Abstract

In this thesis we investigate various mathematical aspects of learning in neural net-

works.

During a learning process a network is exposed and responds to various inputs. Then,
the system learns by changing parameters which influence its decision making process.
For example, when the network has a teacher, it can inform the network if the response
to an input is correct or not. If the network’s response is wrong, the parameters change
according to some learning rule such that the chance for the network to give a correct

answer to the inputs increases.

We investigate several supervised learning models and focus on questions concern-
ing the convergence of these processes. The tools we use in the analysis are martingale

convergence theorems and recurrence theorems for Markov processes.

In chapter 2 we analyze linear learning processes (the Perceptron learning rule and the
Projection model). We show that in certain cases the Perceptron learning algorithm does
not converge, while the Projection model converges almost surely and the limit networks

agrees with the teacher for almost every input.

In chapter 3 we introduce a general on—line supervised learning model. We show, for
example, that if there are “many” states which are in complete agreement with the teacher

then the process converges to one of those states.

There are many learning rules which are not aided by a teacher. A tool frequently
used in the analysis of such models in the Stochastic Approzimation process. Thus, in the
first chapter we present a thorough investigation of this process in sufficiently nice Banach
spaces. We are particularly interested in so—called stochastic Lyapunov systems. We show,
for instance, that in finite dimensional spaces this process converges to a local minimizer
of the system’s Lyapunov function. Also, we introduce a new version of the stochastic
approximation process in Hilbert spaces and use it to construct an adaptive process which

converges to solutions of Reaction—Diffusion equations.

The unsupervised learning process we investigate in chapter 4 is the well known Ko-
honen learning rule. Here, we try to answer questions regarding the self-organization
properties of this process. We show that the orbits of the Kohonen process frequently

enter the set of “organized” states.



In the last section of chapter 4 we introduce a smooth version of the Kohonen rule which
is connected to an optimization problem called the “lazy traveling salesman” problem. We
use results derived in chapter 1 to offer an adaptive stochastic process which converges to

the solution of this optimization problem.
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What is a neural network

Roughly speaking, a neural network consists of a finite number of “black boxes” and
an architecture of connections between the boxes. Each black box can receive an input
and according to some rule it produces an output. The architecture determines which of
boxes are connected and what is the strength of each connection.

During a learning process the network is exposed to inputs, yields outputs and changes
its parameters according to some learning rule. The learning rule may change the strength
of the connections between the boxes or even the decision making mechanism of each box.

We view a network as a point in some state space, hence the learning process is a
stochastic process defined on that state space. In this thesis we investigate the behavior
of limits of such stochastic learning processes.

We separate the discussion to two categories, the first of which is called supervised
learning. In such learning rules the learning process is aided by a teacher in the following
way: both the teacher and the student are exposed to inputs and the student changes its
position when its response does not agree with that of the teacher. In cases of an incorrect
answer, the learning rule should move the student closer to the teacher in some sense. In
the second category, called unsupervised learning, the adaptive process is not aided by a
teacher.

We wish to note that sometimes the network’s architecture and its decision making
mechanism are not described. Rather, we view the network as an element in a state space

and the learning rule is given by the transition density for state to state.



Chapter 1 — Stochastic approximation of Lyapunov systems



0 — Introduction
The main object of this chapter is the study of stochastic approximation in infinite
dimensional spaces. As an example we consider the scalar valued, semilinear parabolic

equation on a domain Q x IRT where Q C IR?

(0.1) 2_1; = Au+ f(u) 5 u(0) = ug

and u € TH{ () for ¢t > 0.

Let (V;), 7 = 0,1,2,... be a sequence of independent identically distributed (i.i.d)
random variables subjected to the probability law p and consider a function f = f(u,v)
where f(u) = [ f(u,v)u(dv). Given a sequence t, — oo such that ;41 —#; — 0, we define

the random process V; for t > 0 by V; = V; if t € [tj,t;41). A stochastic approximation of
(0.1) is obtained by

(0.1°) X AU+ V) ¢ U(0) =

In the present example, the system (0.1) is a gradient flow with respect to the functional

Py =5 [ (9uf = [ gt

where ¢ is the primitive function given by ¢(u) = fu f. Hence

(0.2) Z—IZ = —D,F(u)

Similarly, (0.1*) is a gradient flow as well:

(0.2*) %—(tj = —DyG(U. V)

where

G(U,V) = %/Q|VU|2—/QQ(U7V)

and ¢g(U, V) = fU f(s,V)ds.

In this case, we wish to investigate the relations between the critical points of F' and
the asymptotic limits of (0.2*).

In its original context, Stochastic Approzimation is a process defined by a stochas-

tic difference equation in IR?. It was first investigated during the early 1950s by Kiefer
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and Wolfowitz ([KW]) and by Robbins and Monro ([RM]) who considered the particular

example

where f(X,) is a random function interpreted as the result of an experiment conducted
at the state X,,. The object was to show that the process above converges almost surely
to a deterministic value x which satisfies h(x) = 1/2, where h(—oo) = 0 and 2% is the
probability distribution of the outcome of a single experiment.

After the pioneering work which appeared in [RM] and [KW], the process became
the subject of a large number of papers and manuscripts. The definition of the stochastic

approximation process was extended significantly to a more general form:
(0.3) Xop1 =1, (Xn, Vo) =Xy — e, H(X,, V)

where H(X,,V,) are random variables which represent samples of a given function on
the state space, but unlike the example above may depend on other parameters and not
just on X,,. In general, X, and V,, are not assumed to be independent and even ¢,, are
sometimes assumed to be positive random variables instead of a fixed positive sequence.
The questions asked in this context are under what assumptions does the process converge
and do the limits give any additional information on the sampled function.

A detailed survey of the subject up to the mid 1960s can be found in [W]. Another
source of information is Kushner and Clark’s book from 1978 ([KC]). The most recent
survey is due to Kushner and Yin ([KY]) which covers the latest developments concerning
the stochastic approximation process in a finite dimensional space. There are fewer results
concerning the process in an infinite dimensional setting, most of which are elementary
extensions of the finite dimensional case. Some results concerning the process in Hilbert
spaces may be found in [LPW].

In this chapter we offer two possible extensions to the process (0.3) in infinite dimen-
sional spaces. In the first section we investigate an analog to (0.3) in Banach spaces with
a sufficiently smooth norm and under the assumption that the system has a stochastic
Lyapunov function. For example, if the space is a Hilbert space then the process (0.3)
has a stochastic Lyapunov function if H is the derivative of some smooth function G. We
also assume that (V},) are ii.d., that X,, and V|, are independent and that > e, = oo,

> el < oo where 1 < p < 2 is determined by the geometry of the space.

7



It is well known (see [KY]) that if G is a smooth function on IR¢ and if (X,,) are
uniformly bounded then (X,,) converges almost surely to the set of critical points of F,
where F(z) = [ G(z,v)pu(dv). It is also known that if z is a local minimum of F' then there
is a compact set I containing x, such that if a sample path (x,) of the process enters I
infinitely often then z,, — .

The proofs of those results are both due to Kushner and Clark ([KC]) and follow
from the fact that orbits (x,) can be approximated by the deterministic gradient flow
& = —VF(x), analogous to (0.2).

In the first section we present a simple proof of the convergence of (X,) to the set
of the critical points of F' in sufficiently smooth Banach spaces. Our method, based
on convergence theorems for Banach valued martingales ([P]) and classical martingale
theory ([S]) enables us to obtain sharper results concerning the actual limits of X,,. In
particular we obtain that under natural conditions in finite dimensional spaces the process
X, converges a.s. to a local minimizer of F. More generally, if all the solutions of z =
—VF(x), excluding a set of initial data of Lebesgue measure zero, converge to limit points
in a set C C K, where K is the set of the critical points of F, then the corresponding
stochastic approximations converge a.s. to limits in C as well. As an example, suppose
that the stochastic approximation is given in IR? (i.e. G = G((x,y),v)) while the averaged
F = F(z). Then our results yield not only the convergence of the first coordinate sequence
Ty, to a critical point of F' almost surely, but it implies that (x,,y,) converges as well.

In the second section we introduce a generalization of the process (0.3) in a Hilbert
spaces. We may define T. as the compact operator given by the nonlinear semigroup
generated by the flow (0.2*) for a time interval of length ¢, = t,,41 — t,, where V is fixed
on that interval of time. We show that, under some conceivable assumptions, a stochastic
approximation of this type converges to a critical point of F', provided we have some a-
priori local estimate of the type ||T-(V)o X — X|| < CeP~! in the Hilbert space norm
where 1 < p <2 and (¢,) € [,.

In the third part we demonstrate that the conditions of section 2 hold for reaction
diffusion equations of the type (0.1*) with p = 3/2 and in the fourth and final part we

prove results concerning the weak convergence of stochastic Lyapunov systems.



1 — Stochastic gradient descent in Banach spaces — classical approach

The stochastic gradient descent process in a finite dimensional space is an example
of the celebrated stochastic approximation process: define the process on IR? by X, 4| =
X, — e, H(X,, V), where H : R? x Q — IR? is continuous, (V,,) C Q are i.i.d random
variables with a common distribution which is induced by the measure p on Q and (g,) is
a positive sequence which belongs to l3\lq, i.e., Zei = o0, ZE? < o0o. It 1s well known
([KY]) that if X,, are uniformly bounded then the limit points of (X, ) are in the invariant
set of the O.D.E @ = [ H(z,v)u(dv) almost surely with respect to the measure induced
by the process.

In this section we extend this result to a more general case under additional assump-
tions on the function H.

We begin with the following definitions and notations. For every Banach space IB and

7> 0 let pp(7) be the modulus of smoothness of IB defined by

pi(7) = sup{(|le +yl| + |l —yl)/2 -1, z,yeB,|z|| =1, |jy]| =7}

We say that IB is p—smooth if pp(7) < C7P for some 1 < p < 2. B is called strictly convex
if from the fact that ||z|| = ||y|| = 1 follows that ||z + y|| /2 = 1 if and only if © = y.
Recall that if IB is a strictly convex p—smooth Banach space then IB is reflexive with a
differentiable norm (see [D]).
For every Banach space E the normalized duality map J : E — E* is a set valued function
given by

Jpe = {a* € E*|(a*x) = all*, [z = "]}

In our case Jp is a single valued one to one function and Jp+Jp = Iy. Also note that
JB is the derivative of % H:L'HZ Let H : IB x Q — IB, put p a probability measure on 2,
set V,, to be 1.i.d random variables which are given by the measure p and let (¢,,) € [\ /5.
Assume that for every v € B, IE,H(z,v) = [ H(z,v)du(v) exists, where the integration

is in the Bochner sense. We define the stochastic approximation associated with H by
(11) Xn_|_1 :Xn —€nH(Xn,Vn)

Definition. We say that the process (1.1) is a stochastic Lyapunov system if there exists
a function F' : IB — IR such that F € C’llo’i(IB) and DF = Jp(IE,H).
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If, for example, IB is a Hilbert space then it has smoothness type p = 2 and Jp is
the identity map. If H is the derivative of some function G(x,v) with respect to the first
variable, where G(—,v) € C’llo’i(IB) uniformly p—almost surely, i.e., for any bounded set

B C IB there exists a C' such that for almost every v € Q
Sp [ Do Ga || < € sup [[DeGiay ) = DaGaym || < Cllar — o]
reB r€B

then the process (1.1) is a stochastic Lyapunov system. Indeed this follows by putting
F(z) = [ G(z,v)du(v). The reason for the name “stochastic Lyapunov system” comes
from the fact that F' is a Lyapunov function for the deterministic gradient descent (z,)

defined by
(1.2) Zng1 = 2n — EnJB*DF(zy)

which is in some sense the average of the process (1.1).
Throughout this section we assume that the process (1.1) is a stochastic Lyapunov system,

that IB is a p—smooth strictly convex Banach space, that (¢,,) € [,\l; and:

Al. H(—,v) locally Lipschitz uniformly p—almost surely, i.e., for any bounded set B C 1B

there exists a C' such that for almost every v € ()

sup [[H(z,v)|| < C, sup ||H(z1,v)— H(z,v)|| < C|lxy — 22|
reB TEB

Let K be the set of the critical points of F' (i.e. DF(x) = 0). Recall that A is a critical
value of F if there is a critical point « of F' such that F(x) = A and denote by K the set

of such critical points. We assume that
A2, K, is totally disconnected for any critical value of F.
In certain cases we replace assumption Al with the following:

A3. H(—,v) is both bounded and Lipschitz uniformly p-a.s. and F is bounded from

below on 1B.

We denote by 7 the measure induced on the orbits of the process (1.1) and by | | a Borel
probability measure on IB.

We formulate our first claim:
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Theorem 1.1. Let X, be defined by the process (1.1) and assume that (A1,A2) are
satisfied. If X,, are uniformly bounded then F(X,) converges and DFx, — 0 almost
surely. Moreover, if F and DF are weakly continuous then for T—almost every sample
path (x,,) of the process (1.1) there exists a critical value A of F' such that (x,) converges
weakly and its limit belongs to the set . The same assertion holds even if (X,,) is not

assumed to be uniformly bounded but conditions A2 and A3 are granted and F' is coercive
(ie. lim F(x)= c0).

l|z|l—o0

The idea behind the convergence theorem presented here is to divide the process
into its stochastic part H(x,v) — Jp« DF(2) and deterministic part Jp« DF(x). We show
that the stochastic element of the process (1.1) is well behaved in the sense that forms
a converging series almost surely. Hence, the orbits of the process (1.1) are close to the

orbits of the gradient descent process (1.2).

Lemma 1.2. Put Z, = e, [E(H(X,.V,)|X,) — H(X,.V,)] and Y, = (DF(X,). Z,).
where X, are given by the process (1.1). If H(—,v) = DG_, is uniformly bounded

T-almost surely then Z Y, and Z Z, converge T—almost surely.

n=1 n=1
Proof: Let F,, be the o-algebra generated by Xi,V;..., X,,V,, and note that F,_; =
o(Fn-1,Xy). Clearly both Y, and Z,, are F,,—measurable uniformly bounded martingale
difference sequences, i.e. IE(Y,|F,—1) =0 and [E(Z,|F,—1) = 0. Indeed,

B(Za| For) = n B (H(Xo, Vo)l Facs ) = eaB(H(X, Vi)l Faa ) = 0

and since DF(X,,) is F,—1 measurable then by the properties of the conditional expectation

we see that

E((DFx,,Yu)|Fao1) = (DFx, , E(Y,|Fnz1)) =0

Since Y,, is scalar valued and VarY, < C’ei then >~ VarY, converges, hence by the mar-
tingale difference convergence theorem ([S]), > Y, converges almost surely.
Finally, set S, = .| Z;. By Doob’s maximal lemma (see [P1]), for every ¢t > 0 and every

n € IN
supy, IE || Sk — Sall”
tp

7 ({supl|Snss = Sull > 1}) <
k
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Since IB is p-smooth then by a result due to Pisier ([P2])

sup B [|Snar — Sull” _ 1 - o O
" < t—p;’\zrﬂrk” < t—pzfi
= 1="n

Therefore > Z, converges almost surely.
3

Next, we show that the process (1.1) converges to the set {z|DF(x) = 0}. The key

part in the proof is the following deterministic lemma, which is a modification of a result

appearing in [LPW].

