
AbstractIn this thesis we investigate various mathematical aspects of learning in neural net-works.During a learning process a network is exposed and responds to various inputs. Then,the system learns by changing parameters which in
uence its decision making process.For example, when the network has a teacher, it can inform the network if the responseto an input is correct or not. If the network's response is wrong, the parameters changeaccording to some learning rule such that the chance for the network to give a correctanswer to the inputs increases.We investigate several supervised learning models and focus on questions concern-ing the convergence of these processes. The tools we use in the analysis are martingaleconvergence theorems and recurrence theorems for Markov processes.In chapter 2 we analyze linear learning processes (the Perceptron learning rule and theProjection model). We show that in certain cases the Perceptron learning algorithm doesnot converge, while the Projection model converges almost surely and the limit networksagrees with the teacher for almost every input.In chapter 3 we introduce a general on{line supervised learning model. We show, forexample, that if there are \many" states which are in complete agreement with the teacherthen the process converges to one of those states.There are many learning rules which are not aided by a teacher. A tool frequentlyused in the analysis of such models in the Stochastic Approximation process. Thus, in the�rst chapter we present a thorough investigation of this process in su�ciently nice Banachspaces. We are particularly interested in so{called stochastic Lyapunov systems. We show,for instance, that in �nite dimensional spaces this process converges to a local minimizerof the system's Lyapunov function. Also, we introduce a new version of the stochasticapproximation process in Hilbert spaces and use it to construct an adaptive process whichconverges to solutions of Reaction{Di�usion equations.The unsupervised learning process we investigate in chapter 4 is the well known Ko-honen learning rule. Here, we try to answer questions regarding the self{organizationproperties of this process. We show that the orbits of the Kohonen process frequentlyenter the set of \organized" states. 1



In the last section of chapter 4 we introduce a smooth version of the Kohonen rule whichis connected to an optimization problem called the \lazy traveling salesman" problem. Weuse results derived in chapter 1 to o�er an adaptive stochastic process which converges tothe solution of this optimization problem.
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List of symbolsX normed spaceV;
 sets containing the inputsIEf expectation of fkfk IE jf jSd�1 unit sphere in IRdC�(Y;X) space of functions from Y � IR to X which are �{H�olderCk(X) space of functions from X to IR whose k derivative is continuousC1;1loc (X) di�erentiable functions on X with a locally Lipschitz derivativeDf derivative of fB�(x) open ball centered at x with radius �A closure of AA�B (A \Bc) [ (Ac \B)�A the characteristic function of A
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What is a neural networkRoughly speaking, a neural network consists of a �nite number of \black boxes" andan architecture of connections between the boxes. Each black box can receive an inputand according to some rule it produces an output. The architecture determines which ofboxes are connected and what is the strength of each connection.During a learning process the network is exposed to inputs, yields outputs and changesits parameters according to some learning rule. The learning rule may change the strengthof the connections between the boxes or even the decision making mechanism of each box.We view a network as a point in some state space, hence the learning process is astochastic process de�ned on that state space. In this thesis we investigate the behaviorof limits of such stochastic learning processes.We separate the discussion to two categories, the �rst of which is called supervisedlearning. In such learning rules the learning process is aided by a teacher in the followingway: both the teacher and the student are exposed to inputs and the student changes itsposition when its response does not agree with that of the teacher. In cases of an incorrectanswer, the learning rule should move the student closer to the teacher in some sense. Inthe second category, called unsupervised learning, the adaptive process is not aided by ateacher.We wish to note that sometimes the network's architecture and its decision makingmechanism are not described. Rather, we view the network as an element in a state spaceand the learning rule is given by the transition density for state to state.
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Chapter 1 { Stochastic approximation of Lyapunov systems
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0 { IntroductionThe main object of this chapter is the study of stochastic approximation in in�nitedimensional spaces. As an example we consider the scalar valued, semilinear parabolicequation on a domain 
� IR+ where 
 � IRd(0:1) @u@t = �u+ f (u) ; u(0) = u0and u 2 IH10(
) for t > 0.Let (Vj), j = 0; 1; 2; : : : be a sequence of independent identically distributed (i.i.d)random variables subjected to the probability law � and consider a function f = f(u; v)where f (u) = R f(u; v)�(dv). Given a sequence tn !1 such that tj+1� tj ! 0, we de�nethe random process Vt for t � 0 by Vt = Vj if t 2 [tj; tj+1). A stochastic approximation of(0.1) is obtained by(0:1�) @U@t = �U + f(U; Vt) ; U(0) = u0In the present example, the system (0.1) is a gradient 
ow with respect to the functionalF (u) = 12 Z
 jruj2 � Z
 g(u)where g is the primitive function given by g(u) = R u f . Hence(0:2) @u@t = �DuF (u)Similarly, (0.1�) is a gradient 
ow as well:(0:2�) @U@t = �DUG(U; Vt)where G(U; V ) = 12 Z
 jrU j2 � Z
 g(U; V )and g(U; V ) = R U f(s; V )ds.In this case, we wish to investigate the relations between the critical points of F andthe asymptotic limits of (0.2�).In its original context, Stochastic Approximation is a process de�ned by a stochas-tic di�erence equation in IRd. It was �rst investigated during the early 1950s by Kiefer6



