is fixed and finite (equal to the order of
the ODE system). Thus the rate of convergence question can be reduced
to the question of estimating the eigenvalues of a matrix of fixed and finite
dimension.

3 The ODE estimation problem

The ODE estimation problem sets out to estimate parameters β ∈ Rs in the
differential equation model

dx

dt
= f (t,x, β) , x, f ∈ Rm, (20)

given observation data

yi = Ox∗ (ti) + εi, i = 1, 2, · · · , n, (21)

where the “∗” superscript is used to denote exact values, and

yi ∈ Rk, O ∈ Rm → Rk, ti = (i− 1)∆t, ∆t = 1/(n− 1).

Equation (21) allows for vectors of data to be observed at each time point ti.
It is not required that different components of the same observation vector
are independent. Statements regarding independence are to be interpreted as
statements of independence between the results of measurements at distinct
time points.

7



The estimation problem is

min
x,β

Φ (x (ti) , i = 1, 2, · · · , n, β) =
1

2n

n∑
i=1

‖ri‖22 , (22)

where
ri = yi −Ox (ti) .

The dependence on β comes about because x (t) is constrained to satisfy
(20). The estimation problem can be reformulated as a smoothing problem
in which the parameters β are included among the state variables by setting

x←
[

x
β

]
, f (t,x)←

[
f (t,x, β)

0

]
,

in (20). This step makes use of the property dβ
dt

= 0. The smoothing formu-
lation has some advantages from the point of view of analysis and for this
reason is employed here. It has the disadvantage for implementation that
it increases the dimension of the state vector x(t) and hence the number of
unknowns as m← m + s .

It is necessary to discretize the differential equation constraint explicitly
in order to complete the specification of the simultaneous method . Here the
trapezoidal rule is used for this purpose. It leads to the constraint system

ci = xi+1−xi−
∆t

2
(f (ti,xi) + f (ti+1,xi+1)) = 0, i = 1, 2, · · · , n−1, (23)

where xi is written for the unknown in the discrete system which provides
an estimate of x(ti).
This choice has the consequences:

1. The number of constraints in this formulation is q = m(n − 1) where
m is now the order of the augmented system.

2. It is convenient to introduce xc to denote the composite vector of un-
knowns with block components xi, i = 1, 2, · · · , n. Thus the number
of unknowns is p = nm, and p− q = m.

3. The trapezoidal rule has the strong sparsity property

ci (xc) = cii (xi) + ci(i+1) (xi+1) . (24)

4. The relatively large error estimate for the trapezoidal rule of O (∆t2)
is typically not a problem in this application. Here the influence of
measurement errors tends to dominate when σ > 0. It can be shown
that the standard deviation of the error in the solution estimates is
O
(
σ∆t1/2

)
. This follows from the consistency of the estimates [6].
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In summary, the smoothing problem in simultaneous form is

min
xc

Φ (xc) ; c (xc) = 0.

The corresponding Lagrangian is

Ln = Φ (xc) +
n−1∑
i=1

λT
i ci,

= Φ (xc) + λT
1 c11 +

n−1∑
i=2

{
λT

i−1c(i−1)i + λT
i cii

}
+ λT

n−1c(n−1)n.

The Lagrangian derivatives are given by

∇2
xxL = diag

{
1

n
OTO + sT

i

∆t

2
∇2

xxf (ti,xi) , i = 1, 2, · · · , n
}

,

∇2
xλLn = CT ,

Cii = −I − ∆t

2
∇xf (ti,xi) ,

Ci(i+1) = I − ∆t

2
∇xf (ti+1,xi+1) ,

where the notation s (λc)i = λi−1+λi is used with end values fixed by setting
λ0 = λn = 0. Here ∇2

xxL is block diagonal with m×m diagonal blocks, and
C is block bi-diagonal also with m×m blocks.

The necessary conditions give equations that are actually a recurrence
satisfied by the Lagrange multipliers.