Lemma 1.3. Let (x,),(un) C B, (e,) € [\, where 241 = 2y, — e JB«DFy, + cpty,.
Assume that (F(x,)) is bounded from below and that DF is a Lipschitz function. Also
assume that both (uy) and (DF; ) are bounded sequences and that 5n<DFIn , un> < o0,
> epun < 0o. Then F(xy) converges, > e, [|[DFy, H2 < oo and DF, — 0.

Proof: By Taylor’s formula, there is a p,, such that

F(apg1) = F(xn) + 5n<DFpn, —Jp+DF,, + un> =
<<DF“,u ) — HDF“H2> +en(DF,, — DF,, ,u, — Jp-DF,, )

Since DF is Lipschitz and both u, and Jg«DF,, = [ H(zy,v)du(v) are bounded then
en(DF,, — DF;, up — J+DF, )| < €0C ||pn — 20| < enC ||zns1 — za]] < C'el

Iterating the expansion for F(x,41) we see that

Fltut1) = F(a1)+ Y ei(DF,, . u Zel |IDF,, | +Zﬂl
=1

where Y [° 3; converges absolutely.

Since > 5i<DFm,ui> converges and F(x,) is bounded from below, > ¢, ||DF,, H2 is a
positive bounded series, thus it converges, which implies that F(x, ) converges as well.
Next, assume that |[DF, | > ¢ infinitely often. Hence, we can find an N such that
|DF, || > 6, 3% €k HDF”H2 < §%/8C and ||>_% erukl| < 6/4C, where C is the Lipschitz
constant of DF,. We show using induction that |DF, | > 6/2 for every n > N. Indeed,
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by the definition of the process and using the induction hypothesis

n
E ExUk

k=N

n
§ ERUE
k=N

7

lenr —anll < D ek IDFe, || +
k=N

2
<= Z 4| DF, |

<

< 6/2C

On the other hand,

|DF.. .| 2 IDF.y | - |DF.., - DF., | >

Nl

2 |[DE | = Cllents —anl 26— 6/2=06/2

Therefore, since (e,,) € Iy, > ey || Dy, H2 diverges, which is a contradiction.

Proof of Theorem 1.1: Set U, = <IE(H(Xn,Vn)|Xn) - H(Xn,Vn)>. If (X,) are
uniformly bounded or if A3 is satisfied then both Z,, = ¢,U, and Y,, = <DFXn,Zn> are
uniformly bounded, thus by Lemma 1.2 both > &,U, and > e, (DFx, ,U,) converge 7—
almost surely. Therefore, in both cases the assumptions of lemma 1.3 hold for 7—almost
every orbit. It follows that for 7—almost every orbit (x,), F(x,) converges and DF(x, ) —

0. Hence, since F and DF are weakly continuous, there is a critical value A of F' such that

o= Ul € Ky

E>1 5>k

where the closure is with respect to the weak topology. We claim that QE‘;n) is connected
and nonempty. Indeed, note that in both cases (x,) is bounded — in the first case by the
assumption that X, are uniformly bounded and in the second, since by lemma 1.2 F(x,,)

converges and since F' is coercive then x, must be bounded. Thus, U (z;) is a compact

J>k
set and Q(x ) s nonempty as an intersection of nested compact sets. To show that Q(x )

is connected, note that if it is not the case, there are disjoint weakly open and closed
(compact) sets Cq, Cy C QE‘;n) such that C;UC, = QE‘;n). Hence, since the weak topology
on () is metrizable and by the properties of that metric, there are weakly open sets U
and U with disjoint weak closures, such that C; C U;. Both €| and C5 contain weak

limit points of (2, ) and since |[2,41 — || = 0, there is a subsequence (x,,; ) C (U3 UUs)".
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Therefore, there is a weak limit point of (z,) outside Cy U Cy which is a contradiction.

Since K is totally disconnected, QE‘;n) consists of a single point, thus (z,) itself must
converge.

o

The next step is to prove that the behavior of the orbits of the process (1.1) is de-

termined in some sense by the O.D.E (1.3) below. From this follows that in the case

B = IR?, if X has a density which is equivalent to the Lebesgue measure and under mild

assumptions on F', X,, converges almost surely to a local minimum of F'.

We impose the additional assumption:

A4. For any measurable set A C IB, every n > 0 and almost every v € €,
Hyly = o — e H(x,v); @ € A} =0 if and only if |A]|=0

Note that if IB = IRY, H(z,v) = V,G(z,v) and G satisfies A3, then if ¢, is sufficiently
small A4 holds — since the map * — « — ¢,V,G(x,v) is invertible. Also note that from
A4 follows that the distributions of X| and X,, are equivalent.

The next result deals with the connection of the O.D.E

dx
1. & Jp.DF,
(1.3) 7 JB

and the process (1.1).

Theorem 1.4. Assume that A3 and A4 hold, that X; has a distribution which is equiva-
lent to | | and that there is a set C C K such that for | |-almost every @ € IB the solution
x(t) of (1.3) for which x(0) = X; converges to some k € C ast — oo. Then for T—almost
every orbit (z,) of the process (1.1), either 1, is empty or nlerolo x, exists and belongs

to C.

Proof: Forevery @ € B, let 7,(¢) be the solution of (1.3) such that 7,(0) = x. Define Ny C
BB in the following way: = &€ Ny if tlinglo 7, (t) exists and belongs to C'. Since |Ng| = 0 and
since X has a distribution which is equivalent to | | then 7({(X,)|X; € Ny for some i}) =
0. Hence, for 7—almost every orbit (2,,), > _ &, <E<H(Xn, Vn)|Xn> —H(X,, Vn)> converges,
and for every n the solution #(#) of (1.3) such that (0) = x,, converges to some point in

C ast — oo. Let (x,) be such an orbit.
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Clearly
Tpt1 = Tp — EnJBDFy, 424 <E<H(wn,vn)|Xn = :L'n> — H(:L'n,vn)>

Denote E(H(Xn,vn)|Xn = :L'n> — H(xn,vy) by up. Put t, = ] ¢; and let U(t) be the
linear interpolation defined by U(0) = Xy, U(t,) = > €iu;.

Set *(t) = 3 X[tn tnsa]Tnt1s 2(t) = 20 — [y Jpe DFype(yds + U(t) and &, (t) = #(t + ta).
Note that #(t,) = #,(0) = x,,. Moreover,

in(t) = (#a(0) - /Ot T DF; (ds) + (Ut +10) = Ulta)) -

1 1
- </ JB DFx*(s—|—tn)d3 - / JIB*Dchn(s)ds> = fn(t) + An(t) + Bn(t)
0 0

Since T,(t) is a solution of (1.3) then lim 7,(t) exists, belongs to C' and we denote it by

t—o0
kp.
By the definitions of (t) and «*(t), we see that
tn-|—1
| Nl = 2@ de < g = vl 2 /2 < €'
tn

and since Jp«DF = [ H(x,v)du(v) is a Lipschitz function then

therefore, for every n, ||B,(t)|| < C'> °°

U(t,) =73 eiu; then lim U(t+t,)— U(t,) = 0 uniformly. Fix § > 0. There is an N(§)
such that for every t > 0, ||[An(f) + Bn(?)]] < 6, therefore, ||in(t) — Tn(t)|| < 6 for every
t > 0. Since tlim en(t) = ky then Q) C Bry(6n). Hence, Q) C ﬂ BkN(é)((S) which

e 6>0
implies that if €2, ) is not empty, then %i_r}r(l) kn(sy exists and that ¢, ) = %i_r}r(l) En(sy- Thus

t
/ JIB*DFi(S—I—tn) - JIB*DFx*(3—|—tn)d8
0

t+t, [e%¢]
<c [ it -srela ey s
tn n

e? and since U(t) is the linear interpolation of

() converges to some k € C'.
o
Note that the theorem will still be true if we assume A1,A4 and impose that X, are

uniformly bounded.

From here on, we assume that IB is a finite dimensional space. Theorem 1.4 implies

that the behavior of the process (1.1) is determined by the O.D.E (1.3) under the assumed
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conditions. Also note that €, ) is not empty, since by the proof of theorem 1.4 (z,)
is bounded. We present in Corollary 1.7 below an example in which the conditions of
theorem 1.4 are fulfilled and prove that the process (1.1) converges to a local minimum of
F 7—almost surely. For examples in which weaker conditions than the ones in corollary 1.7
are imposed but the limit of (1.3) still exists for Lebesgue almost every initial condition,
we refer the reader to [A].

We add the additional assumption:

A5. All the critical points of F' are non degenerate. In particular, the set I of the critical

points of F' is (at most) countable.

The following result concerning the O.D.E (1.3) in IR? is well known and its proof is
omitted.
Proposition 1.5. Let B = (IR%,| ||,) and let | | be a probability measure equivalent to

the Lebesgue measure.

a. If the solution x(t) of (1.3) is bounded on t > 0 then tlim x(t) exists and is a critical

point of F. In particular, if F is coercive then the above limit exists for any z(0) € IR?.

b. For any non-degenerate critical point x, of F the stable W?*(x.) and unstable W*(x.)
manifolds of (1.3) are embedded in R,

Since an embedded manifold of non zero co—dimension is of Lebesgue measure 0 we

obtain:

Proposition 1.6. If F is coercive and all its critical points are non degenerate then there
exists a set Ny C IR, |Ng| = 0 such that tlim x(t) is a local minimum of F provided that
—

x(0) € N§.

Proof: Let K" C K (K° C K) be the set of unstable (stable) critical points of F

and denote W?*(K") = U We(x) (res. W3(K?) = U W*(x)). Since W*(x) is an
rEKUY rEK*
embedded manifold of dimension k < d for any * € K® and there are a countable number

of such points, then W*(K*) = 0. Since IR = W*(K") U W?*(K*) we obtain that Ny =
W#(K™) as required.
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Corollary 1.7. Let (B = IR, || |,) and set H(x,v) = V,G(z,v). Assume that A3 and
A5 hold, that Xy has a distribution which is equivalent to the Lebesgue measure and that
F is coercive. Then t-almost surely the process (1.1) converges and its limits are local

minima of F.

Proof: This follows immediately from proposition 1.6 and theorem 1.4, by setting C' to

be the set of local minima of F'.

2 — The infinite dimensional case — compact operator approach

In this section, we present a generalization of the process (1.1) to a Hilbert space.
The essential difference between this and the previous case is that the gradient (Fréchet
derivative) of G may be in general, a random unbounded operator on the underlying space.
In actual applications (c.f. next section) the gradient of G generates a nonlinear random
continuous semigroup which is a compact perturbation of a linear (deterministic) one. This
example motivates the assumptions below:

Let IH; C Hy be Hilbert spaces equipped with the norms || ||}, 2 = 0,1. Assume that
on Hy, ||z, < Clz|ly, and that IH; is compactly embedded in Hy. Denote by < \ > the
inner product in Hy and let (§2, i) be a Borel probability space. Suppose that G : IHy xQ2 —
IR is a Fréchet differentiable function on IH; for p—almost every v € Q2. For every fixed v,
denote by D, G the derivative of G with respect to the first variable and assume that for
every v € IH;, D,G, — is 1t measurable and that ess su‘lc; HDIGI,UH(]Hl,H 1) < C(x). We
denote (H;y, || ||,)* by H_; and let CCV([O, T; ]H1> be vtile space of functions from [0, 7] to
HH; which are a—Holder.

The following observation, which was noted in the first section, is standard and its

proof is omitted.

Lemma 2.1. Put F(z) = [ G(x,v)du(v). Then F is Fréchet differentiable with respect
to the norm || ||y, on My and DF = [ D,G, ,du(v), where the integration is in the

Bochner sense.

n—1

Fix 0 <a<1,let (e5) € [,\l1 wherep=a+1andset t, =) &, t; =0.

The process is defined as follows: Let Xy = ug € IHy. Then X, 41 = u(e,) where u is

17



the solution of

du

and u(0) = X,,. We make the following assumptions:

A1l. For any u(0) € H; there exists T > 0 and C, depending only on ||ug||y, , such that
the equation (2.1) is solvable in the interval [0, T, the solution v € C*([0,T];H; ) is unique

in this interval and HUHCQ([O TIH,) < C.

A2. Forevery bounded set B C H; exists a C' such that forevery x,y € B, z € IlH; andv €
Q, ‘<DIG$,U,Z>‘ < CHZH]I{1 and ‘<DIG$,U — Dwa,v,ZH < Cle — yH]H1 HZH]Hl Clearly,
the same estimates also hold for F, i.e., ‘<DF$,Z>‘ < C|z||y, and ‘<DF$ — DFy,ZH <

Clle = yll, 12,

A3. For almost every v € Q, Q, = D,G(_ )y — DF maps Iy to H;. The family (Q,) is
uniformly bounded on bounded sets in H; and esssup [|Qu(z) — Qu(y)|ly, < Cllz — ylly,
vEQN

Assumption A3 implies that although D,G maps IH; into IH_;, the "stochastic part” of
D, G is a bounded random operator into IHy, namely D, G — DF maps H; to H;.

Evidently, by Al, the process is well defined if we have an a-priori bound on || Xy ||y,
for ¢, which are sufficiently small. We shall refer to the natural extension of (X,,) into a
continuous orbit X(t), t > 0 by X(t) = u(t —t,,) for t € (t,,tn41) where u is the solution
of (2.1) subjected to u(0) = X,,. Therefore, if X; = x then every sequence (v, ) induces a
time continuous sample path.

We make the following additional assumption:

A4. Thereis a I C H; and C such that if X € K a.s., the process (2.1) is well defined

and sup || X (t)||yy, < C holds for almost every time continuous sample path.
R+

We limit the discussion to the case where the initial conditions are selected from K.

Recall the definition of a version of the Palais—Smale condition (P.S.) (see [MW]):

18



Definition 2.2. Let F € C'(H;, || g1, ). We say that F' satisfies the P.S. condition if
from the fact that F(x,) — A and DF(x,) — 0 in H_; follows that A is a critical value

of F' and (x, ) contains a subsequence which converges weakly to a critical point in K.
Our main result is:

Theorem 2.3. For almost every sample path of the process (2.1), (F(:L'n)> converges and
there exists a subsequence ny along which

lim D, F(xy,,)=0

k—o0
holds in H_q. Also, if F satisfies the P.S. condition, then for almost every sample path

(xy) there exists a critical value A of F such that all the limit points of (x,,) are contained

i Iy,

Corollary 2.4. Under the condition of Theorem 2.3, if F satisfies the P.S. condition and
the set Ky is totally disconnected in Hy for every critical value )\ then for almost every

sample path (x,) there is a critical value A and x € K so that ¥, — v in Hy.