and Wolfowitz ([KW]) and by Robbins and Monro ([RM]) who considered the particularexample Xn+1 = Xn � 1n �f(Xn)� 12�where f(Xn) is a random function interpreted as the result of an experiment conductedat the state Xn. The object was to show that the process above converges almost surelyto a deterministic value x which satis�es h(x) = 1=2, where h(�1) = 0 and dhdx is theprobability distribution of the outcome of a single experiment.After the pioneering work which appeared in [RM] and [KW], the process becamethe subject of a large number of papers and manuscripts. The de�nition of the stochasticapproximation process was extended signi�cantly to a more general form:(0:3) Xn+1 = T"n(Xn; Vn) � Xn � "nH(Xn; Vn)where H(Xn; Vn) are random variables which represent samples of a given function onthe state space, but unlike the example above may depend on other parameters and notjust on Xn. In general, Xn and Vn are not assumed to be independent and even "n aresometimes assumed to be positive random variables instead of a �xed positive sequence.The questions asked in this context are under what assumptions does the process convergeand do the limits give any additional information on the sampled function.A detailed survey of the subject up to the mid 1960s can be found in [W]. Anothersource of information is Kushner and Clark's book from 1978 ([KC]). The most recentsurvey is due to Kushner and Yin ([KY]) which covers the latest developments concerningthe stochastic approximation process in a �nite dimensional space. There are fewer resultsconcerning the process in an in�nite dimensional setting, most of which are elementaryextensions of the �nite dimensional case. Some results concerning the process in Hilbertspaces may be found in [LPW].In this chapter we o�er two possible extensions to the process (0.3) in in�nite dimen-sional spaces. In the �rst section we investigate an analog to (0.3) in Banach spaces witha su�ciently smooth norm and under the assumption that the system has a stochasticLyapunov function. For example, if the space is a Hilbert space then the process (0.3)has a stochastic Lyapunov function if H is the derivative of some smooth function G. Wealso assume that (Vn) are i.i.d., that Xn and Vn are independent and that P "n = 1,P "pn <1 where 1 < p � 2 is determined by the geometry of the space.7



It is well known (see [KY]) that if G is a smooth function on IRd and if (Xn) areuniformly bounded then (Xn) converges almost surely to the set of critical points of F ,where F (x) = R G(x; v)�(dv). It is also known that if x is a local minimum of F then thereis a compact set K containing x, such that if a sample path (xn) of the process enters Kin�nitely often then xn ! x.The proofs of those results are both due to Kushner and Clark ([KC]) and followfrom the fact that orbits (xn) can be approximated by the deterministic gradient 
ow_x = �rF (x), analogous to (0.2).In the �rst section we present a simple proof of the convergence of (Xn) to the setof the critical points of F in su�ciently smooth Banach spaces. Our method, basedon convergence theorems for Banach valued martingales ([P]) and classical martingaletheory ([S]) enables us to obtain sharper results concerning the actual limits of Xn. Inparticular we obtain that under natural conditions in �nite dimensional spaces the processXn converges a.s. to a local minimizer of F . More generally, if all the solutions of _x =�rF (x), excluding a set of initial data of Lebesgue measure zero, converge to limit pointsin a set C � K, where K is the set of the critical points of F , then the correspondingstochastic approximations converge a.s. to limits in C as well. As an example, supposethat the stochastic approximation is given in IR2 (i.e. G = G((x; y); v)) while the averagedF = F (x). Then our results yield not only the convergence of the �rst coordinate sequencexn to a critical point of F almost surely, but it implies that (xn; yn) converges as well.In the second section we introduce a generalization of the process (0.3) in a Hilbertspaces. We may de�ne T"n as the compact operator given by the nonlinear semigroupgenerated by the 
ow (0.2�) for a time interval of length "n = tn+1 � tn where V is �xedon that interval of time. We show that, under some conceivable assumptions, a stochasticapproximation of this type converges to a critical point of F , provided we have some a-priori local estimate of the type kT"(V ) �X �Xk < C"p�1 in the Hilbert space normwhere 1 < p � 2 and ("n) 2 lp.In the third part we demonstrate that the conditions of section 2 hold for reactiondi�usion equations of the type (0.1�) with p = 3=2 and in the fourth and �nal part weprove results concerning the weak convergence of stochastic Lyapunov systems.8