− 1

n
rT
1O + λT

1∇xc11 = 0, (25)

− 1

n
rT

i O + λT
i−1∇xc(i−1)i + λT

i ∇xcii = 0, i = 2, 3, · · · , n− 1, (26)

− 1

n
rT

nO + λT
n−1∇xc(n−1)n = 0, . (27)

The Newton equations determining corrections dxc,dλc to current estimates
of state and multiplier vector solutions of these equations are:

∇2
xxLdxc +∇2

xλLdλc = −∇xLT , (28)

∇xc (xc)dxc = Cdxc = −c (xc) , (29)

Remark 6 The equations satisfied by λ̂c are of particular interest. Equa-
tions (25) and (27) essentially provide boundary conditions for the recur-

rence. These equate the initial and final values of λ̂i to quantities which are

9



O(1/n). Actually the boundary conditions are over-determined. Thus part
provides explicit conditions on (26) which can be recognized as an adjoint of
the ODE discretization (23) – see equation (30) below. Optimality is achieved
when the complementary set is satisfied at the appropriate solution of (23).
Selection of an appropriate set of boundary conditions can be made provided
(20) can be posed stably as a two-point boundary value problem. For example,
if equation (20) is stable as an initial value problem then trial values of x(0)
can be chosen as the vector of initial values, and the values of ri estimated by
a forward computation using equation (23). This permits λn−1 to be deter-
mined from (27) and the adjoint recurrence (26), which can be expected to be
stable for the backward computation, solved for the trial multiplier estimates.
The necessary conditions are satisfied when the computed λ1, defined as a
function of x1 by the above process, satisfies equation (28).

Grouping terms in the necessary conditions gives

−λ̂i−1 + λ̂i +
∆t

2
∇xf (ti, x̂i)

T
(
λ̂i−1 + λ̂i

)
= − 1

n
OT ri. (30)

This equation provides the basis for the required estimate of the Lagrange
multiplier scale.

Theorem 7 For simplicity consider the case where ri is a scalar and the
observation structure is based on a vector representer O = oT . Also, assume
the εi are independent and normally distributed with standard deviation σ.
Then

λ̂i = O
(
σn−1/2

)
, i = 1, 2, · · · , n− 1. (31)

Proof. Consider first the recurrence forcing term in (30) evaluated at x̂i, i =
1, 2, · · · , n.

riOT =
{
εi + oT (x∗i − x̂i)

}
o,

=
√

n

{
εi√
n

+
1√
n
oT (x∗i − x̂i)

}
o. (32)

The key step is a rescaling to get the right dependence on n in this term.
Let wi =

√
nλ̂i, i = 1, 2, · · · , n− 1, then

−wi−1 + wi +
∆t

2
∇xf (ti, x̂i)

T (wi−1 + wi) = − ri√
n
o. (33)

This equation is important ! The variance of the stochastic forcing term in
this rescaled form is (σ2/n)ooT , and the remaining right hand side term

10



is essentially deterministic with scale O{1/n} when the generic O{n−1/2}
rate of convergence results that follow from the consistency of the estimation
procedure [6] are taken into account. These are the correct orders of magni-
tude needed to produce results that are O(1) almost surely given appropriate
initial/boundary conditions (Remark 6 above). This permits identification
with a discretization of the adjoint to the linearized constraint differential
equation system subject to a forcing term which contains a stochastic com-
ponent (see the Appendix). It is at this point that it is essential that the
measurement errors are normally distributed. The significant feature of this
identification is that it indicates that the wi are almost surely bounded from
which it follows that the multipliers λ̂i → 0, i = 1, 2, · · · , n − 1, on a scale
which is O

(
σn−1/2

)
as n→∞.

Example 8 The effect of the random walk term in equation (33) can be
isolated in the smoothing problem with data:

dx

dt
=

[
0 1
0 0

]
x, (34)

yi =
[

1 0
]
xi + εi = 1 + εi, εi ∼ N (0, 1) , (35)

ti =
(i− 1)

(n− 1)
, i = 1, 2, · · · , n. (36)

The trapezoidal rule is exact for equation (34). The scaled solution wi, i =
1, 2, · · · , n−1 obtained for a particular realization of the εi for n = 501, σ = 5
is plotted in figure 1. The relation between the scale of the standard deviation
σ and that of w seems typical. This provides a good illustration that the n−1/2

scaling leads to an O(1) result.