The proof of this Corollary is identical to the proof of the corresponding part in
Theorem 1.1, by setting

Qe = () )

n>0k>n
where the closure is in IHy. Since IH; is compactly embedded in Hy then €, ) is compact
and connected in Hy. Hence €, ) C Ky, therefore it consists of a single point.

To prove Theorem 2.3 we introduce:

Lemma 2.5. For almost every continuous time sample path x(t) the series

) tng
Z /t <DF$(t)7 DGx(t),vn — DFx(t)>dt
n=1 n

converges.

Proof: Let x(t) be induced by the sequence of inputs (v1, v, ....). Note that
th41 th41
B = / (DFy(t), DG (1) 0, — DFyp(y)dt = / (DF:,, DG y1),0, — DFy(p))dt+
tn tn
tn-|—1
+ / (DF,(ty — DFy,, DG (1) 0, — DFy(1))dt = (1) + (2)
tn

19



To estimate (2), note that since x(t) is bounded in IH; then so is Q(x(t)) = DG (4,0, —
DF, (. Thus, by A2, [(2)] < Cftt"+1 |2(t) — ][y, , hence by Al
()< Cen smpJo(t) — a(ta)llyy, < "<
tE[tn tnt1]

Next, note that

U =en{DE Qo)+ (DF [ (Qualt) — Qo))

S

Again, since by A4 x(t) is bounded in H; then by A2, A3 and Al

Since > e? < oo it is enough to show that Y -, 5n<DFxn,Qvn (:z:n)> converges for almost

DFQ,J,M/t:"+1 (Qvn(l‘(t)) - Qvn(xn)>dt>‘ <

enC’ sup |[Qu, (2(t)) = Qu, (vn)|lg, < Ce,

te[tn ,tn-|—1]

| /\ P

every orbit (x,).
Let F, be the o-algebra generated by Xy, Vi,...X,,,V,, and put Y, = €n<DFXn , Qv(Xn)>

Note that Y, is F, measurable and X,, is F,_; measurable. moreover
E(Qu(Xn)|Faz1) = E(DxGx,,v, — DFx,|Fa_1) = /QDXGXn,Vd,,L(v) —DFx, =0
Hence,
E(Y|Fa-1) = enIB((DFyx,, Qu(xu))[Fu—1) = en (DFx,, B(Qy (x0)|Faz1)) = 0

thus, V), forms a martingale difference sequence. By A4, X, are uniformly bounded in IH;,
thus by A2,
‘<DFXn ’ Qv(Xn)H S C HQU(XTL)H]I—Il S Cl

therefore, V), are uniformly bounded and ) [” VarY, converges absolutely almost surely,

implying, just as in section 1, that >~ | Y, converges almost surely.

Proof of Theorem 2.3: Note that

b OF (2(t mol ot

tin m—1 tit1
= —/t 1220 DY /t (DEy(a), DGaey v = DFan))

n
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By lemma 2.5, the second term is a converging series and since (F(x,)) is a bounded
sequence, it follows that F(x,) converges and fooo HDFx(t) H2 < 00. In particular, there is

‘Dﬂ% 0.

a subsequence z,, such that

To prove the second part of the theorem, assume that there exists an IHy limit point of
(2y), denoted by «, such that « € IH; but is not a critical point of F. Then thereisa ¢ > 0
and a radius R such that | DF,|| > 6 on N = {y[||ly — 2|/, < R} NIH;. Indeed, if this is
not the case, there is a sequence (y, ) C H; such that ||y, — :L’H]HO — 0and DF,, — 0. By
the P.S. condition there is a subsequence (y,; ) converging weakly to a critical point of F’
— thus # must be a critical point.

Assume that ||z, — 2|, < p < Rand let T" = 71_1r>1f(; {Hx(tn +7) =2l = R}, ie.,
T* < oo is the minimal time required to leave N given that x(¢,) = x,. We now use the
uniform a—Hoélder estimate on the solutions (assumption Al) to show that T cannot be

too small. If T is smaller than the interval of existence T of (2.1) (c.f. assumption Al),

then ||x(t, + T7) — x,|| < C(T*)* by Al and
R = et + T%) — ey, < le(tn + T%) — zalgg, +p < CT) +p

Therefore, T* > <?> . This implies that

[e’e] t,+T* R —p %
Z HDFGmﬂfﬁ>jl |DF o dt > 6(=5F)

n

which contradicts the convergence of fooo HDFf(t) H2 dt.

3 — Applications for reaction-diffusion equations
In this section we demonstrate an application of the results from section 2 to a class

of reaction-diffusion equations of the form

oU
(3.1) S = AUHFUTV) L u(0) = u € Hy

where A is an unbounded, self-adjoint negative operator in a Hilbert space IHy which

generates the continuous semigroup e/ : RT x Hy — IH;.
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For any ¢« > 0, define H; in terms of the spectral family of projection valued measures
IP of the operator A (see [RS]). Let o(A) be the spectrum of A, then ¢ € H; if and only
if
lolls, = | Y (0, dPA(9) < o

Assume that H, = IL2(Q) where § C IR? and A is a uniformly elliptic operator in
with appropriate boundary conditions (One may keep in mind, for example, A = A is the
Laplacian with Dirichlet boundary conditions and Hy = Wol’z(Q)).

As in the previous section the parameter V is a random function of time give by

Vi=wv, if t € [ty,tny1), where

>0
) 3/2
to=0 |, nlirr;otn:oo \ g(t,ﬂ_l—tn)/ < o0
n=0

while V,, € Q are distributed according to a probability measure .

Assume that for almost every v, f(s,v) is a continuous function with respect to the
parameter s. Let g(s,v) be the primitive function g(s,v) = [ f(p,v)dp and put

1
G(U,v) = —§<AU,U> — / g(U,v)dx
Q

then D, G(U,v) = —AU — f(U,v), hence (3.1) is an example of the process (2.1). Also, we
assume that the Nimitzky operator f(—,v) maps H; NIL., for ¢« = 0,1 into itself uniformly
with respect to v. In the case where Q is bounded, this follows if, for example, f(—,v) €

Cl

loc

Cl

loc

(IR) uniformly with respect to v, and when  is unbounded, if f = f(—,z,v) €
(IR, ©2) uniformly in v and satisfies certain decay properties where @ — oo. Moreover,
assume that there exists a function M > 0, independent of v, such that Uf(U,—) < 0
whenever |U| > M.

Denote by f = [ f(u,v)du(v) and set F(u) = [ G(u,v)du(v). Clearly uf(u) < 0 for
lu| > M and f maps IH; N L., into itself as well. Thus, F is defined on IH; N B for any
bounded set B C ILoo(€2). Moreover, by the maximum principle [PW] the solution of

(3.2) 2_1; = Au+ f(u) , u(0) ==

and the solution U of (3.1) both satisfy
(33) U= Do <M 5 u(= D)l <M
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for any ¢t > 0 provided ||z < M.

Note that the steady states of (3.2) are the critical points of " and let ICE\Z) =IH,NB,,,
where B, is the ball of radius M in Lo (). By the maximum principle, all the steady
states of (3.2) are in the set ICE\?, which implies that the set of the critical points of F' are
in ICE\}) as well.

We shall show that under our assumptions, the process (2.1) converge a.s. to a critical
point of F, i.e., to a solution w € IH; of Aw+ f(w) = 0 provided that the set of its solutions
is totally disconnected (for example, if the number of solutions is countable). To that end
we show that the assumptions A1-A4 are fulfilled, hence the assertions of theorem 2.3 and
corollary 2.4 hold.

Let the set of initial conditions K (appearing in assumption A4) be /CE\Z), for some
M' > M. For this K, assumption A4 is verified. Indeed, the solution U of (3.1) is
bounded by M in Lo by the maximum principle. By the assumed properties of f we
obtain that f(U(—,V;)) is bounded uniformly in time with respect to the IHy norm.

Consider the linear equation

U
(3.4) =AU 4g(—t) . U(0) = € H,

where g(—,t) = f(U,V;). Since ¢ € Loo(IR*;THy) it follows that U € L..(IR*;TH;).
Together with the uniform IL., estimate we have on U and the assumptions on f we
obtain that g € IL.(IR™;TH;).

Next we show that assumption Al holds in an abstract Hilbert space setting. To
verify Al it is enough to show that U € C'/2(IR*;TH;). This is obtained by a uniform

estimate of the solution in Hs:

Proposition 3.1. The solution U of (3.1) satisfies U € ILoo(IR*,Hy).

The proof of the Holder continuity of U in the IH; norm follows from proposition 3.1
in two steps. In the first step, we use the IH; estimate on U to show that U is Lipschitz
in the Hy norm. Indeed, Let z.(¢t) = U(t + 7) — U(t). Since HUH]H2 and HAUH]HO are

equivalent then

3y e (O, = (o0 %5 ) = e AT 1) 04 ) <

< lerllm, Ulg(t+ ), +1UE + 7, )
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Thus, since ¢ = f(U,v;) is uniformly bounded in H; and by the proposition, U €&
Lip(R*;Hy). From the interpolation HZTH]Hl < C’HZTH]IH/: HZTH]1P{22 follows that U €
Cl/Z(IR"';]Hl), as required. The proofs of the remaining assumptions A2 and A3 are
self-evident.

Proof of Proposition 3.1: We may assume x9 = 0 because it differs from the actual
solution by a solution of the homogeneous equation, which belongs to IHy, for every k > 0.
Using the presentation (3.4) with ¢(¢) = f(U,V:) and since ¢ € ILoo(IR*;H;) then U(t) =
fot et=3)4¢(s)ds. Denote by pg(d)\) = <q§,dIP)\q$> the spectral measures associated with
¢ € Hy. Hence

1
(3.5) dIP\U(t) = / 1mINIP g (s)ds

0

Taking the inner product of U(t) with (3.5) and since dIP are orthogonal projections, it
follows that

Hogo(dX) = </Ot e(t_sl)Ag(sl)dsl,/Ot =NIP g s)ds ) =
— /t /t =D=M (Y Py g(s))dsds
0 0
By the Cauchy-Schwartz inequality,
(9(s), dPag(s)) = (dPxg(s ), dPxg(s)) < (g(s

and since the spectrum of A is negative then

2

1 1 1
MU(t)(d/\) < (/0 e(t—s)AM;(/f)(d/\)> < (/0 e(t—s)Ad8> (/0 e(t—s)AMg(s)(d/\)dS>

t
g—/\_l/ 792 (dN)ds

0

IA

Therefore, if A\g =supo(A4) <0 then

1
(G /(A) M pu(dh) < = /(A)/O ATy (dN)ds <

t t
o R A e e M O
0 o(A) 0 +

s€
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4 — Weak convergence of Lyapunov systems

In this section we make a few observations on the question of weak convergence of
Lyapunov systems defined by (1.1) in p—smooth strictly convex Banach spaces. Throughout
this section we assume that X, are uniformly bounded almost surely, that H is a Lipschitz
function and that ¢, < 1 for every n. We derive our results from the following maximal

lemma:

Lemma 4.1. Let 7 be the measure induced by the process (1.1). As in proposition 1.4,
denote by X (t) the linear interpolation of X, put X, = X(t, +1t) and set X ,(t) to be

the solution of (1.3) given that X ,(0) = X,,. Then T<{ sup Hyn(tl) — Xn(tl) ‘ > /\}> <
1<i<m

C(M\)Sm.n where Sy = S0 T™ P,

n 2

Proof: Recall that Xn(t) — X, (t) = Uty +t) — U(tn) + By(t). Fix some t,,, then for
every 1 <1 <m

T<{mlax (ti) > /\}> <

< ({max | Ut + 1) = Ut = A/2}) + 7 ({max | Ba(t)l] = A/2})

As in the proof of lemma 1.1, since X, are uniformly bounded, H is Lipschitz and 1B is
p—smooth ([P1], [P2]) then by Doob’s maximal inequality follows that

T<{mZaXHU(ti +tn) = Ultn)|| > /\/2}> < C(A)Sy m. Also, by Chebyshev’s inequality
T<{m?XHBn(ti)H > A/2}> < 2B(max | By (+)])/A. Our claim follows since |[Ba(t)] <
oD ian &3

Theorem 4.2.

a. If (e,,) €[, then HX—n— XH

— 0 uniformly T-almost surely.
Lo (X)

b. If ¢, — 0 then for every A > 0 the fraction of time in which HX(tl) — X(tl)H > \ tends
to 0 in probability.

c. Ife, — 0 then there are subsequences ny and my, such that sup ynk - ka — 0
1<i<my,

as k — oo almost surely. In particular, for every T > 0 there are an infinite number of

functions X, and X,, which are arbitrarily close on an interval of time whose length is

at least T.
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d. Assume that ¢, = ¢ for every n and let X be the position of the process at the n-th
stage. Then X, — X, (tn) in probability as ¢ — 0.

Proof: (a) follows immediately from the fact that

~

> /\}> < T<{sqp Hyn - X,

T"’*:T<{HX"_X" (x)
Loo (X

(1) > M) <C) e
X, - X,

v Lo (X)

To prove (b), put Z(t) = HX(t) — X(t)H, fix A > 0 and let ¢, = % > X{z(t)>ry- Then
Eg,, = % > T<{Z(ti) > /\}> < % Ei—i_m e? and since ¢; = 0 then IEg,, — 0 for every

Since (g,,) € [, then for every A > 0, 7, » — 0, hence — 0 almost surely.

A > 0. Hence, since g, are nonnegative they converges in probability to 0.

ng+my _p
ng €% <

As for (c), since €, — 0 there are sequences ny and my such that Y o >
oo. Set Zp,(t) = Hy’”(t) - Xnk(t) :

By the lemma ZT<{12§L§M Xn, = Xo, || (t:) > /\}> < 00. Thus, by the Borel-Cantelli
lemma, max Z,,(t;) converges a.s. to 0.
1<i<tm
Finally, since T<{‘ X, — Xl(tn) > /\}> = T<{HX(tn) — Xl(tn) > /\}> < C(M)ne,

then X,, converges in probability to X, (tn).

&

Corollary 4.3. If ¢,, — 0 and tlim X (t) exists and belongs to a set C' for almost every
initial condition then the fraction of time in which d(X(t),C) > A tends to 0 in probability.
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Introduction to supervised learning models

The following two chapters are devoted to supervised learning models. In a supervised
learning model, the student is exposed to inputs and responds to them. If the response
is incorrect (i.e., it does not agree with that of the teacher), the student “learns” and
moves closer to the teacher in some sense. The first supervised learning model thoroughly
investigated was the Perceptron (see [MP],[H]). In this model, both the student S and the
teacher T are halfspaces in IR?. Given an input v € IR?, the student’s answer is incorrect
if v 1s in S but not in 7', or visa-versa. In this case, the student changes its position,
and moves “closer” to the teacher by some learning rule. Note that this learning model
is on-line, i.e., at every “learning step” the system’s response depends only on its current
state and on the input, and not, for example, on other parameters of the state space.