1 { Stochastic gradient descent in Banach spaces { classical approachThe stochastic gradient descent process in a �nite dimensional space is an exampleof the celebrated stochastic approximation process: de�ne the process on IRd by Xn+1 =Xn � "nH(Xn; Vn), where H : IRd � 
 ! IRd is continuous, (Vn) � 
 are i.i.d randomvariables with a common distribution which is induced by the measure � on 
 and ("n) isa positive sequence which belongs to l2nl1, i.e., X "i =1, X "2i <1. It is well known([KY]) that if Xn are uniformly bounded then the limit points of (Xn) are in the invariantset of the O.D.E _x = R H(x; v)�(dv) almost surely with respect to the measure inducedby the process.In this section we extend this result to a more general case under additional assump-tions on the function H.We begin with the following de�nitions and notations. For every Banach space IB and� > 0 let �IB(� ) be the modulus of smoothness of IB de�ned by�IB(� ) = sup�(kx+ yk+ kx� yk)=2 � 1; x; y 2 IB; kxk = 1; kyk = �	We say that IB is p{smooth if �IB(� ) � C�p for some 1 < p � 2. IB is called strictly convexif from the fact that kxk = kyk = 1 follows that kx + yk =2 = 1 if and only if x = y.Recall that if IB is a strictly convex p{smooth Banach space then IB is re
exive with adi�erentiable norm (see [D]).For every Banach space E the normalized duality map J : E ! E� is a set valued functiongiven by JEx = fx� 2 E�j
x�; x� = kxk2 ; kxk = kx�kgIn our case JIB is a single valued one to one function and JIB�JIB = IIB. Also note thatJIB is the derivative of 12 kxk2. Let H : IB � 
 ! IB, put � a probability measure on 
,set Vn to be i.i.d random variables which are given by the measure � and let ("n) 2 lpnl1.Assume that for every x 2 IB, IEvH(x; v) = R H(x; v)d�(v) exists, where the integrationis in the Bochner sense. We de�ne the stochastic approximation associated with H by(1:1) Xn+1 = Xn � "nH(Xn; Vn)De�nition. We say that the process (1.1) is a stochastic Lyapunov system if there existsa function F : IB! IR such that F 2 C1;1loc (IB) and DF = JIB(IEvH).9



If, for example, IB is a Hilbert space then it has smoothness type p = 2 and JIB isthe identity map. If H is the derivative of some function G(x; v) with respect to the �rstvariable, where G(�; v) 2 C1;1loc (IB) uniformly �{almost surely, i.e., for any bounded setB � IB there exists a C such that for almost every v 2 
supx2B 

DxG(x;v)

 < C; supx2B 

DxG(x1;v) �DxG(x2;v)

 < C kx1 � x2kthen the process (1.1) is a stochastic Lyapunov system. Indeed this follows by puttingF (x) = R G(x; v)d�(v). The reason for the name \stochastic Lyapunov system" comesfrom the fact that F is a Lyapunov function for the deterministic gradient descent (zn)de�ned by(1:2) zn+1 = zn � "nJIB�DF (zn)which is in some sense the average of the process (1.1).Throughout this section we assume that the process (1.1) is a stochastic Lyapunov system,that IB is a p{smooth strictly convex Banach space, that ("n) 2 lpnl1 and:A1. H(�; v) locally Lipschitz uniformly �{almost surely, i.e., for any bounded set B � IBthere exists a C such that for almost every v 2 
supx2B kH(x; v)k < C; supx2B kH(x1; v) �H(x2; v)k < C kx1 � x2kLet K be the set of the critical points of F (i.e. DF (x) = 0). Recall that � is a criticalvalue of F if there is a critical point x of F such that F (x) = � and denote by K� the setof such critical points. We assume thatA2. K� is totally disconnected for any critical value of F .In certain cases we replace assumption A1 with the following:A3. H(�; v) is both bounded and Lipschitz uniformly �{a.s. and F is bounded frombelow on IB.We denote by � the measure induced on the orbits of the process (1.1) and by j j a Borelprobability measure on IB.We formulate our �rst claim: 10