Example 9 Consider the Mattheij differential system [1] defined by

f (t,x) = A (t,x)x + q (t) , (37)

with

A(t) =


1− x4 cos x5t 0 1 + x4 sin x5t 0 0

0 x4 0 0 0
−1 + x4 sin x5t 0 1 + x4 cos x5t 0 0

0 0 0 0 0
0 0 0 0 0

 ,

q(t) =


et (−1 + 10 (cos 2t− sin 2t))

−9et

et (1− 10 (cos 2t + sin 2t))
0
0

 .
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Figure 1: Plot of multipliers w for test problem

Here the right hand side is chosen so that x(t)T =
[

et et et 10 2
]

sat-
isfies the differential equation. Figure 2 shows state variable and multiplier
plots for the solution computed by a Newton’s method implementation. The
data for the estimation problem is based on the observation functional repre-
senter

O =

[
.5 0 .5 0 0
1 −1 1 0 0

]
with the true signal values being perturbed by random normal values having
standard deviation σ = .1. The number of observations generated is n = 501.
The initial values of the state variables are perturbed from their true values
by up to 10%, and the initial multipliers are set to 0. The initial parameter
values correspond to the true values 10, 2 perturbed also by up to 10%. Very
rapid convergence (typically 4 iterations) is obtained.

4 The Bock iteration for the smoothing prob-

lem

The Newton iteration works with the Jacobian of the necessary conditions
in the Lagrangian formulation. This corresponds to the augmented matrix
appropriate to the problem. This is necessarily indefinite even if ∇2

xL is
positive definite. It ties the simultaneous methods to the class of sequential
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Figure 2: State variables xc and multipliers wc for Mattheij Problem

quadratic programming algorithms [5]. This means more complicated be-
haviour than that which occurs when minimizing sums of squares using the
Gauss-Newton algorithm. However, the second derivative terms arising from
the constraints are O (1/n) in the augmented matrix through the factor ∆t.
Thus their contribution is relatively smaller than those of the terms arising
from the objective function Φ when the O

(
σ/n1/2

)
scale appropriate to the

Lagrange multipliers is taken into account. This suggests that ignoring the
second derivative contributions from the constraints would result in an iter-
ation with asymptotic convergence rate similar to Gauss-Newton where it is
known that the first order convergence rate multiplier in large samples has
a similar O

(
σ/n1/2

)
dependence [7]. This behaviour has been observed by

Bock (first-1983) [2] and others. The next result provides a justification.

Theorem 10 Assume

E =
[
QT

2 diag
{
OTO, i = 1, 2, · · · , n

}
Q2

]
(38)

has a bounded inverse for n large. Then

$

{
F ′

n

([
x̂c

λ̂c

])}
= O

( σ

n1/2

)
a.s.→

n→∞
0.

Proof. Let

B = diag

{
∇2

xxs
(
λ̂c

)T

i
f (ti, x̂i) , i = 1, 2, · · · , n

}
.
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By Corollary 4 the critical quantity is

$

{(
QT

2 diag

{
1

n
OTO, i = 1, · · · , n

}
Q2

)−1

QT
2

4t

2
BQ2

}

As n∆t = O (1) it follows as a consequence of the Theorem assumption that
it is sufficient to show that ∥∥QT

2 BQ2

∥∥
2

a.s.→
n→∞

0

at the appropriate rate. Here the spectral norm is dominated by the spectral
radius of the symmetric block diagonal matrix B with m×m diagonal blocks.
The desired result now follows because the elements in the i’th diagonal block
of B are linear in the components of ŝi and so are O

(
σ

n1/2

)
and tend to

0, n → ∞ for i = 1, 2, · · · , n. Thus it follows by the Gerschgorin Theorem,
that the spectral radius of B tends to zero with σ

n1/2 . But this dominates

$
{
QT

2 BQ2

}
.

Remark 11 The condition on E is an identifiability condition on the esti-
mation problem. It expresses the condition that the smoothing problem with
f = 0 be identifiable. The scale can be checked by noting that if O = I then
E = I. This case corresponds to all state variable values being specified at
each observation point.

Computations with the Bock iteration on the Mattheij example (37) make
for an interesting comparison with the Newton results. The Bock computa-
tions prove distinctly less satisfactory without a line search in case σ = .5,
and failure to converge was noted for a high percentage of seed values tried
for the random number generator. However, when σ = .1 the behaviour of
the two iterations is essentially identical.

5 Appendix

Consider the linear stochastic differential equation

dx = Mxdt + σbdz

where z is a unit Wiener process. Variation of parameters gives the discrete
dynamics equation

xi+1 = X (ti+1, ti)xi + σui,
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where

ui =

∫ ti+1

ti

X (ti+1, s)
−1 b

dz

ds
ds.

From this it follows that

ui v N
(
0, σ2R (ti+1, ti)

)
,

where

R (ti+1, ti) =

∫ ti+1

ti

X (ti+1, s)
−1 bbT X (ti+1, s)

−T ds = O

(
1

n

)
.
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