In the following chapters, we examine several learning processes. We formulate the well
known Perceptron convergence theorem and give a counterexample which demonstrates
that the Perceptron may not converge if the distance between the teacher and the set of
inputs is 0. From this follows that the Perceptron may not be a proper learning process —
if one wishes the student to converge to the teacher. Therefore, we suggest an alternative
learning model, in which (again) both the teacher and the student are halfspaces and
discuss its convergence properties. The approach we take in both cases in mostly geometric
and using that approach we show that the second model is useful in cases where the
Perceptron fails. Finally, we turn to a general on-line learning model. In this case the
response of the system is determined by an on-line error function, denoted by E(x,v). It is
a nonnegative function such that for every state @ (which represents a student) and every
input v, E(x,v) = 0 if and only if x gives a correct response to the input v, i.e., E(z,v) =0
if and only if = agrees with the teacher on the input v.

An example of such a model is the on-line Gibbs learning, first suggested in [KKS]. The
idea behind the on-line Gibbs learning is to describe the conditional transition density from
state to state — given the input at the n-th stage using an “on-line” energy function. The
n-th stage transition operator is defined so that on average, the transition from the n-th
stage to the n+1 stage reduces the energy. We introduce a new on-line learning process,

investigate its convergence properties and compare it to the on-line Gibbs learning.
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Chapter 2 — Linear separation models
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0 — Introduction

The most elementary model for a two layer network consists of an input layer and an
output layer with a single neuron. The output neuron has two possible responses: it can
either fire or not fire, and it fires if and only if the total input it receives surpasses a given
threshold. Denote by s the threshold of the output neuron and let w; be the synaptic
weight representing the strength of the interaction between the i-th neuron in the input

layer and the output neuron, which fires if and only if
(0.1) Z Wiv; > S

Let U = (w1, ...,wy,) be the “synaptic weights” vector. The neuron fires when U(v) =
(U,v) > s where v = (v1,..,v,,) is the input, which implies that the “firing zone” of each
neuron consists of vectors which are in the positive halfspace {v|U(v) > s}. If we assume,
for example, that the threshold of every cell is 0 and that IR? is the set of all the possible
inputs, the response of each cell in the output layer is 1 on an open halfspace of IR and
0 on its complement, when the boundary of the “firing zone” is a maximal subspace. In
the learning process the synaptic weights vector of each neuron is adapted by some pre—
determined rule, hence the relevant halfspace changes its location. Given a teacher T" and
a student S which are positive sides of a given maximal subspaces, IR? is divided to two
sets: on the first one T and S agree — which means that for every input selected from that

set, S gives the same response as the T and on the other set T and S disagree.

Left: the Perceptron fires when Y v;w; > 0. Right: On the shaded area S and T disagree
figure 0.1

Our goal is to ensure that the student converges to the teacher. To that end, we examine

two learning models: the Perceptron learning rule and the projection model.
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Although the Perceptron convergence theorem implies that the learning process con-

verges to a correct state, a crucial assumption used in the proof is that the distance between
the set of inputs and the boundary of the teacher is positive. This assumption implies that
there are many halfspaces which agree with the teacher on every input, thus the limit of
the process can be any one of the correct states and not just the teacher.
If we impose that there is a unique correct state, the distance between the boundary of
the teacher and the set of inputs must be 0 and the Perceptron convergence theorem fails.
Indeed, in the first section we present a counterexample which demonstrates that with
probability 1 the Perceptron learning rule does not converge.

To ensure the convergence of the learning process to the teacher, we formulate an
alternative linear learning model — the projection model. We show that if one uses this
learning rule the student converges to a correct state almost surely without further as-
sumptions on the set of inputs. Thus, if the set of inputs is rich enough to ensure a unique
correct state, (which is, of course, the teacher) the process converges to the teacher almost
surely.

Finally, we use the fact that we can control the limit of the learning process to con-
struct three layer networks with several neurons in its second layer and a single neuron
in the third layer, which can approximate any pre-determined number of bounded convex
sets.

Note that the number of cells in the second layer determines the number of halfspaces
the network teaches. Of course, each student halfspace may have a different teacher and
we assume that each student learns independently of the other.

To simplify our notations, we identify our inner product space IR? with its dual space
and each open halfspace X with the norm 1 functional x such that X = {y|<:1:,y> > 0}.
Clearly, we can assume that both the input space V and the state space are subsets of
the sphere S4!, and we equip V with a probability measure v which is assumed to be
absolutely continuous with respect to the Haar measure on S¢~!. For every two halfspaces
T and S, let frs(v): S1 — IR be defined by frs = xr — s, i.e., fr.s(v) = 0 if and
only if T" and S agree on the input v. We say that a state is correct if V({v e Vifrs(v) #

0}) =0.
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1 — The Perceptron

The first learning process we examine is the Perceptron learning rule, which is defined

by

Sp41

|81l

(11) §n+1 = Sp —|— 5fT,Sn (vn)vn, Sp4+1 =

where v, are i.i.d. random variables representing the input to the system and are dis-
tributed according to the probability measure v, 5, is the student halfspace in the n-th
stage, s, is its representation in S¢~! and ¢ is some positive constant.

All the analysis presented here is in the case ¢,, = ¢ for every n, but note that in the

case (g,,) € I2\l; and if we put

H(s,v) = frs(v)v = (xr(v) = xs(v))v

our process is a stochastic approximation process with the constraint |[s,| = 1.

Let T be the boundary hyperplane of the teacher T. It is known (see [H]) that if
d(T, V) > 0 (i.e., if the infimum of the distances between the boundary of the teacher and
the set of all the inputs is positive) then the process (1.1) converges to a correct answer
in a finite number of learning steps almost surely, and there in an estimate on the number
of steps required which depends only on ¢ and d(T, V). This is the well know Perceptron

convergence theorem.

Theorem 1.1. If d = d(T,V) > 0 there exists a random variable N = N(e,d) such that
for every n > N and every initial condition s, s, is a correct state. Also, the number of

times in which the system changes its position is uniformly bounded.

However, in this case a limit of the process (1.1) may not be T but some other halfspace
which is “far away” from the teacher, yet they agree on almost every input. The following
counterexample shows that theorem 1.1 does not hold in cases when the teacher is the
unique correct state of the system: with probability 1 the learning rule does not converge

at all.

Example 1.2. Let both the state space and the input set be subsets of S*. Put T =
{(z,y)|x < 0} to be the teaching halfspace, hence t = (—1,0) is its representation in
S!. and assume that V = T N S' with the probability measure induced by the Haar
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measure on S' (see figure 1.1). The idea behind the construction is as follows: since the
set of correct states has 0 measure, then with probability 1 the process does not enter
that set in a finite number of steps. As for an infinite number of learning steps, the
orbits of the process oscillate around t. Thus, for almost every orbit the process does
not converge to t due to overshooting. Formally, note that for every s € S* andv € V,
fr,s(v) > 0. Let ICs = {v|fr s(v) > 0}, i.e., ICs is the set of inputs on which S and T
disagree. The process converges to a correct state if and only if s, — t, which implies that
d(ICs, ,t) — V2. Assume that (vn) is a sequence of inputs such that s, — t and w.l.o.g.
v, € ICs, for every n, hence d(v,,,t) — /2. By taking a converging subsequence of inputs

with a limit u and passing to a limit in (1.1) we obtain that t = IIﬁ%ZII Since ||u|| =1
and since t and u are linearly dependent then either t = u or t = —u, which is impossible
since ||t — ul| = V2.

o

figure 1.1

Example 1.2 shows that in some sense the Perceptron learning rule with a constant
learning step is not useful when the task at hand is to approximate a given halfspace. It also
demonstrates that the important property used in the Perceptron convergence theorem is
that all the possible inputs are “far away” from the boundary of the teacher, which implies
that the set of correct states has a positive measure. In the following section we formulate
another learning model in which both the student and the teacher are halfspaces, however,
in this model, the student converges to the teacher when the system has a unique correct
state. This learning rule previously appeared in [IKS] as an example to the on-line Gibbs
learning process. Although their treatment deals with a more general case, it contains

several gaps and differs from the approach presented here.
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2 — The projection model
The model we suggest is as follows: let S,,,T be halfspaces and select v € S9! such
that fr s, (v) # 0. We define

Sp — <3nav>v PvJ-(Sn)
2.1 n+1 = -
(2.1) ST sn = ool 1Pus ()l

where P, is the orthogonal projection on the space orthogonal to v. If fr g, (v) =0 then

Sp4+1 = Sn.

Our main result concerning the convergence of the process (2.1) is the following:

Theorem 2.1. Let C be the set of the correct states and assume that the probability
measure v by which the inputs are selected is absolutely continuous with respect to the
Haar measure on S¢~!. Then for almost every orbit the process (2.1) converges and its
limit belongs to C'. In particular, if there is a unique correct answer, the process converges

almost surely to the teacher.

As an example (see figure 2.1 below), assume that the process (2.1) takes place in IR?
and that V = S'. In this case, as shown in figure 2.1 below, the angle between s, and t
is a decreasing function of n. It is also clear that by selecting inputs close to T, s,, moves

arbitrarily close to t, which implies that the process 2.1 converges to t almost surely.

figure 2.1

The proof of theorem 2.1 goes along the same lines as the example: first we show that
||sn — t|| is monotone decreasing and then we prove that the distance between s, and ¢
becomes arbitrarily small with probability 1.

Proof: Clearly, C' is a closed set and for every z,y € C, fx,s = fy,s almost surely.

Put ¢t € C and let h¢(s,,v) = |[sn —t|| — |[sn41 — t||. Note that if fr s(v) # 0 then
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<3,v><t,v> < 0. Since || Py (sn)|| < |[sn]| =1 then

(sns1st) = (st 1 Pus ()l = (s 0) (0,8 [Py ()] 2 ()

hence
(2.2) [$n =t = [sn41 — t]] = he(sn,v) 20

Therefore, the sequence (||s, — t||) is decreasing and bounded, which implies that for every
e > 0 and every t € C, the ball B.(t) is an absorbing set. Thus, to prove our claim it is
enough to show that for almost every sequence (s, ) and every £ > 0, there is some T € C

such that s, € B.(t) for some n, i.e., that s, € U B.(x).
r€C
Put A, = {v|fr,s(v) # 0} and A, s = {v||fr,s(v)| he(s,v) > 1/n}, let g(s) = v(A;) and

gn(s) = I/(An’3>. Clearly, for every s, A, s is an increasing sequence and UA"’S = A,

thus ¢, i1s a monotone sequence which tends to ¢ pointwise. Note that T]Looth gn and

¢ are continuous functions. Indeed, if s, — s then S¥"'N S, — S¥' NS in the

Hausdorft metric, hence fr s, converges to fr s almost surely — which implies that ¢

is continuous. By the same argument, |fr s, (v)|h¢(sm,v) converges almost surely to

|fr,s(v)] he(s,v), therefore, up to a set of zero measure, limsup A,, 5, C A, 5. Also, since
m— o0

v({v|[fr,s(v)] he(s,v) = 1/n}) = 0 then A, , C liminf A, ,  up to a set of zero measure.

Thus

lim sup V(An,3m> < V(lim sup An,3m> < I/(An’3> < V(limiann,3m> < liminfz/<An,3m>
m—oo m—0o0 m—00 m—oo
hence for every t € C lim ¢,($m) = gn(s). In particular, by Dini’s theorem ¢, — ¢
m—0o0
uniformly.

Fix e > 0 and t € C. Since ¢ is positive on the compact set S\ U B.(x) and since

xeC
gn — ¢ uniformly, then there are 6 > 0 and N such that ¢,(s) > ¢ for every n > N and

every s € Sd_l\ U B.(x). Thus, if s, ¢ U B.(x) there is a set I, C V such that
r€C zeC
v(ls,) > 6(¢), and for every v € I ||$m41 — ]| < ||sm —t]| —1/n. From this follows that

almost every orbit (s,, ) must enter U B.(x).
zeC
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So far, we formulated a linear learning process with the feature that the student S
converges to the teacher T if we assume that the set of inputs is rich enough to allow a
unique correct state. Next, we show how in that case the process (2.1) may be used to
learn complex geometric shapes. This feature is important since one of the disadvantages
found in the Perceptron learning rule was that it could be used only in systems which
are linearly separable (see [MP],[H]). Here, we show that it is possible for a network to
learn the most general shape possible, which is in this case, a pre-determined number of
convex sets. We shall approximate every convex set from the inside by a polytope. Since a
polytope is the intersection of halfspaces we can use the process 2.1 to ensure convergence

to the halfspaces determining the polytope.

First, note that theorem 2.1 may be used even when the boundary of either the
teacher’s or the student’s “firing zone” is not a maximal subspace but some hyperplane.
In a neural network that boundary is a maximal subspace if and only if the threshold of the
output unit is 0. Therefore, given a Perceptron for which the output unit has a threshold
s, we add a unit to the input layer which receives the input —1, its synaptic interaction

with the output unit is s and the output unit is assumed to have a threshold 0.

From a geometric point of view, we identify our copy of IR? with the set X = {z €
IR 2411 = —1}, extend each hyperplane in X to a maximal subspace in IR?*! and
continue the analysis in IR?T'. Now, both the teacher and the student have boundaries
which are maximal subspaces, thus, both the process (2.1) and theorem 2.1 can be extended
to include the case where the boundaries are hyperplanes. Our next goal is to show how this
may be used to “teach” complex shapes to a given network. To this end we demonstrate

how a convex set may be approximated by an intersection of a fixed number of halfspaces.

Assume that K C IR? is a bounded convex set, denote by | | the Lebesgue measure

on IR? and let ¢ > 0. Suppose that we can construct a polytope P which has «(e, d) facets
such that ' C P and |P\K| < &. Therefore P = ﬂ T; where T; are halfspaces. Let N be a
1

network which contains « units in its second layer, such that every Perceptron determines
one of the halfspaces. The network has a single neuron in the third layer with a threshold
a —1 < s < « and its synaptic interaction with every cell in the second layer is 1. Thus,
a vector v belongs to P if and only if every cell in the second layer of this network fires

in response to v and this occurs if and only if the neuron in the output layer fires. Given

35



Si,..., 9« halfspaces and since S; and S; learn independently, then by theorem 2.1 if we
adapt S; using T; then ﬂ S — ﬂ T;, i.e., the limit network N determines the polytope
1 1

P which approximates K.

The following theorem allows us to construct the set of teaching halfspaces which
determine P and gives a bound on the number of vertices required for this construction.
From this follows that such a bound also exists on the number of facets needed, which is

the number of neurons required in the second layer of the adapting network.

Theorem 2.2 ([GMRY]). For every bounded convex set K C IR? and a given number of

vertices m, one can construct a polytope P with m vertices contained in K such that the

| KA\ P f(d)
|I(| S 2

volume ratio
m dLT

In particular, for every K C B1(0) and ¢ > 0, one can construct a polytope P with
m = m(e,d) vertices at the most, such that P C I and |K\P| < e.