Theorem 1.1. Let Xn be de�ned by the process (1.1) and assume that (A1,A2) aresatis�ed. If Xn are uniformly bounded then F (Xn) converges and DFXn ! 0 almostsurely. Moreover, if F and DF are weakly continuous then for �{almost every samplepath (xn) of the process (1.1) there exists a critical value � of F such that (xn) convergesweakly and its limit belongs to the set K�. The same assertion holds even if (Xn) is notassumed to be uniformly bounded but conditions A2 and A3 are granted and F is coercive(i.e. limkxk!1F (x) =1).The idea behind the convergence theorem presented here is to divide the processinto its stochastic part H(x; v) � JIB�DF (x) and deterministic part JIB�DF (x). We showthat the stochastic element of the process (1.1) is well behaved in the sense that formsa converging series almost surely. Hence, the orbits of the process (1.1) are close to theorbits of the gradient descent process (1.2).Lemma 1.2. Put Zn = "n�IE�H(Xn; Vn)jXn� � H(Xn; Vn)� and Yn = 
DF (Xn); Zn�,where Xn are given by the process (1.1). If H(�; v) = DG�;v is uniformly bounded�{almost surely then 1Xn=1Yn and 1Xn=1Zn converge �{almost surely.Proof: Let Fn be the �-algebra generated by X1; V1:::;Xn; Vn and note that Fn�1 =�(Fn�1;Xn). Clearly both Yn and Zn are Fn{measurable uniformly bounded martingaledi�erence sequences, i.e. IE(YnjFn�1) = 0 and IE(ZnjFn�1) = 0. Indeed,IE(ZnjFn�1) = "nIE�H(Xn; Vn)jFn�1�� "nIE�H(Xn; Vn)jFn�1� = 0and sinceDF (Xn) is Fn�1 measurable then by the properties of the conditional expectationwe see that IE�
DFXn ; Yn�jFn�1� = 
DFXn ; IE(YnjFn�1)� = 0Since Yn is scalar valued and V arYn � C"2n then PV arYn converges, hence by the mar-tingale di�erence convergence theorem ([S]), PYn converges almost surely.Finally, set Sn =Pn1 Zi. By Doob's maximal lemma (see [P1]), for every t > 0 and everyn 2 IN ���supk kSn+k � Snk � t	� � supk IE kSn+k � Snkptp11



Since IB is p-smooth then by a result due to Pisier ([P2])supk IE kSn+k � Snkptp � 1tp 1Xk=1kZn+kkp � Ctp 1Xi=n "piTherefore PZn converges almost surely. �Next, we show that the process (1.1) converges to the set fxjDF (x) = 0g. The keypart in the proof is the following deterministic lemma, which is a modi�cation of a resultappearing in [LPW].Lemma 1.3. Let (xn); (un) � IB, ("n) 2 lpnl1, where xn+1 = xn � "nJIB�DFxn + "nun.Assume that (F (xn)) is bounded from below and that DF is a Lipschitz function. Alsoassume that both (un) and (DFxn ) are bounded sequences and thatP "n
DFxn ; un� <1,P "nun <1. Then F (xn) converges,P "n kDFxnk2 <1 and DFxn ! 0.Proof: By Taylor's formula, there is a �n such thatF (xn+1) = F (xn) + "n
DF�n ;�JIB�DFxn + un� ="n�
DFxn ; un�� kDFxnk2�+ "n
DF�n �DFxn ; un � JIB�DFxn�Since DF is Lipschitz and both un and JIB�DFxn = R H(xn; v)d�(v) are bounded then��"n
DF�n �DFxn ; un � JIB�DFxn��� � "nC k�n � xnk � "nC kxn+1 � xnk � C 0"2nIterating the expansion for F (xn+1) we see thatF (xn+1) = F (x1) + nXi=1 "i
DFxi ; ui�� nXi=1 "i kDFxik2 + nXi=1 �iwhere P11 �i converges absolutely.Since Pn1 "i
DFxi ; ui� converges and F (xn) is bounded from below, P "n kDFxnk2 is apositive bounded series, thus it converges, which implies that F (xn) converges as well.Next, assume that kDFxnk � � in�nitely often. Hence, we can �nd an N such thatkDFxN k � �,P1N "k kDFxkk2 < �2=8C and kP1N "kukk < �=4C, where C is the Lipschitzconstant of DFx. We show using induction that kDFxnk � �=2 for every n > N . Indeed,12



by the de�nition of the process and using the induction hypothesiskxn+1 � xNk � nXk=N "k kDFxkk+ 




