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linear least squares methods

linear least squares

min|r||?, r=Ax—b.
X

A:RP — R" pfixed, n ‘large’.
normal equations—Choleski

-1
X = (ATA) ATb
Householder (1958), Golub (1965)—0Orthogonal transformation

A—Q[O}, c=Q'b,

N
Il = [ chl] [chl]’

Co Co

Xx=U"lcy, |[f]]* = llc2)?.
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Sensitivity

Let cond {A} = omax/omin @nd ¢ be an appropriate precision
scale then (worst case) algorithm sensitivities proportional to
normal equations ¢ cond {A}?
Householder Golub, Wilkinson (1966). Two terms appear in
their error estimate, the first proportional to
= cond {A}, and the second to  ||r| cond {A}?.
It was argued that if ||r|| is small then the orthogonal
factorization algorithm would be favoured. This argument has
been generally accepted.
There may well be overkill in the ||r|| term. This term does not
allow for the kind of cancellation that can occur when the
perturbations are independent random variables in a structured
modelling environment. Such effects strengthen the case for
orthogonal factorization.
How do rounding errors accumulate in large scale
computations?
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nonlinear least squares

Gauss-Newton iteration

Start with
yi:f(tvﬁ*)+6i7 i:1727"'7n7

where ¢; ~ N (0,02), € {zig;} =0, and errors are additive.
Problem is to estimate 3" by solving

min |y —f 2,
infly £ (8)]
Gauss-Newton method solves sequence of linear problems
hs = arg mhin Hy —f (/65) — Vf (55) hHZ )

-1
= (ViIVEs) Vi (v — ),
/Bs+1 = :Bs + hs.

This is a fixed point iteration of the form 3., = F (3s).
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nonlinear least squares

rate of convergence

Let B minimize the sum of squares. This is a point of attraction
of the iteration provided

A:w{F’ (E})} <1
where w {F/} indicates the spectral radius and the variation

F’ (E) is given by

F (B) - (vﬂ Vf) - i (i — fi) V2.

The iteration is first order convergent if 0 < A < 1. A higher
order convergence rate requires A = 0.
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In 1968

The LSQMIDA paper makes no strong recommendations in a
context in which these problems were our largest class of
applications, and the software used was usually obtained
informally. It made some attempt to describe the convergence
behaviour. Basically, it recognised the generic first order
convergence rate, stressed that this was potentially a problem,
and noted that the Davidon method could be tried if problems
were encountered. It mentioned there was also the Levenberg
method.

40 years later Gauss-Newton is still going strong while the
Levenberg modification is also widely used. The scaling
properties of Gauss-Newton are superior No quasi-Newton
type implementation seems to have made a big impact in this
specific problem context.
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large sample behaviour

Gauss-Newton has good large sample behaviour in important
cases.

n

-1
o (Bn) = (ivﬂnﬁw(n)) 53

i—1
(7 + 1 (8 = 1 (B,) ) V3,
— 0, n— oo,
= )\n — O
Sufficient conditions:
1. (vt Vf(”))fl — bounded, positive definite, design;
2. 250, 5{‘V2fi(”) — 0, law of large numbers;
3. 52X (fi(n) (8*) — " (Bn)) v2t (" _ 0, consistency.
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asymptotically second order iterations

This is not an isolated example

additive errors

» Fisher scoring

» Wedderburn quasi-likelihoods
separable regression

» Golub and Pereyra variable projection
» Modified Prony algorithms

simultaneous method for ODE estimation Bock iteration
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asymptotically second order iterations

Fisher scoring

Zlog tIaIB yl )

then scoring iteration is

-1
he = —€ {VZE} VLT,
ﬁs+1 = Bs + hs.

Aspects to notice include:
1. £ is a sum of independent random variables.

2. £{V?L} = -£{VLTVL}. Note second derivatives
disappear.

3. orthogonal methods apply.
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Variable projection
separable regression.
r=y-A(B8)a

Define the orthogonal matrix Q (3) by

A=l e VY]

Then
2 Tl
min | = [|Q2 (8) |
a=U"1Q]y.

Variable projection uses Gauss-Newton applied to sum of
squares of the transformed residuals. Algorithm is
asymptotically second order.

M.R. Osborne Something old,something new, and



Constrained problems

mXin d(x), c(x)=0, c e R™, m < p.
Introduce Lagrangian: £ (x, A) = ®(x) + X", Aici (x).
Necessary conditions are:
VxL =0, VyL=c' =0.
Newton correction (Ax, AX) is given by
V2 LAX 4+ VicTAN = -V LT,
VxCAX = —C.
Let
-V =& @] |-

Then a sufficient condition for local convergence at X, Xis
U full rank, Q) V2, £Q; > 0
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Iterations formulated

Set vz & =A, > " \VZ.ci =B, Vkc = C. Then basic
iteration calculations solve

Newton | A+ B cT Ax ][ =L
C 0 AN | —c |
A CTT[Ax] [-WL
Bock[C O]_A)\]_[ e }

Write Bock as a fixed point iteration

aal=r(R)
=l ST

Condition for an attractive fixed pointis @ (F') < 1.
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