Corollary 2.3. Let Ky,...K; C B1(0) be convex sets. Then for every ¢ > 0 it is possible to
construct Ty, ...T,, n < la(e,d) teachers which determine Py,....P; such that Y|P\ K;| <
. A network with at most la(e, d) neurons in its second layer adapted by the process (2.1)
using the teachers T; will converge, and for every v € V and 1 <@ <[ the limit network

can determine if v € P;.

3 — Conclusions

We demonstrated that the Perceptron learning rule may be problematic when the only
correct state is the teacher, while the projection model converges to that correct state.
Thus, the projection model is useful when one wishes to ensure that the student converges
to the teacher. Then, we used the fact that every bounded convex set may be approximated
by a polytope with a pre—determined number of facets to construct a set of teaching
halfspaces which determine the approximating polytope. Using the projection model for
each halfspace separately, it is possible for the network to “learn” the approximating
polytope. Hence, a 3-layer network with a pre—determined number of units in its second
layer and with a fixed synaptic interactions between the second and third layers can adapt

and approximate every bounded convex set.
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Chapter 3 — General on-line learning models
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0 — Introduction

In this chapter we discuss an on-line learning process. The behavior of such a process
is determined by an on-line error function £(x,v) which is a nonnegative function whose
domain is the product space of the state space and the input set. £(x,v) = 0 if and only if
the student = agrees with the teacher on the input v. In such a process x is a correct state
if it agrees with the teacher on almost every input, i.e., £(x,v) = 0 almost surely. Clearly,
this is the same as having IE/( fv z,v)dv(v) = 0. The function IE, is called the

global error function.

In the general case, there may not be a correct state. Therefore, the goal of the
learning process is to converge to the global minimum of IE,. To that end, we formulate a
process for which, on average, every learning step decreases IE,. Unfortunately, as shown

in later sections, even those processes might not converges to the global minimum of IE,.

In most supervised learning models suggested so far, the transition density from z to
2’ depended on both IE (z) and IE (2') — and not on the response of « and 2’ to each
input separately. Hence, those models do not enter into the category of on-line learning.
The strength of the non on-line learning models i1s that at each learning step the global
error decreases, hence, it is easy to guarantee that the student converges at least to a
local minimum of IE;. In [KS] the authors claimed that the on-line learning model they
introduced, called “On-line Gibbs learning” had the capabilities of the non on-line models:
it converges to a minimum of IE,. Moreover, they claimed that the convergence is to a
global minimum of IE,, both when the on-line error function is smooth and when it is a
0 — 1 function. In section 4 we show that there are several difficulties with the results

stated in [KS] and that some of them are not true.

The on-line model we introduce is a variation of the on-line Gibbs learning. We
examine it in two cases. First, when the learning step (i.e., the maximal distance between
the n-th state and the n41 state) is a constant, and in the second case the learning step
decreases to 0. The main focus in this chapter is on the process with a constant learning
step, but we also give an example of a convergence theorem for the non homogeneous case

under some additional assumptions on the on-line error function.

This chapter is divided to five sections. In the first one we define our model and state

most of the convergence results concerning the homogeneous process. We also present
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several examples in which the process may be used, two of which are the well known
Perceptron and the multi layer Perceptron learning rules (see [H],[RMS]). In the second
section, we give an example of a convergence theorem in the non-homogeneous case. In
this example we take into account the possibility that at every stage the teacher has a
probability p < 1/2 to make a mistake. In the third section we prove the results stated
in the first section and the fourth contains an analysis of the main results from [KS]. We
show that in some cases, there are counterexamples to claims concerning the convergence
of the on-line Gibbs learning. We end the chapter with some concluding remarks.

Let us turn to some definitions and notations: throughout the section (X, p) is a
compact metric probability space. X™ is the product space of n copies of X with the
induced topology and measure. (V,v) is the compact metric space of all possible inputs
where v is a probability measure on V. Denote by 7 the product measure g x v on X x V.
For a random variable X, IEX is the expectation of X, and || X||; = [E|X|. Bx(z) is the
closed ball of radius )\ centered at z, and for a set A, A denotes its closure. Finally, we

say that (a,) € I, if > |an|" < oco.

1 — The model and some examples

In this section we define our model and list some results concerning it. Then, we give
examples for ways in which this learning process may be used. We separate our discussion
to two cases: one is when the error function is a 0-1 function and the other is when E(x, v)
is a nonnegative smooth function. We begin with the following notations:
For every © € X, put C, = {v|&(x,v) = 0} and denote by O C X the set of local minima
of the energy function IE,(z).
Our process is A Markov process (X,,V, ), where (V) are ii.d. which are distributed
according to v and independent of (X,), while (X,,) are adapted using the conditional

transition density from x to z’ given the input v which is
1 {E(x,v)e_g(fl’”)/T" E(x,v) >0 ,d(xz,2") <A

en() 0,0/ otherwise

en(x) =v(Cy) + fBA(x) fv E(x, v)e_g(x/’”)/T"dl/(v)d/,L(x) is a normalizing constant, T, is a

(1.1) Pp(2'|z,v) =

sequence decreasing to 0, and A is the size of the maximal learning step.
The definition implies that the state @ does not move if « responds in a correct way to the

input v and it never moves to a point for which d(z,2") > A.
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The 0-temperature process is the process for which P(z'|z,v) = le P,(2'|z,v) and the
limit is in the pointwise sense. A key part in the analysis of thg mOZdel is the fact that
for every A C X the convergence of Pp(Alx) = [, [, Pu(a'|2,v)dv(v)du(z") to P(A|z) is
uniform. Therefore, we can approximate the behavior of our process by the 0-temperature
process. Throughout we Assume that v(C, AC,/) is continuous in each variable separately,
where AAB = (ANB®)U(BNA®). We also assume that thereisa ¢ > 0 such that v(C,) > ¢
for every .

We formulate the main results concerning the process (1.1):

Theorem 1.1. Assume that the error function is a 0-1 function. Then:

a) For every A > 0 and every sequence (T,,) — 0 the process (1.1) will enter every neigh-
borhood of O infinitely often almost surely.

b) Put @ = {z|IE;(z) = 0} and assume that ) has a p—positive measure. Then for

A = diam(X) and for every sequence (T,,) — 0 the process (1.1) converges almost surely

to Q).

Note that () is an absorbing set, 1.e., the probability of leaving () is 0
In the case where the error function is not a 0-1 function, we have to make an additional

assumption:

Theorem 1.2. Assume that IE, is monotone in the sense that IE,(y) < IE (x) when
Cy D C,. Assume also that for every x ¢ O and for every ¢ > 0 there exists a y € B.(x)
such that Cy D C,. Then the assertions of theorem 1.1.a remain true. The assertion of

theorem 1.1.b holds with no additional assumptions.

The reason for the additional assumption is simple. When we deal with a 0-1 error function,
IE,(z) =1 —v(C;). Therefore, if we increase v(C}), we come closer to a minimal point
of IE;(z). On the other hand, for a general error function, we do not know if C,\C,
and IE;(y) — IE,(2) are correlated. In the final section, we present a counterexample (see
example 4.2), in which the error function is a smooth nonnegative bounded function, but
the orbits can not leave the global maximum of IE,(x).

Next we present three examples in which model (1.1) may be used. In all three cases, the
error function is a 0-1 function.

Example 1.3: The simplest case in which we can apply the process (1.1) is the Perceptron
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learning rule (see chapter 2). In this process we adapt a halfspace in IR? using a teacher
which is also a halfspace. Denote the teacher by T' = {z € IR%|y*(x) > 0} where y* is a
linear functional on IRY, and the student by S = {z € R%|z*(z) > 0}, ||z*]| = |ly*|| = 1.
In this case, the error function is 0 for # which are in TN S or in T° NS¢ and 1 otherwise.
Assume that the input set V is a finite union of balls disjoint from the boundary of T" and
that the probability measure is given by a continuous density function supported on V.

(see figure 1.1)

figure 1.1
Clearly, v(C,ACY) is continuous and the conditions of theorem 1.1.b hold. Therefore, the
process (1.1) converges a.s. to {z|[E,(z) = 0}.
Example 1.4: Here we present two examples which deal with the uniform approximation
of a continuous function f : V' — IR by a function selected from a family of continuous
functions {g, : V — IR|z € X}. Here, X and V are compact sets in IR? and IR*. Fix

n > 0, and define
E(x,v) = {O |f(v) —g.(v)] <7

1 otherwise

Of course, if we want to use theorem 1.1, we have to find some kind of continuity condition

on the family {g,}, which is the object of the following lemma:

Lemma 1.5. Assume that lim ||g, — ¢,||, = 0. Then v(C,AC)) is continuous with respect
r—38

to each variable separately.

Proof: First, we show that for every s, v(C,\C;) is continuous with respect to r. Since
v is regular, there exist a compact set K C C, such that v(C,\K) < /2. There-

fore, there is a ¢ > 0 such that sup|gs(v) — f(v)| < n — é. By Chebyshev’s inequality,
te K

{lgs(v) — gr(v)] > 6/2} < %, hence, if s and r are close enough, (K N CE) < ¢/2,
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implying that v(C,\C,) = v(K N C¢) + v((C:\K) N CE) <e. A similar argument shows
that lim v(C,\Cs) = 0.

We are ready to present the two examples:
a) Multi Layer Perceptron (MLP)

The MLP is composed of several layers of Perceptrons and an output function h. It is
formed by using the output of each layer of Perceptrons as an input to the next one.
Usually, the output function i of each Perceptron in the MLP is assumed to be smooth.
We assume that i Lipschitz and that the network has three layers. Let X be the closed unit

ball in IR?, in which case the MLP may be viewed as a function M : X" x X x R? — IR.
n d

For every v € IR? the response of the MLP is M, ,(v) = h(Z(y]h(Z J?ijvi)), where
j=1 =1
r € X" and y € X. If we view the MLP as a neural network, d is the number of cells

in the input layer, n is the number of units in the second layer and (z;;)i, represents
the synaptic weights between the first layer and the j-th cell in the second layer. Hence
h(> 1, wijv;) is the response of the j-th cell in the second layer. y; is the synaptic weight
between the j-th cell in the second layer and the output cell. Therefore the response of the
output cell is M, ,(v). (see figure 1.2)

figure 1.2

We assume that all the inputs v are selected from some compact set ' C IR?. It is known
that if h is not an algebraic polynomial, the set of all possible MLPs is dense in C (LK) (see
[LLPS]). Thus, for every ¢ > 0 there are an n and {x¢, yo } such that ||[M,, ,, — fll < n—-¢,

i.e., it is possible to construct an MLP which can (n — ¢) approximate f.

We show that the conditions of theorem 1.1.b hold, implying that the MLP converges

to a correct state almost surely.
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First, to prove that the set of correct states () has a positive measure, it is enough to show
that the set {z,y} for which M, , n—approximates f has a non empty interior. Indeed, if

Mgy .y € Q then for some ¢ > 0, M, n — e approximates f. Since h is Lipschitz then

0,Y0
sup [ Maq,ye(v) — My y(v)] < C(||lx — 20|l + ||y — ol ), where C is some absolute constant.
vEK

Therefore, a small perturbation in {zg,yo} gives an p—approximation of f. By the same
argument, if {x,,, y, } converges to {z,y}, then M, converges to M uniformly which implies

convergence in the Ly norm. Therefore, since the conditions of lemma 1.6 hold, v(C,AC))

is continuous. Thus the process (1.1) converges to a function which n-approximates f.

b) Polynomial approximation of a Lipschitz function in [-1,1].

The idea is similar to the one presented above, so most of the details are omitted. There
is a 1-1 correspondence between the polynomials of degree < n and IR™. Note that
it 1s possible to p—approximate every continuous function by a polynomial. However,
the process requires to pre—determine the degree of polynomials we use, as well as the
compact set from which the coefficients are selected. Assume that we have some addi-
tional information on the function f we wish to approximate — for example, its Lipschitz

constant A. For a bound on the degree of the approximating polynomial, we estimate

n—1
E.(f) = inf sup Zaivi —f(v)‘ By Jackson’s theorem ([C]), if E,(f) = n
AQy...sqn 11 UE[—l,l] i—0

then n < C’%, where C' 1s some absolute constant. Next, to estimate the size of the set
from which the coefficient (a;) are selected, we use Bernstein’s inequality, which states

that ||p,|l. < n||pnll,, Where p, is a polynomial of degree n. Thus, |as| < ||l

lay| < p/n(())‘ < ‘p/n , and so on. Therefore, for every n, there are an integer n and a
>0
n
vector (ay, ..., a, ) such that sup Zaivi — f(v)‘ < 1, where both n and ||(a1,...,an)|
te[—1,1] |7

depend only on A and 5. A similar argument to the one used in example (a) shows that
the conditions of theorem 1.1.b hold. Thus, the process (1.1) converges to a correct state

almost surely.

2 — An example of a 0 temperature process

Here, we present an example of a 0 temperature process. In this example we replace

the constant learning step A by a positive sequence A,, which decreases to 0. We prove that
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in the case presented here, the process converges a.s. to a correct state even if at every
step there is a probability p < 1/2 for the teacher to make a mistake.

Since the learning steps decrease to 0, the Markov process is not homogeneous. To deal
with that we use a similar idea to the one Blum used in his proof of the convergence of
the n-dimensional Robbins-Monro process (see [W]).

Example: Let X C IR? be a compact set and put V = [0,1], both equipped with the
normalized Lebesgue measure. Assume that for every x € X C, = [0, f(«)], where f €

C?(X) and 0 < f(z) < 1. Thus the error function &(x,v) is:

(2.1) E(x,v) = {(1) V2 ;Eg

If we assume that in every step the teacher has a probability p < 1/2 to make a

mistake, then for y € By (x) the conditional transition density from x to y is

(2.2) Golylz,v) = dl_n<(1 — p)E(x,v)e E@O/ T (1 — 5(%1)))6—(1—5(;,,@))/%)

where d,, is a normalizing constant. Therefore, in our example the transition operators for

the 0 temperature process are:

(2.3)
1 (1=p)(fly) = f(=)) {f(y) > f(2)} 0 By, (2)
{fly) < f(@)} 0 By, ()

otherwise

Gulule) = ——Qulule) =

where ¢, (2) = (1 —p)f(x) -|-p<1 — f(l’)> + fBAn(f) Qylx)d(y).

Theorem 2.1. Denote by A, the sequence of the learning step and assume that (\,) €
la+3\la+2. If f has a unique critical point in X and if that point is a global maximum, the
process defined by (2.3) converges in probability to that point. If p = 0 the convergence is

almost surely.

Let X, be the position of our process in the n-th stage. Put p, = A\F2 YV, (z) =
(Xn+1 — X0n)/pn — given that X,, = z, denote by H(x) the Hessian of f at = and set
Unp(x) = IE<<Vf(:1;),Yn(:1;)>|Xn = :1;) Let o be the unique point for which Vf(x) = 0 and
assume that o is a global maximum of f.