 nXk=N "kuk




 �� 2� nXk=N "k kDFxkk2 + 




 nXk=N "kuk




 < �=2COn the other hand,

DFxn+1

 � kDFxN k � 

DFxn+1 �DFxN

 �� kDFxN k � C kxn+1 � xNk � � � �=2 = �=2Therefore, since ("n) 62 l1, P "n kDFxnk2 diverges, which is a contradiction. �Proof of Theorem 1.1: Set Un = �IE�H(Xn; Vn)jXn� � H(Xn; Vn)�. If (Xn) areuniformly bounded or if A3 is satis�ed then both Zn = "nUn and Yn = 
DFXn ; Zn� areuniformly bounded, thus by Lemma 1.2 both P "nUn and P "n hDFXn ; Uni converge �{almost surely. Therefore, in both cases the assumptions of lemma 1.3 hold for �{almostevery orbit. It follows that for �{almost every orbit (xn), F (xn) converges and DF (xn)!0. Hence, since F and DF are weakly continuous, there is a critical value � of F such that
w(xn) = \k>1 [j>k(xj ) � K�where the closure is with respect to the weak topology. We claim that 
w(xn) is connectedand nonempty. Indeed, note that in both cases (xn) is bounded { in the �rst case by theassumption that Xn are uniformly bounded and in the second, since by lemma 1.2 F (xn)converges and since F is coercive then xn must be bounded. Thus, [j>k(xj ) is a compactset and 
w(xn) is nonempty as an intersection of nested compact sets. To show that 
w(xn)is connected, note that if it is not the case, there are disjoint weakly open and closed(compact) sets C1; C2 � 
w(xn) such that C1[C2 = 
w(xn). Hence, since the weak topologyon 
 is metrizable and by the properties of that metric, there are weakly open sets U1and U2 with disjoint weak closures, such that Ci � Ui. Both C1 and C2 contain weaklimit points of (xn) and since kxn+1 � xnk ! 0, there is a subsequence (xnj ) � (U1 [U2)c.13



Therefore, there is a weak limit point of (xn) outside C1 [ C2 which is a contradiction.Since K� is totally disconnected, 
w(xn) consists of a single point, thus (xn) itself mustconverge. �The next step is to prove that the behavior of the orbits of the process (1.1) is de-termined in some sense by the O.D.E (1.3) below. From this follows that in the caseIB = IRd, if X1 has a density which is equivalent to the Lebesgue measure and under mildassumptions on F , Xn converges almost surely to a local minimum of F .We impose the additional assumption:A4. For any measurable set A � IB, every n > 0 and almost every v 2 
,jfyjy = x� "nH(x; v); x 2 Agj = 0 if and only if jAj = 0Note that if IB = IRd, H(x; v) = rxG(x; v) and G satis�es A3, then if "n is su�cientlysmall A4 holds { since the map x ! x � "nrxG(x; v) is invertible. Also note that fromA4 follows that the distributions of X1 and Xn are equivalent.The next result deals with the connection of the O.D.E(1:3) dxdt = �JIB�DFxand the process (1.1).Theorem 1.4. Assume that A3 and A4 hold, that X1 has a distribution which is equiva-lent to j j and that there is a set C � K such that for j j{almost every x 2 IB the solutionx(t) of (1.3) for which x(0) = X1 converges to some k 2 C as t!1. Then for �{almostevery orbit (xn) of the process (1.1), either 
(xn) is empty or limn!1xn exists and belongsto C.Proof: For every x 2 IB, let xx(t) be the solution of (1.3) such that xx(0) = x. De�neN0 �IB in the following way: x 62 N0 if limt!1xx(t) exists and belongs to C. Since jN0j = 0 andsinceX1 has a distribution which is equivalent to j j then ��f(Xn)jXi 2 N0 for some ig� =0. Hence, for �{almost every orbit (xn),P "n�IE�H(Xn; Vn)jXn��H(Xn; Vn)� converges,and for every n the solution x(t) of (1.3) such that x(0) = xn converges to some point inC as t!1. Let (xn) be such an orbit. 14



Clearly xn+1 = xn � "nJIB�DFxn + "n�IE�H(xn; vn)jXn = xn��H(xn; vn)�Denote IE�H(Xn; vn)jXn = xn� �H(xn; vn) by un. Put tn = Pn1 "i and let U(t) be thelinear interpolation de�ned by U(0) = X1, U(tn) =Pn1 "iui.Set x�(t) =P�[tn;tn+1]xn+1, x̂(t) = x0 � R t0 JIB�DFx�(s)ds + U(t) and x̂n(t) = x̂(t + tn).Note that x̂(tn) = x̂n(0) = xn. Moreover,x̂n(t) = �x̂n(0) � Z t0 JIB�DFx̂n(s)ds�+ �U(t + tn)� U(tn)��� �Z t0 JIB�DFx�(s+tn)ds � Z t0 JIB�DFx̂n(s)ds� = xn(t) +An(t) +Bn(t)Since xn(t) is a solution of (1.3) then limt!1xn(t) exists, belongs to C and we denote it bykn.By the de�nitions of x̂(t) and x�(t), we see thatZ tn+1tn kx̂(t)� x�(t)k dt � kxn+2 � xn+1k "n+1=2 � C 0"2nand since JIB�DF = R H(x; v)d�(v) is a Lipschitz function then



