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linear least squares

min
x
‖r‖2 , r = Ax − b.

A : Rp → Rn, p fixed, n ‘large’.
normal equations–Choleski

x̂ =
(

AT A
)−1

AT b

Householder (1958), Golub (1965)–Orthogonal transformation

A = Q
[

U
0

]
, c = QT b,

‖r‖2 =

[
Ux − c1

c2

]T [
Ux − c1

c2

]
,

x̂ = U−1c1,
∥∥̂r

∥∥2
= ‖c2‖2 .
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Sensitivity
Let cond {A} = σmax/σmin and ε be an appropriate precision
scale then (worst case) algorithm sensitivities proportional to
normal equations ε cond {A}2

Householder Golub, Wilkinson (1966). Two terms appear in
their error estimate, the first proportional to
ε cond {A}, and the second to ε ‖r‖ cond {A}2.

It was argued that if ‖r‖ is small then the orthogonal
factorization algorithm would be favoured. This argument has
been generally accepted.
There may well be overkill in the ‖r‖ term. This term does not
allow for the kind of cancellation that can occur when the
perturbations are independent random variables in a structured
modelling environment. Such effects strengthen the case for
orthogonal factorization.
How do rounding errors accumulate in large scale
computations?
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Gauss-Newton iteration
Start with

yi = f (t ,β∗) + εi , i = 1, 2, · · · , n,

where εi ∼ N
(
0, σ2

)
, E

{
εiεj

}
= 0, and errors are additive.

Problem is to estimate β∗ by solving

min
β
‖y − f (β)‖2 .

Gauss-Newton method solves sequence of linear problems

hs = arg min
h
‖y − f (βs)−∇f (βs) h‖2 ,

=
(
∇fT

s∇fs

)−1
∇fT

s (y − fs) ,

βs+1 = βs + hs.

This is a fixed point iteration of the form βs+1 = F (βs).
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rate of convergence

Let β̂ minimize the sum of squares. This is a point of attraction
of the iteration provided

λ = $
{

F
′
(
β̂

)}
< 1

where $
{

F
′
}

indicates the spectral radius and the variation

F
′
(
β̂

)
is given by

F
′
(
β̂

)
=

(
∇fT∇f

)−1 n∑
i=1

(yi − fi)∇2fi .

The iteration is first order convergent if 0 < λ < 1. A higher
order convergence rate requires λ = 0.
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In 1968

The LSQMIDA paper makes no strong recommendations in a
context in which these problems were our largest class of
applications, and the software used was usually obtained
informally. It made some attempt to describe the convergence
behaviour. Basically, it recognised the generic first order
convergence rate, stressed that this was potentially a problem,
and noted that the Davidon method could be tried if problems
were encountered. It mentioned there was also the Levenberg
method.
40 years later Gauss-Newton is still going strong while the
Levenberg modification is also widely used. The scaling
properties of Gauss-Newton are superior No quasi-Newton
type implementation seems to have made a big impact in this
specific problem context.
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large sample behaviour
Gauss-Newton has good large sample behaviour in important
cases.

F
′
n

(
β̂n

)
=

(
1
n
∇f(n)T∇f(n)

)−1 1
n

n∑
i=1(

εn
i + f (n)

i (β∗)− f (n)
i

(
β̂n

))
∇2f (n)

i ,

→ 0, n →∞,

⇒ λn → 0.

Sufficient conditions:

1.
(1

n∇f(n)T∇f(n)
)−1 → bounded, positive definite, design;

2. 1
n

∑n
i=1 εn

i ∇2f (n)
i → 0, law of large numbers;

3. 1
n

∑n
i=1

(
f (n)
i (β∗)− f (n)

i

(
β̂n

))
∇2f (n)

i → 0, consistency.
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This is not an isolated example

additive errors
I Fisher scoring
I Wedderburn quasi–likelihoods

separable regression
I Golub and Pereyra variable projection
I Modified Prony algorithms

simultaneous method for ODE estimation Bock iteration
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Fisher scoring

L (β, y) = −
n∑

i=1

log (f (ti ,β, yi))

then scoring iteration is

hs = −E
{
∇2L

}−1
∇LT ,

βs+1 = βs + hs.

Aspects to notice include:

1. L is a sum of independent random variables.

2. E
{
∇2L

}
= −E

{
∇LT∇L

}
. Note second derivatives

disappear.

3. orthogonal methods apply.

M.R. Osborne Something old,something new, and .....



linear least squares methods nonlinear least squares asymptotically second order iterations

Variable projection
separable regression.

r = y − A (β) α

Define the orthogonal matrix Q (β) by

A (β) =
[

Q1 (β) Q2 (β)
] [

U (β)
0

]
.

Then

min
α
‖r‖2 =

∥∥∥Q2 (β)T y
∥∥∥2

,

α̂ = U−1QT
1 y.

Variable projection uses Gauss-Newton applied to sum of
squares of the transformed residuals. Algorithm is
asymptotically second order.
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Constrained problems

min
x

Φ(x), c(x) = 0, c ∈ Rm, m < p.

Introduce Lagrangian: L (x,λ) = Φ(x) + Σm
i=1λici (x).

Necessary conditions are:

∇xL = 0, ∇λL = cT = 0.

Newton correction (4x, 4λ) is given by

∇2
xxL4x +∇xcT4λ = −∇xLT ,

∇xc4x = −c.

Let

CT = ∇xcT =
[

Q1 Q2
] [

U
0

]
.

Then a sufficient condition for local convergence at x̂, λ̂ is

U full rank, QT
2 ∇2

xxLQ2 � 0
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Iterations formulated

Set ∇2
xxΦ = A,

∑m
i=1 λi∇2

xxci = B, ∇xc = C. Then basic
iteration calculations solve

Newton
[

A + B CT

C 0

] [
4x
4λ

]
=

[
−∇xL
−c

]
.

Bock
[

A CT

C 0

] [
4x
4λ

]
=

[
−∇xL
−c

]
.

Write Bock as a fixed point iteration[
x i+1

λi+1

]
= F

([
x i

λi

])
,

F =

[
x
λ

]
−

[
A CT

C 0

]−1 [
∇xL

c

]
.

Condition for an attractive fixed point is $ (F′) < 1.
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