The following lemma describes the properties of the random variables defined above.
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Lemma 2.2. For every compact set K for which d(K,0) > 0 there are N and L > 0 such
that for every n > N, infyUn(:L') > L. Also, for n large enough IEU, > 0. Next, put
rEK

an = sup p2IE||Y,,(2)||*. Then (a,) € .

Proof: Let S be the unit sphere in IR? and denote by | | the Haar measure on S. Put
Se ={s € S|{Vf(x),s) > 0} and St =A{s e S|f(x+rs) > f(x)}. S;, is defined in a
similar way with the reversed inequality. Since ¢, () tends to (1 — p)f(x) + p(1 — f(x))
uniformly and since U,(x) = %<Vf(:1;), E(X 41 — X,|X, = :1;)> it is enough to prove the
first claim for the function U, (x)c,(x)

ola=n [ et s |

7

= @) = ) V(e)) = ()

where A, (x) ={f(y) > f(2)} N By, (z) and By(x) = {f(x) > f(y)} N B, (x). By Taylor’s
formula f(y) — f(e) = (Vf(x),y — 2) + Oy — z||*), hence

1 2 2
= (on [ (@ [ (95w

s [ Ol —aliay)
B ()

A simple calculation shows that the third term converges uniformly on K to 0, thus it is

enough to estimate the first and second terms. Note that

,Oin<(1 P) [4”<x><vf(x)’y ) dy —P/Bn(w)Wf(l'),y - x>2dy> =
,oin OA" <(1 —7) /S+ (Vf(w),rs) r' =" h(s)ds —p/sL <Vf(:1:),r3>2rd_1h(3)d3>dr -
pin 0)\” Pt <(1 —p) /S+ <Vf(:1?),8>2h(3)d3 —p/sL <Vf(:1;),3>2h(3)d3>dr

where r?=11h(s) is the Jacobian of the transformation to spherical coordinates.
Set g(x,r) = (1—p) fsj,, <Vf(:1?),3>2h(3)d3 — pmeLT<Vf(:1;),3>2h(3)d3. Then

2

gla,r) = /s+ <Vf(:1;)73>2h(3)d3 —p/S<Vf(:1;),3> h(s)ds = g1(x,1r) — pg2(x)

To finish the proof of the first claim, it is enough to find R and [ such that for every
r < R and every © € K, g(x,r) > [. Indeed, note that in this case if A\, < R, then
o Jo " r gy 2 5 e 2 1(d 4 2),
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Denote D, , = {s € S|<Vf(:1;),3> > wv}. Clearly, D, , increases to S, as v tends to 0
and since |D, ,| and |S;| are both continuous functions of z, |D, ,| converges uniformly
to |S;| on K by Dini’s theorem. Fix ¢ > 0. There is some v such that for every z,
|Se\Dzw| = |Se| — | Dzl < €/2M, where M = sup, ||V f(z)||. Since Vf is continuous,
there is a ¢, > 0 such that for every y € Bs, (), Dy C Dy,,/2 and v(C,ACy) < ¢/2M.
Note that if ||y — z|| < 65, s € Dy, and z = y+rs then f(z)—f(y) = <Vf(y),3>r—|—o(r2) >
vr/2—Cr?, where C is some uniform constant. Hence, there is an R > 0 such that if r < R
and y € Bs,(z), then D, , C Sir N Dy .2 C Sy

For such r and y we see that

g1y, r) = /s+ <Vf(y),3>2h(3)d3 > /D <Vf(y),3>2h(3)d3 =

T x,v

:/S <Vf(y),3>2h(3)d3—/ <Vf(y),3>2h(3)d3>

Y Sy\Dmy’U

> / (V£(y), ) h(5)ds — M(ISN\Su| + 152\ Do) >

Y

>/S <Vf(y),3>2h(3)ds—5

Y
on the other hand for every y

pga(y) = p / (VF(y),5) h(s)ds = 2p / (V f(), ) h(s)ds

Sy

Therefore, g(y,r) > (1 — 2p)/ <Vf(y),3>2h(3)d3 — . Since f € Cy(X) and Vf(z) #0

on K, then [, <Vf(:1;),3>2h(3)d3 > C on K, sog(y,r) > (1 —2p)C —e. The rest follows
from a standard compactness argument.

Let us turn to the second claim. By the same argument used above,

ligl_}iglfg(x,r) >(1- 2p)/s <Vf(:1;),3>2h(3)d3 = n(x)

Therefore, by Fatou’s lemma

1A 1A
liminf Uy, (z)e(x) = liminf —/ rt gz, rydr > —/ ry(e)dr = n(x)/(d + 2)
0 Pn Jo

n—oo n—oo pn

Hence, liminf IEU,, > E& > 0.
n—o0 (d+2)e(x)
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Turning to the final claim, note that

1
(1 —=p)f(x) +p(1— f(z))

<c| ly = 2l [(V £}y = ) + OUly = al*)| dy = (+)
A, (z)UBy,(z)

PulE | Ya(a)||* <

/ o ol (o) ~ £l dy <
A, (z)UBy,(z)

For every n > N and every z, (%) < C' fBA () lly — :1;”3 dy = C"\4*3 where C',C' and C"

are some absolute constants. Thus, Yy a, < C" > AT < oo,

Corollary 2.3. IfIEU, converges to 0, IE |U,| converges to 0 too.

Proof: For every ¢ > 0 fix a compact set X' C X, such that p(X\K) < ¢ and d(X,0) > 0.
By the lemma, for n large enough, U, are nonnegative on K. Also, U, are uniformly

bounded and w.l.o.g we assume that they are bounded by 1. Thus:
E|Un|=/ |Un|du+/ Undp <
X\K K

:IEUn—l—Q/ Ul dy < U, + 2
X\K

o
Proof of Theorem 2.1: The idea behind the proof is to use Taylor’s formula to approx-
imate the differences f(X,+1) — f(X,). Indeed, given X,,, we see that

Put V,(z) = E<<Yn,H(Xn + GpnYn)Yn>|Xn>, then the conditional expectation of the

expression for f(X,t1) is

(2.4) E(f(Xn+1)|Xn) = F(Xn) + palnlz) +1/2p;, Va(2)

Taking expectations on both sides and iterating, we see that

(2.5) E(f(Xnt1)) = IEf(Xl)Jrzn:mIEUi +zn:1/2,0?IEVi
1 1

For every sequence (), f(x,) is bounded by 1, thus IE(f(Xn+1)> is bounded. By
the Cauchy-Schwarz inequality |V;] < C’supIEHYi(:I;)HZ, which implies that p?IE|V;] <
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CpisuplE HYZ(:L')HZ = Ca;. By Lemma (2.2) (a;) € 1, so Y| 1/2p?IEV; converges, there-
fore i’f piIEU; is bounded. Again, by the lemma, ) p;JEU; is a nonnegative series for
¢ large enough so it must converge — which implies that IE(f(Xn)> converges too. Since
(pn) € I1, there is a subsequence IEU,,; which tends to 0 and by corollary 2.3 IE ‘Unj ‘ tends
to 0 too. Using Chebyshev’s inequality U, converges in probability to 0, thus there is a
subsequence of Uy, also denoted by U,;, which converges a.s to 0. According to lemma
(2.2) U,, are uniformly bounded away from 0 on every compact set not containing o, there-
fore X,; must converge a.s. to o. Since IE(f(Xn)> converges and since it is a continuous
function of X,, it must converge to IEf(0) = f(0). Note that o is a unique maximum of
f, hence for every ¢ > 0 there is a 6 > 0 such that {||X, —o|| > ¢} C {f(o) — f(X,) > 6}
and by Chebyshev’s inequality, the measure of the later set tends to 0.

To prove the second claim, note that if p = 0, f(X,) is increasing a.s. — therefore, it
converges almost surely. Since IE(f(Xn)> converges to f(o), f(X,) must converge to f(o)

a.s., thus, since o is a unique maximum, X, must converge to o almost surely.

3 — Proofs of the results from part 1
Our next goal is to proof the results stated in section 1. Recall the following notations:
for every set A of positive measure, P, (A|z) is the transition probability from = to A in

the n-th stage. Clearly

1 Vo€ T 1) — ()
() /14rwBA(x)/Vg( ) dp(@)dv(v) enla)

converges pointwise to

(3.1)  Pu(Alx) =

B fAﬁBA(w) Jy E(z,v)xe,, dv(v)du(a") - FA()
(32) PlAfz) = v(Cy) + fBA(f) [y E(x,v)xe,, dv(v)dp(a') — c(x)

Let P be the probability measure induced by the orbits (X,,) of the 0-temperature process
(3.2) and P is the induced measure by the orbits of the process (3.1).

We will show that the convergence of P, to P is uniform in both = and A. First, we
prove that f7(z) converges uniformly in both x and A4 to f*(z). With a similar argument

one shows that ¢,(z) converges uniformly to ¢(x). The desired convergence follows since
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en(x)ande(x) are bounded away from 0. Indeed: w.l.o.g. assume that £(z',v) is bounded
by 1 and set E = {(«',5)|E(x’,s) > 0}. Note that if (',v) € E then e €@ 0)/Tn — xc,, (v).
Also, for every ¢ > 0 there is a set I C E such that 7(E\K) < ¢ and E(z',v) >  on K.
Then

sup ‘f,f? — fA‘ < sup/ E(x,v) e E@ ) /T _ xc,, (v)| dr =
reX reX JX XV
_ Sup/ E(e,0) e €@ T ()| dr = (%)
reEX JFE

Since the integrands are uniformly bounded by 2 and 7(E\K ) < ¢ then:
(%) < 2¢ —I—/ E(x,v)e_ﬁ/T"dT <2+ e B/ Tn
K

Clearly the estimates above are uniform in the set A, which proves our claim.

Another observation which follows using a similar computation is that for every A the
function P(A|x) is continuous. Moreover, for every measurable Ay, As, ..., A, the function
P(X, € A,,...,Xs € A|X; = 2) is continuous in x. To prove this fact, we use the
assumption that for every z, v(C,AC,) is a continuous function of a'.

Next, our aim is to use information concerning the 0-temperature process (3.2) to
derive similar results about process (3.1). We begin with some additional notations. If
(X,,) denotes an orbit then for every set O C X put O; = {(X,)|X; € O for n = i},
L%(z,0) = P°{X; € O for some i > n|X, = 2}, L,(2,0) = P{X; € O for some i >
n|X, = x}, and L°(z, O) is the P° probability to enter O infinitely often given that X; = .
Assume that O has the following property: there are & > 0 and N, such that for every
r € X, PYYUNO;|X; = 2) > «. Since the 0-temperature is a homogeneous Markov
process, PY{UmTNO,|X,, = z) > a for every m and every z, and since P, converges
uniformly to P then for m large enough and for every z, P{UTtNO,|X,, = 2} > «/2.

Hence for m large enough and every z, L,(z,0) > a/2.

Lemma 3.1. If there are N and « such that for every n > N and every @ L,(z,0) > «
then the orbits of the process (3.1) enter O i.o. P-almost surely.

This result appears in [O] in a slightly weaker form. The proof uses the same idea as the
one presented in [O] and is brought for the sake of completeness.
Proof: The first part of the proof is a version of a 0-1 law which is due to P. Lévy [L]:

Let Y7,Y5, ..., be a sequence of random variables and let Y be a random variable defined
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on Y7,Y5, ... such that [E|Y| < co. Note that Z,, = IE(Y|Y1,...,Y,,) forms a martingale,
thus, by the martingale convergence theorem ([L], pg. 393), Z,, converges a.s. to Y. In
particular, if we set B; = {X; € O}, B ={X,, € 0 i.0.}, Y, = X, and Y = yp, then
P(B|Yi,....Yy) = E(Y|Y1,....Y,) converges as. to xp and P(UXB;|Y1,...,Y,) tends to
Xus B; for every fixed k.

On the other hand, for every k£ < n, note that
P(UEBilYi, ., Ya) > PUFBIYi, ., V) > P(BIV, .. Y)
thus, by taking n — oo,

\ug g, > limsup P(UF B|Y7, ..., V) > liminf P(UFBi[Yi, ... Ya) > v

n—oo n—0oo

Again, taking k& — oo, the left side converges a.s. to yp, hence P(U°B;|Y7, ..., Y, ) tends
to YB.

Denote by X, the set of all the orbits of the process.
Since L,(X,,0) = P(UB;|Y1, ..., Y,) then by the 0-1 law L,(X,,0) tends to the char-
acteristic function of the set {X, € O i.0.}. By our assumption for n large enough and
every x, L,(x,0) > «, thus for such n L,(X,,0) > « almost surely. Therefore,

Xoo C {limsupLy(2",0) >0} C {lim L,(X,,0)=1}={X, € 0.0}

n—oo

Hence, almost every orbit enters O infinitely often almost surely.

o
Remark 3.2: 1. By a similar method one shows that if there are N and a > 0 such
that for n > N and every @ L,(x,B) > «, then P-almost surely the orbits which visits A
infinitely often also visit B infinitely often.
2. Lemma 3.1 implies that in order to prove theorem 1.1.a, it is enough to show that for

every neighborhood A of O there are N and a > 0 such that for every z, PO(UN 4;|x) > 6.

Proof of Theorem 1.1: We begin with the proof of (b). Let A be an open set containing
). Note that since A = diamX and since () has a p—positive measure, every = has a
positive PY—probability to enter (). Since A is compact, a simple continuity argument

shows that there is some o > 0 such that for every « ¢ A, P(Q|x) > 6. Therefore,
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for n large enough igg P,(Q,x) > 6/2. Hence, by remark 3.2, orbits which visit A¢ i.o.
must enter () P—almost surely. This is impossible — since ) is an absorbing set. Thus P

almost every orbit enters A° a finite number of times, implying that process (3.1) converges

P3-a.s. to Q.

To prove (a) we use the second part of remark 3.2. Assume that we limit the size of
the learning step to A and let A be a neighborhood of O. Recall that A; = {(X,)|X; €
A for n =i} and that PO(AN\U T A;| X = 2) = PUX; € 4, X, € A°,..., Xy € A°|X, =
) is a continuous function of z. Since PO(UTA4;|Xy = x) = Y7 PUA\ UL 4;|X; = 2)
then for every n, h,(z) = P*(U 4;| X1 = ) are continuous functions too.