Z t0 JIB�DFx̂(s+tn) � JIB�DFx�(s+tn)ds



 � C Z t+tntn kx̂(s) � x�(s)k ds � C 0 1Xn "2ntherefore, for every n, kBn(t)k � C 0P1n "2i and since U(t) is the linear interpolation ofU(tn) =Pn1 "iui then limn!1U(t+ tn)� U(tn) = 0 uniformly. Fix � > 0. There is an N(�)such that for every t > 0, kAN (t) +BN (t)k � �, therefore, kx̂N (t) � xN (t)k � � for everyt > 0. Since limt!1xN (t) = kN then 
(xn) � BkN (�N ). Hence, 
(xn) � \�>0BkN(�)(�) whichimplies that if 
(xn) is not empty, then lim�!0 kN(�) exists and that 
(xn) = lim�!0 kN(�). Thus(xn) converges to some k 2 C. �Note that the theorem will still be true if we assume A1,A4 and impose that Xn areuniformly bounded.From here on, we assume that IB is a �nite dimensional space. Theorem 1.4 impliesthat the behavior of the process (1.1) is determined by the O.D.E (1.3) under the assumed15



conditions. Also note that 
(xn) is not empty, since by the proof of theorem 1.4 (xn)is bounded. We present in Corollary 1.7 below an example in which the conditions oftheorem 1.4 are ful�lled and prove that the process (1.1) converges to a local minimum ofF �{almost surely. For examples in which weaker conditions than the ones in corollary 1.7are imposed but the limit of (1.3) still exists for Lebesgue almost every initial condition,we refer the reader to [A].We add the additional assumption:A5. All the critical points of F are non degenerate. In particular, the set K of the criticalpoints of F is (at most) countable.The following result concerning the O.D.E (1.3) in IRd is well known and its proof isomitted.Proposition 1.5. Let IB = (IRd; k k2) and let j j be a probability measure equivalent tothe Lebesgue measure.a. If the solution x(t) of (1.3) is bounded on t � 0 then limt!1x(t) exists and is a criticalpoint of F . In particular, if F is coercive then the above limit exists for any x(0) 2 IRd.b. For any non-degenerate critical point xc of F the stable W s(xc) and unstable Wu(xc)manifolds of (1.3) are embedded in IRd.Since an embedded manifold of non zero co{dimension is of Lebesgue measure 0 weobtain:Proposition 1.6. If F is coercive and all its critical points are non degenerate then thereexists a set N0 � IRd, jN0j = 0 such that limt!1x(t) is a local minimum of F provided thatx(0) 2 Nc0 .Proof: Let Ku � K (Ks � K) be the set of unstable (stable) critical points of Fand denote W s(Ku) � [x2KuW s(x) (res. W s(Ks) � [x2KsW s(x)). Since W s(x) is anembedded manifold of dimension k < d for any x 2 Ku and there are a countable numberof such points, then W s(Ku) = 0. Since IRd = W s(Ku) [W s(Ks) we obtain that N0 =W s(Ku) as required. �16



Corollary 1.7. Let (IB = IRd; k k2) and set H(x; v) = rxG(x; v). Assume that A3 andA5 hold, that X1 has a distribution which is equivalent to the Lebesgue measure and thatF is coercive. Then �{almost surely the process (1.1) converges and its limits are localminima of F .Proof: This follows immediately from proposition 1.6 and theorem 1.4, by setting C tobe the set of local minima of F . �2 { The in�nite dimensional case { compact operator approachIn this section, we present a generalization of the process (1.1) to a Hilbert space.The essential di�erence between this and the previous case is that the gradient (Fr�echetderivative) of G may be in general, a random unbounded operator on the underlying space.In actual applications (c.f. next section) the gradient of G generates a nonlinear randomcontinuous semigroup which is a compact perturbation of a linear (deterministic) one. Thisexample motivates the assumptions below:Let IH1 � IH0 be Hilbert spaces equipped with the norms k kIHi i = 0; 1. Assume thaton IH1, kxkIH0 � C kxkIH1 and that IH1 is compactly embedded in IH0. Denote by 
 ; � theinner product in IH0 and let (
; �) be a Borel probability space. Suppose that G : IH1�
!IR is a Fr�echet di�erentiable function on IH1 for ��almost every v 2 
. For every �xed v,denote by DxG the derivative of G with respect to the �rst variable and assume that forevery x 2 IH1, DxGx;� is � measurable and that ess supv2V kDxGx;vk(IH1;k k0)� � C(x). Wedenote (IH1; k k0)� by IH�1 and let C��[0; T ]; IH1� be the space of functions from [0; T ] toIH1 which are �{H�older.The following observation, which was noted in the �rst section, is standard and itsproof is omitted.Lemma 2.1. Put F (x) = R G(x; v)d�(v). Then F is Fr�echet di�erentiable with respectto the norm k kIH0 on IH1 and DF = R DxG(x;v)d�(v), where the integration is in theBochner sense.Fix 0 < � < 1, let ("n) 2 lpnl1 where p = � + 1 and set tn =Pn�11 "i, t1 = 0.The process is de�ned as follows: Let X0 � u0 2 IH1. Then Xn+1 = u("n) where u is17