Note that if we show that for every x there is some n such that h,(2) =, > 0, then by
the continuity of h,, there is a neighborhood U, of # on which h,(x) > ¢/2. Since X is
compact and (hn(:zj)> is a monotone increasing sequence, we can take a finite sub-cover
(Ug,) and find o > 0 and N such that for every x, hny(2) > «. Hence, it is enough to show
that L°(z, A) > 0 for every x, since this implies that for every a there is an n such that
hn(2) > 0.
Indeed, for every z, let y, be a point in By(x) in which the maximum of v(C, ) is attained.
Define a sequence z1 = z, 2 = Y, 3 = Yy, and so on. A simple compactness argument
shows that a; = x¢ for ¢ larger than some n, thus xy must be a local maximum of v(C,) =
1 —IE,(z). Note that if v(C,) < v(Cy) there is a positive transition density from = to y.
By the continuity of the transition density, x has a positive probability to enter A which
implies that L°%(x, A) > 0.

o
Theorem 1.2 — Sketch of proof: The proof of theorem 1.2 goes along the same lines
as the proof of theorem 1.1. The only difference is in proving that L°(z, A) > 0. The
idea is to equip By(z) with the partial order < defined by: = < y if and only if C, C C,.
Then, use Zorn’s lemma to find a maximal element in By(2) and let y, be that maximal
element. Again define the sequence (x,) and use a compactness argument to show both
that for ¢ > n, x; = v and that ¢ is the maximal element in Bx(xg). According to our

assumption, the only elements which are maximal in their neighborhood are elements of

0.

The proof of 1.2.b is identical to that of 1.1.b and does not require any additional assump-
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tions.

4 — Discussion

This investigation was motivated by the work of Kim and Sompolinsky [IKS]. We begin
this section with a summary of their main results.

The on-line Gibbs learning is slightly different than the model we defined. In the

on-line Gibbs learning the conditional transition density is given by

1 J_En(m/,m,v)

(4.1) Pom(2 |z, 0) = ¢~ 2w
C

where E, (2, z,v) = E(a',v) + %/\n ||z — :1:’”2.

In the 0 temperature process, v moves during the n-th stage to the nearest point =’ which
gives a correct response to the input v — assuming that ||z — 2'|| < \/Q/Tn, and remains
stationary otherwise.

The main results presented is [KS] are as follows:

1. In the limit A\, — oo and T,, — 0 the process (4.1) converges in distribution to a
measure supported on the set of global minima of I[E,. The rates by which the limits are
taken is not stated.

2. In the limit T}, — 0 and for a large enough A, process (4.1) behaves like the 0 temper-
ature process both when &£(z,v) is a C* function and when it is a 0-1 function.

3. Using simulations, the authors analyzed several well known learning models (for exam-
ple, the Perceptron and the committee machine) even in cases where at every stage the
teacher has a probability p < 1/2 to make a mistake. It was claimed that the 0 temper-
ature process converges to an optimal solution and estimates on the optimal convergence
rates were given.

There are several difficulties with the results stated in [KS]|. To demonstrate this, we
will construct two on-line error functions. The O0—temperature process induced by the first
on-line error function will be a counterexample to (1), since it does not converge to a
global minimum of the energy function. The O—temperature process induced by the second

error function implies that (1) and (2) may contradict each other in the case where the
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error function is C%, since in this case the global maximum of the energy function is an

absorbing state.

Example 4.1: Set X =[-1/2,2], V = [—1,1] and assume that the error function is 0-1.
We define £(x,v) which induces the O—temperature process using figure 4.1:

figure 4.1

Here, £(x,v) = 0 on the shaded area and 1 otherwise. Note that he global minimum of IE,
in X is attained at © = 2 and at this state, the student is in complete agreement with the
teacher. However, if x < —\/Z/Tn, it can not move towards 2. Indeed, if x < v < 0, = gives
a correct response to v so it remains stationary. For v > 0, z does not move because the
nearest point which yields a correct response to v is too far away. Hence, if for example,
the initial distribution is supported in [-1/2,-1/4] and A,, > 32, the 0 temperature process

converges almost surely to @ = —1/2.

In a similar fashion, for every learning step sequence \/Q/Tn tending to 0, there are initial
distributions such that the O-temperature does not converge in distribution to the global
minimum of IE,(x). Moreover, for some initial distributions and for every sequence A,
such that each A\; > M, the process (4.1) converges almost surely to a local minimum of

IE, which is not the global minimum in contradiction to (1).

Example 4.2: Here we construct a continuous function £(x,v) on the set D = X x V =
[—1/2,1/2] x [0,2] with respect to the normalized Lebesgue measure, such that the global
maximum of IE, is an absorbing state. Therefore, it is impossible that both (1) and (2)
hold for this process.

2(1—z?)(v422-1) 0> 1 — 22
Define the error function on D by &(x,v) = { I2d|'1 -1 , - Clearly, for
v<1—x

every x Cp = {v|0 < v < 1— 2%}, thus C, D Cy, E(x,v) > 0 on D and = 0 is an
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absorbing state. Indeed, for every input v > 1 there is no state for which £(z,v) = 0 and
for 0 <v <1, &0,v)=0.
On the other hand, IE,(z) = (1 —2?) flz_ﬂ %dv. Changing the integration variable

to z = % we see that [E (z) = 1_2954 foz zdz =1 — a*. Thus IE () attains a global

maximum in x = 0.
In a similar fashion, it is possible to construct such a function with any degree of

smoothness.

5 — Concluding remarks

Note that an easy way to generalize part (a) of theorem 1.1 is to formulate a stopping
procedure which freezes the process once a state is close enough to a correct answer. One
possibility is to count the number of consecutive correct responses at each state and stop
the process once the number passes a given threshold. This gives an estimate on the
measure v(C,). However, if the error function is not 0-1, the fact that v(C,) is close to
its global maximum does not imply that IE,(z) is close to the global minimum (this is the
idea behind example 4.2). For that, one needs additional assumptions on the structure of
the error function.

Let us point out that the reason for the assumption A,, — oo in [KS] was to overcome
the possibility that the teacher makes a mistake. We did not treat this problem outside
the case presented in section 2 and it deserves additional consideration. Our final remark
concerns theorem 2.2. We were not able to formulate a more general theorem than the one
presented here. Even when the error function is 0-1, the function v(C,) does not determine
the transition density from state to state. All we know is that when v(C,) > v(Cy) there is
a positive transition density from y to x. Unfortunately, it is possible to construct natural
examples for which v(Cy) > v(C,), but still there is a positive transition density from y

to x and it is possible that the analogous convergence theorem may not be true.
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Chapter 4 — The Kohonen learning rule
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0 — Introduction

For several years researchers have been puzzled by the self organizing property of the
adaptive model suggested by Kohonen in [K].
The basic idea behind the Kohonen model is simple: given a set of elements and an input,
the input influences a neighborhood of the nearest point to it in the given set. If the inputs
are selected at random, the given set is adapted to form an approximation of the set of
inputs.

Formally, let I, = {K}....K},..} be the given set, C}: is the neighborhood of K} €
K,, v, is the input and Pk, (0) is the nearest element to © in K,. Denote by C, the

neighborhood of Pk, (9, ). Then the Kohonen adaptive process is:
(0'1) A’;—i—l = A’i + EnXe, (ﬁn)(ﬁn - /(;)

where y., is the characteristic function of the set C'p, , and () is a positive sequence
representing the size of the learning step.

Usually, the process is divided into two parts. In the first one, the learning step ¢, is
assumed to be constant — which means that the process is a homogeneous Markov process.
After the adapting set becomes organized in some sense, (g,) decreases to 0 fast enough
to ensure the convergence of the process.

Let us give a simple example of this process. Assume that the given set is some
finite set {K&,...,K&”} C [-1,1] with the metric d(x,y) = |¢ —y|. For every in-
dex 1 < i < m, the neighborhood of K! is {Kf_l,KZ,I(Z"H} while CKtl = {K},Kf},
Crr = {Kzn_l,KZ”} and the set from which inputs are selected is [-1,1] equipped with
the Lebesgue measure. It can be shown (see [K]) that if (¢,,) is a constant sequence the
set {Ké, e ,Ké”} adapts to a set {Kl, e ,Km} organized in a monotone order almost
surely. The proof of this claim is very difficult and the idea behind it can not be applied
to other examples.

An example with some biological significance may be found in [RMS]. It describes a
monotone ordering of cells within a one—dimensional layer of the bat’s auditory cortex.
In this model, five one-dimensional layers simulate an area in the auditory cortex. A
neighborhood of a cell contains cells which are close enough to it, i.e., that the distance

between them and the cell is smaller than some given r > 0.
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Each cell has an initial value between 20 and 100 assigned to it which describes the
best frequency in Khz to which the cell is tuned. The probability measure on [20,100] is
concentrated around a small neighborhood of 61Khz.

A computerized simulation of the Kohonen process shows that each layer becomes
linearly ordered and most of the cells are tuned to a best frequency near 61Khz.

In both examples the set enters an “organized” state — which in this case is a linear
order. In general, two major questions are open: the convergence of the process, and its
self organizing abilities. In this chapter we investigate the second question. We prove a
general recurrence theorem which guarantees that the process always enters an organized
state, and from this theorem we easily derive the previously mentioned result in the one—
dimensional case.

Note that there is no clear way to define “organization” in a multi—dimensional case,
at least, not as obvious interpretation as linear order on the interval [—1,1]. We give
this term a very broad interpretation which may be applied in many cases. Furthermore,
we introduce a simple IR" analog to the concept of linear ordering in IR. This chapter is
divided to four sections. The first section consists of our generalization to Kohonen’s model
and several notations. In the second and third sections we prove a recurrence theorem and

then give examples for its use in proving self-organization results.

1 — The basic model

The Kohonen adaptive process in made up of two sets: one is the set we wish to adapt
and the other one is the set of possible inputs. Our first assumption is that both these
sets are contained in some finite dimensional ormed space and that the set of inputs is
compact.

Denote the input set by V, the state space (i.e. - all the possible positions our adaptive
sets can arrive at) by S and the adapting set in the n-stage by K,,. Given ¢ € V, let Pr, (0)
be the set of nearest points to ¢ in K,, and put ¢«(x) the index of x in I,. Our learning

process is:

(1.1) Tpi1 = Tp + Enfr(t(Pr, (0))(0n — 24)

where z, € K,,, &, >0 and f,, : N — [0,1].
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this implies that the value of f,, depends only on the index of the nearest point in K,
to the selected input ©. We influence our adaptive process through the functions f,, for
example, define f,, to be 1 for a nearest point to the input and zero otherwise. A more
interesting possibility is to change not only the nearest point, but also points which are

near in some topological sense to elements of Px_ (0).

figure 1.1

Note that if £,, # 0 the process (1.1) does not converge pointwise. In sections 1-3 we
deal only with the question of organization so throughout those sections (¢,) is assumed
to be a constant sequence.

Clearly, if all the functions f,, are equal then the Kohonen learning process is a stochas-
tic approximation process. Since the nearest point map is not smooth the methods devel-
oped in chapter 1 can not be applied in this case. However, most of the results concerning
the convergence of the process (1.1) are derived using general results in stochastic approx-
imation.

Let ji be a regular Borel probability measure on V' through which the inputs are
selected. Let V be the space of input vectors, (i.e. V =] V with the product topology)
equipped with the measure p which is defined by 1.1.d. copies of p. Since V is compact, so
1s V.

Given v € V and x € IR¢, denote by x” the orbit of #; = x when v = (&,...) is the
sequence of inputs to the process (1.1). Thus, x¥ is the position = arrived at after n steps.

Assume that the adapting sets are finite and that each has N elements. Hence, the
state space is S = {(z1,...,2n)||#:]| < M} and the metric on S is || ||, implying that
S 1s compact. Let B be a Borel o-algebra and v a measure on S. Denote by 7 = p X v the

probability measure on (S°°, B>), which are the infinite product of S with the induced o-
algebra on the product space. Hence, 7 is the probability measure induced by the Markov
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process on the set of possible orbits.
Finally, we assume that i {f) € f/| |z — 2| = |ly — f)H} =0 for all  # y € IRY. The
reason for this final assumption is that the set of points in which the n-th stage of the pro-

cess in not continuous is contained in [ J {f) € f/| |z — 2| = |ly — f)H}, which is assumed
z,yeK
to be of zero measure. T

2 — The recurrence theorem
In this section our aim is to prove a general recurrence theorem which shows that the

adapting set visits a desired set in the state space infinitely often almost surely.
Lemma 2.1. Let O € B which is open in S. Set hpo : S —+ IR by:

ho(s) = pu({s enters O after a finite number of steps})
Then h is a lower semicontinuous function.

Proof: Let B, = {f) € T~/|3 enters O after a finite number of steps}. We separate B; into
disjoint sets B, ; = {s first enters O in the i — th step}. The main observation in the proof
is that for every € > 0 and every 1, there exists a neighborhood U; of s and C,; C B, ; for
which g (Bs;\Cs,;) < ¢ , such that if r € U; and v € C ;, then v € B,; . In other words,
it is possible to find a large subset of B, ; such that if the states » and s are close enough,
the elements of C,; bring r into O after ¢ steps. For the sake of simplicity, we shall prove
this claim for ¢ = 1, but the general case follows in a similar fashion.

Fix ¢ > 0. For every set A C By, let 64 = inf {v eEAi#£yg| ‘ Hf) —SiH — Hf) —st ‘},
where s = {s1,...,sn}. Since p{0]||0 — s;|| — ||© — s;|| = 0,2 # j} = 0, there is a compact
set Cs1 C Bs; such that p (B, ;\Cs,;:) < ¢ and 6c,, > 0. Clearly, for every r in the set
{r € Sld(s,r) < 2 } and for every v € Cy 1, i(Ps(01)) = i(Pr(01)). Hence f(s,z,01) =

2

f(r,y,v1) when © € s, y € r with the same index, implying that d(s3,ry) < d(s,r).
Let 63 = inf{d(s,00), when v € Cs1}. Since C, 1 is compact, O is open and the map
v — s5 is continuous on Cf 1, it is clear that 6, > 0. Therefore, if d(s,r) < 6, then rj € O.
Put n = min {(52, 6C25’1 } and let Uy = {r € S|d(r,s) < n}. Clearly,if v € Cs; and r € Uy,

then r§ € O as claimed.

>0
Next, in order to end the proof, fix p > 0. Since Y p(B,;) < oo, there is some ng
=1

for which /,L< U Bs,i) < £. Choose p1,...,pn,—1 such that E?:Ol_l pi < &, let U; and
i:no
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no— 1 no— 1

Cs,; be the sets constructed for p = p; and define U = ﬂ Ui, Cs = |J Cs,;. It is easy
=1

to verify that u(Bs\Cs) < p and that if r € U, v € C then r’ enters O after a finite

number of steps. Thus Cy; C B, , which implies that p(Bs\B,) < p. Hence, if r, — s,

liminf (B, ) > 1 (Bs).

Theorem 2.2. Let O be an open set in S and A C S such that for every s € S\A,
ho(s) > 0. Then almost every orbit (sl) either enters O infinitely often, or it converges

to A.