the solution of(2:1) dudt = �DxG(u; Vn)and u(0) = Xn. We make the following assumptions:A1. For any u(0) 2 IH1 there exists T > 0 and C, depending only on ku0kIH1 , such thatthe equation (2.1) is solvable in the interval [0; T ], the solution u 2 C�([0; T ]; IH1) is uniquein this interval and kukC�([0;T ];IH1) < C.A2. For every bounded setB � IH1 exists a C such that for every x; y 2 B, z 2 IH1 and v 2
, ��
DxGx;v; z��� � C kzkIH1 and ��
DxGx;v �DxGy;v; z��� � C kx � ykIH1 kzkIH1 . Clearly,the same estimates also hold for F , i.e., ��
DFx; z��� � C kzkIH1 and ��
DFx �DFy; z��� �C kx � ykIH1 kzkIH1 .A3. For almost every v 2 
, Qv = DxG(�;v) �DF maps IH1 to IH1. The family (Qv) isuniformly bounded on bounded sets in IH1 and ess supv2
 kQv(x) �Qv(y)kIH1 � C kx� ykIH1Assumption A3 implies that although DxG maps IH1 into IH�1, the "stochastic part" ofDxG is a bounded random operator into IH1, namely DxG�DF maps IH1 to IH1.Evidently, by A1, the process is well de�ned if we have an a{priori bound on kXnkIH1for "n which are su�ciently small. We shall refer to the natural extension of (Xn) into acontinuous orbit X(t), t � 0 by X(t) = u(t� tn) for t 2 (tn; tn+1) where u is the solutionof (2.1) subjected to u(0) = Xn. Therefore, if X1 = x then every sequence (vn) induces atime continuous sample path.We make the following additional assumption:A4. There is a K � IH1 and C such that if X0 2 K a.s., the process (2.1) is well de�nedand supIR+ kX(t)kIH1 < C holds for almost every time continuous sample path.We limit the discussion to the case where the initial conditions are selected from K.Recall the de�nition of a version of the Palais{Smale condition (P.S.) (see [MW]):18



De�nition 2.2. Let F 2 C1(IH1; k kIH0 ). We say that F satis�es the P.S. condition iffrom the fact that F (xn) ! � and DF (xn) ! 0 in IH�1 follows that � is a critical valueof F and (xn) contains a subsequence which converges weakly to a critical point in K�.Our main result is:Theorem 2.3. For almost every sample path of the process (2.1), �F (xn)� converges andthere exists a subsequence nk along whichlimk!1DxF (xnk ) = 0holds in IH�1. Also, if F satis�es the P.S. condition, then for almost every sample path(xn) there exists a critical value � of F such that all the limit points of (xn) are containedin K�.Corollary 2.4. Under the condition of Theorem 2.3, if F satis�es the P.S. condition andthe set K� is totally disconnected in IH0 for every critical value � then for almost everysample path (xn) there is a critical value � and x 2 K� so that xn ! x in IH0.The proof of this Corollary is identical to the proof of the corresponding part inTheorem 1.1, by setting 
(xn) = \n�0 [k�n(xk)where the closure is in IH0. Since IH1 is compactly embedded in IH0 then 
(xn) is compactand connected in IH0. Hence 
(xn) � K�, therefore it consists of a single point.To prove Theorem 2.3 we introduce:Lemma 2.5. For almost every continuous time sample path x(t) the series1Xn=1Z tn+1tn 
DFx(t);DGx(t);vn �DFx(t)�dtconverges.Proof: Let x(t) be induced by the sequence of inputs (v1; v2; ::::). Note that�n = Z tn+1tn 
DFx(t);DGx(t);vn �DFx(t)�dt = Z tn+1tn 
DFxn ;DGx(t);vn �DFx(t)�dt++ Z tn+1tn 
DFx(t) �DFxn ;DGx(t);vn �DFx(t)�dt = (1) + (2)19