Proof: Put R, = {v|d((s%),4) > L i.0.} and denote O, = {v|s} € O}. Our claim will
follow if we show that for every m, R, C limsupO,. Note that the set {s € S|d(s, A) > %}
is compact, thus by lemma 2.1 ho attains a positive minimum on that set. From the proof of
lemma 3.3.1 (see also [O], pg. 22, proposition 5.1) follows that in this case R, C limsup O,
as claimed.

o
Remark 2.3: Note that the proof of lemma 2.1 does not use the fact that our pro-
cess 1s homogeneous. However, for a general Markov process, even the claim “if every
state has a positive probability (which is larger than some 6 ) to enter O, the process
enters O a.s.” is wrong. The reason for the failure of the non-homogeneous claim is
that since the probability to enter O from a state s depends on the step in which the
orbit visits s. Put n; = ep4; and assume that one uses the learning steps (7;). De-
fine A\, = ;22/1({3 enters O in a finite number of steps}) . Since lemma 2.1 remains true,

Ap > 0 for every n. Thus to ensure the validity of theorem 2.2 it is enough to find positive
lower bound for (A, ).

3 — A few examples of self organization

We begin with a re—statement of the example from the introduction.

Example 3.1: Let (2},...,2}) € [-1,1]". Our object is to use Kohonen’s process to
order the points according to their index — in either ascending or descending order. Define

V = [=1,1], let i be the normalized Lebesgue measure and S = [—1,1]". A neighborhood
of 2 is the set Cpi = {xi_l,xi,xi'i'l} for 1 < ¢ < n, and {:1;1,:1;2}, {:1:"_1,:1;"} for: =1,
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0 otherwise
During the process, a neighborhood of each of the nearest points to the input is

i =n. Let f, <3n,<xi>n,ﬁn> = {1 zl, € Py (0n) )

adapted by the learning step and the rest of the points remain stationary. Note that the

set of “organized” states (ie. - 2! < 2% < ... <a" or a

set in S and let A = {(z1,...2n)|2; = z; for some ¢ # j}. We show that for every s ¢ A,

'> 2?2 > ... > 2" )is an open

ho(s) > 0, hence the assertion of theorem 2.2 holds. The key point in our proof is the
fact that from any given state s and for every = € s, the set {0|Ps(v) = x} has positive
measure. We do not give a complete proof to the claim, rather, we demonstrate how a
simple disorder may be corrected.

4 2 3

Suppose that s = (a!,... 2%) and 2! < 2* < 2? < 2. First, we move z? to its

rightful position — by selecting any input ¢ for which Ps(¢) = a!. The new state is
(3.1) s1= (2! +e(®—at),2? +&(6 — xz), 2%, 2")
An easy calculation shows that:

(3.2) dzl . 2%..) = (1 —e)d(x' 2?)

new? new
Using (3.2) repeatedly, after a finite number of steps, “2?” takes its place between “z!”

“1‘4” “1’2”

and . We continue with such a ¢ for which the nearest point is , which brings
“x3” to its place, giving us an organized state.

Remark 3.2: In example 3.1 the set O is made up of all the organized states, and
“degenerate” organized states, i.e., sets with the correct ordering, but instead of strict
inequality, we may find that 2* = 2'*!. Note that O is an absorbing set: once an adapting
set enters it, the set remains inside O, hence, by theorem 2.2, all the limit points of the
process belong to O almost surely.

It is easy to see that every state has a positive probability to enter O if and only if
every interval has i positive probability. One direction of the proof follows in a similar
fashion to the argument presented in example 3.1. On the other hand, if fi(]a,b]) = 0,
the state (22,2b ... 2" 71 2™) C [a,b]™ never becomes organized, since the only way to
correct the disorder is to select an input for which Px(?) = x5 and that event has zero
probability.

Example 3.1 may be extended to IR%: let V be a compact set in IR with a non-empty

interior and set S = V. Note that an alternative way to describe a linearly ordered set
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in IR is to say that the two nearest points to k' are k'~ and k!, Having that in mind,

we suggest the following definition:

Definition 3.3. A state s is called organized, if the two nearest points to k' are elements

in C},; — defined in example 3.1.

Let f, be as in example 3.1, /i the normalized Lebesgue measure on V and assume that
() is a constant sequence. Using the same idea as in the example above, it is clear that
one can reach O from any initial state s ¢ A with a positive probability.

Again, let us emphasize that the key point is that for every = € s, o {0|Ps (v) = 2} > 0.
Using theorem 2.2, almost every orbit either enters O 1.0. or converges to A.

The attempt to generalize this example to the case where S is not necessarily contained
in V causes a difficulty, since we have no prior knowledge of the function Ps_nl. To use the
algorithm mentioned above, it is vital that for every = € s,, [ (Ps_nl (:L')) > 0. Since we

know nothing about the norm on IR?, there is a possibility that i (P; ! (2)) = 0 (see figure
3.1).

figure 3.1
To solve this problem, we introduce a new selection of i and f,, in what we call “the ace
up the sleeve” routine.
Example 3.4: Let f/,/l be as in the extension of example 3.1 to IR?. Fix m points

{yl, . ,ym} in IR, let © be an atomic measure supported on {yl, e ,ym} such that

ﬁ(y’) = %, where 0 < § < 1 and set 3 = ’}ig

Say that M(Ps_l(:pi)> = 0. We define the process to respond to the input y* as if !

itself was selected as the nearest point (even though it may not be the case) and the points
in the neighborhood of #! move in some random direction. It is easy to see that for every

s€ S and z* € s, B(P_l(:liiD > ﬁ

Ll
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Thus, it i1s possible to use the ordering algorithm and for every initial state, the
process arrives to an organized state with F-positive probability. Next, we have to show
that lemma 3.1 is still valid. Recall that one of the conditions in the proof was that
T {f) evV| |l — 9| = |ly — f)H} = 0, but since 7 is atomic this assumption does not hold.
However, examining the proof closely reveals that only minor technical adjustments are
necessary to extend it so that it includes this case too. For example, divide B, ; to two
sets: {v|1~)1 = yi} and {v|1~)1 +* yi}. For the second set, proceed just as in the original proof
and find the set C ;. The required set will be C ; U {v € Bs 1]ty = yi}. To conclude, the

assertion of theorem 2.2 holds in this case too.

4 — Stochastic Approximation and its application to a smooth Kohonen process

The Kohonen learning rule has two main features. The first one is that the process is
a “winner takes all” process, in the sense that the nearest point to the input is selected.
The other feature is that only an “index topology” neighborhood of the nearest point is
adapted. Both these facts indicate that this process is not smooth, which makes its analysis
difficult. Our aim is to formulate a smooth process which has similar properties to those

presented above. Let

i 2
L|xLon]]
T

(4.1) Xl =X +en <a(X;;;1 FXI oyl —C o (v — X, ))

n 2 n
J_HX'LJ_vn

Z;‘nzl € T

where X! is the i-th element in the set X,,, V C IR? is the compact set of inputs with the
probability measure p and (g,,) € l2\I5.

Note that Xl—i—l is influenced by the neighborhood of X! in the index topology using
a diffusion type interaction.

This process is smooth because it is derived from the smooth stochastic Lyapunov

function
J_HX J_UH

(4.2) Gr ZHX’"H X H ——Zogz

and the second term in (4.1) is a smooth approximation to the “winner takes all” condition

in the Kohonen learning rule.
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The process (4.1) has a continuous version when X, € H;(S!, R?), ie., X, is a

periodic function on [0,27]. Then the process (4.1) becomes:

L Xn(s)Lop|?
T

&
L Xy () Loy |2 (vn = X"(S))>
- 71 du

fsl €

which is induced by the stochastic Lyapunov functional

(4.3)  Xpsi(s) = Xu(s) + cn <aAXn(s) +

o T L|[X (u)Lo]?
(44) Gr(X,v) = S IV 50, — log / L g

Next, Consider the following problem: a traveling salesman has to visit the cities
v1,..05. If he fails to visit a city he loses income which depends on the minimal distance
to that city. On the other hand, he wishes the trip to be as short as possible. We wish to
help the salesman find the optimal path in two cases. In the first case we assume that he
must make m stops and that he can work only in those stops. Thus, the money he loses
is a function of the distance between each city and the nearest stop to that city. In the
second (continuous) case, he can do business at any time, in which case his loses depend
on the minimal distance between each city and his path. First, we turn our attention to

the discrete case. Let

J_HX kaH

ZHX’“ X ——Zlogz

then, when T'— 0, Fr(X) tends pointwise to

e i i T . i
= 5 2 X =X 5 3 min X - o
i=1 k=1

We wish to find stops X° such that X = (X!,...X™) is the global minimum of F. Since
F in not smooth, we relax the problem and seek the minimum of Fr. Note that Fp(X) =
IE(GT/(X,V)|X> when T" = nT, Gr/(X,v) is given by (4.2) and pu(v;) = % Hence, to

find local minima of Fr we can use the stochastic approximation process
(4.5) Xny1 =X, — e, Vo Gr(X,,, V)

We may assume that all the critical points of Fr are non degenerate because the set of

functions with non degenerate critical points is of the second category.
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Lemma 4.1. For every T > 0 the process (4.5) is uniformly bounded.

I[P/~
[&
j 2
Em eJ_HXnJ_vnH /T
ji=1

X’+1—5n X’ Lye,o X’"H—I—en/\’v—l—(l—/\’ 25n0)X,i

Proof: Let \! = . It is easy to see that

for £, small enough, all the coefficients are nonnegative and their sum is 1. Hence, X!,

is a convex combination of Xt X' X!~ and v,.

Corollary 4.2. The process (4.5) converges almost surely to a local minimum of Fr.

Proof: The proof follows immediately from corollary 1.1.7.
o
Remark 4.3. A straight forward computation shows that for T'large enough Fr is convex,
thus it has a unique local minimum. By corollary 4.2 the process (4.5) converges to that
minimum almost surely.
Next, we turn to the continuous case. Here, the relaxed cost function we wish to

minimize is
o LI X(w)Lo)? >Lv||2
Pr(X) = S IV X () = 5 [ ou [ e dudu(v)

which is the average of the stochastic Lyapunov functional (4.4). Note that D,G(X,v) =
o AX(s)+ —X(s)). Thus, we can use the process (1.2.1), i.e., stochas-

cLIIX (s)Lw|2/T (v
fsl el X (u)Lo|2/T gy

tic approximation of the form 2 5t = —DG,(U,v). Using the notations of section 1.3, set

eLllu(s)Lo) 2/

A = —0A and f(u,v) = T e (v — X(s)). Then, for i=0,1 f(u,v) maps

H; N L into itself uniformly With respect to v and since the input set V' is bounded, there
exists some function M such that uf(u, —) < 0 whenever |u| > M. It is also clear that Fr
satisfies the P.S. condition on bounded sets in IHy. Indeed, since (DFr)x, = AX,,+h(X,)
then if (DFr)x, — 0in H_; and (X,,) is bounded in IH;, there is a subsequence X,
which converges weakly in IH;. Since weak convergence in IH; implies uniform convergence,
then for every ¢ € Hy, <V(Xng — X),g> — 0 and <h(an),g> — <h(X),g>. Hence, for
every ¢g € IH,

(DFr)x.g) = (V(Xa; = X),9) + (h(Xn;) = 1(X), g) + (DFx,.g) =0
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Therefore, the assertions of theorem 1.2.3 and corollary 1.2.4 hold. In particular, for every
sample path (X,,) there is a critical value A such that all the limit points of (X,,) are

contained in /.

5— Concluding remarks

Clearly, there are major difficulties when one passes from the one-dimensional model
to the multi-dimensional one. The key stumbling block is the fact that the set of organized
states in the multi-dimensional case is not an absorbing set. To this day, there is no defi-
nition of multi-dimensional organization for which the set of organized states is absorbing
(see, for example, [F],[FP] which show that with positive probability, the exit time from
the set O is finite).

Another question concerns the process in the non-homogeneous case. One possible
course of action is to find an analogous result to the recurrence theorem 2.2. A different
approach it to apply methods of stochastic approximation. Unfortunately, we where unable

to obtain sharp results similar to those presented in chapter 1 for non—smooth processes.

66



References

[A]

[L]

B. Aulbach: Continuous and discrete dynamics near manifolds of equilibria, LNM

1058, Springer—Verlag, 1984
E.W. Cheney: Introduction to approximation theory, 1966, McGraw—Hill

J. Diestel: Geometry of Banach spaces, selected topics, LNM 485, Springer—Verlag,
1970

Y. Gordon, M. Meyer, S. Reisner: Volume approximation of convex bodies by poly-
topes, Studia math. 111 (3), 1994, 81-95

J.A. Flanagan: Self organization in Kohonen’s SOM, Neural Networks Vol 6 (7),
1996, 1185-1197

J.C. Fort, G. Pages: About the Kohonen algorithm, Neural Networks, Vol 9 (5),
1995, 773-785

S.S. Haykin: Neural Networks: A Comprehensive Foundation, 1994, MacMillan Col-

lege Press
T. Kohonen: Self-organization and associative memory, 1989, Springer-Verlag

H.J. Kushner, D.S. Clark: Stochastic Approximation for constrained and uncon-

strained systems, Springer—Verlag, 1978

J.W. Kim, H. Sompolinsky: On-line Gibbs learning, Physical Review Letters, Vol 76,
16 (1996) 3021-3024

J. Kiefer, J. Wolfowitz: Stochastic estimation of the maximum of a regression func-

tion, Ann. math. stat. 23 (1952), 462466

H.J. Kushner, G.G. Yin: Stochastic approximation algorithms and applications, Ap-
plication of mathematics — Stochastic modelling and applied probability 35, Springer,
1997

M. Loeve: Probability Theory, 3rd edition, 1963, D. Van Nostran

67



[LLPS]

[LPW]

[MP]

[MW]

[O]

[P1]

[P2]

[PW]

[RM]

[RMS]

M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken: Multilayer feedforward networks...,
Neural Networks, 6 (1993) 861-867

L. Ljung, G. Pflug, H. Walk: Stochastic approximation and optimization of random
systems, DMV seminar, BD. 17 Birkhauser Pub., 1992

M. Minsky, S. Papert: Perceptrons, 1972, MIT Press

J. Mawhin, M. Willem: Critical point theory and Hamiltonian systems, Applied
math. sciences 74, Springer—Verlag, 1989

S. Orey: Limit theorems for Markov chain transition probabilities, 1971, Van Nostran
Reinhold

G. Pisier: Probabilistic Methods in the geometry of Banach spaces, Probability and
Analysis, 167-241, LNM 1206, Springer—Verlag 1986

G. Pisier: Martingales with values in uniformly convex spaces, Israel J. of Math. 20

(1975) 326-350

M.H. Protter, H.F Weinberger: Maximum Principles in Differential Equations, Pren-
tice — Hall, Inc, 1967

H. Robbins, S. Monro: A stochastic approximation method, Ann. math. stat. 22
(1951), 400407

H. Ritter, T. Martinetz, K. Schulten: Neural computation and self organizing maps,

1992, Addison-Wesley

M. Reed, B. Simon: Methods in modern mathematical physics — Vol. 1, Academic
Press, 1980

J. Rubinstein, G. Wolansky: Pattern formation in neural networks, 1993, Technion

report

A.N. Shiryayev: Probability, Graduate texts in mathematics 95, Springer—Verlag,
1979

68



[W] M.T. Wasan: Stochastic Approximation, 1969 Cambridge University Press

69