To estimate (2), note that since x(t) is bounded in IH1 then so is Qv(x(t)) = DGx(t);vn �DFx(t). Thus, by A2, j(2)j � C R tn+1tn kx(t) � xnkIH1 , hence by A1j(2)j � C 0"n supt2[tn;tn+1] kx(t) � x(tn)kIH1 � C 00"pnNext, note that(1) = "nDDFxn ; Qvn (xn)E + DDFxn ;Z tn+1tn �Qvn(x(t)) �Qvn(xn)�dtEAgain, since by A4 x(t) is bounded in IH1 then by A2, A3 and A1����DDFxn ;Z tn+1tn �Qvn(x(t)) �Qvn(xn)�dtE���� �� "nC 0 supt2[tn;tn+1] kQvn(x(t)) �Qvn(xn)kIH1 � C"pnSinceP "p <1 it is enough to show that P1n=1 "n
DFxn ; Qvn (xn)� converges for almostevery orbit (xn).Let Fn be the �{algebra generated by X1; V1; :::Xn; Vn and put Yn = "n
DFXn ; Qv(Xn)�.Note that Yn is Fn measurable and Xn is Fn�1 measurable. moreoverIE�Qv(Xn)jFn�1� = IE�DxGXn;Vn �DFXn jFn�1� = Z
DxGXn;vd�(v) �DFXn = 0Hence,IE(YnjFn�1) = "nIE�
DFxn;Qv(xn)�jFn�1� = "n
DFxn; IE(Qv(xn)jFn�1)� = 0thus, Yn forms a martingale di�erence sequence. By A4, Xn are uniformly bounded in IH1,thus by A2, ��
DFXn ; Qv(Xn)��� � C kQv(Xn)kIH1 � C 0therefore, Yn are uniformly bounded and P11 V arYn converges absolutely almost surely,implying, just as in section 1, that P1n=1 Yn converges almost surely. �Proof of Theorem 2.3: Note thatF (xm) � F (xn) = Z tmtn @F (x(t))@t dt = �m�1Xi=n Z ti+1ti 
DFx(t);DGx(t);vi� == �Z tmtn 

DFx(t)

2 �m�1Xi=n Z ti+1ti 
DFx(t);DGx(t);vi �DFx(t)�20



By lemma 2.5, the second term is a converging series and since (F (xn)) is a boundedsequence, it follows that F (xn) converges and R10 

DFx(t)

2 <1. In particular, there isa subsequence xnk such that 


DFxnk


! 0.To prove the second part of the theorem, assume that there exists an IH0 limit point of(xn), denoted by x, such that x 2 IH1 but is not a critical point of F . Then there is a � > 0and a radius R such that kDFyk � � on N = fyj ky � xkIH0 � Rg \ IH1. Indeed, if this isnot the case, there is a sequence (yn) � IH1 such that kyn � xkIH0 ! 0 and DFyn ! 0. Bythe P.S. condition there is a subsequence (ynj ) converging weakly to a critical point of F{ thus x must be a critical point.Assume that kxn � xkIH0 < � < R and let T � = inf�>0 �kx(tn + � )� xkIH0 = R	, i.e.,T � � 1 is the minimal time required to leave N given that x(tn) = xn. We now use theuniform ��H�older estimate on the solutions (assumption A1) to show that T � cannot betoo small. If T � is smaller than the interval of existence T of (2.1) (c.f. assumption A1),then kx(tn + T �) � xnk < C(T �)� by A1 andR = kx(tn + T �)� xkIH0 � kx(tn + T �) � xnkIH1 + � � C(T �)� + �Therefore, T � � �R� �C � 1� . This implies thatZ 1tn 

DF(x(t))

2 dt > Z tn+T�tn 

DF(x(t))

2 dt > ��R� �C � 2�which contradicts the convergence of R10 

DFx(t)

2 dt. �3 { Applications for reaction-di�usion equationsIn this section we demonstrate an application of the results from section 2 to a classof reaction-di�usion equations of the form(3:1) @U@t = AU + f(U; Vt) ; u(0) = u0 2 IH0where A is an unbounded, self-adjoint negative operator in a Hilbert space IH0 whichgenerates the continuous semigroup etA : IR+ � IH0 ! IH1.21



For any i > 0, de�ne IHi in terms of the spectral family of projection valued measuresIP� of the operator A (see [RS]). Let �(A) be the spectrum of A, then � 2 IHi if and onlyif k�k2IHi � Z�(A)(1 + j�j2i)1=2
�; dIP�(�)� <1Assume that IH0 = IL2(
) where 
 � IRd and A is a uniformly elliptic operator in 
with appropriate boundary conditions (One may keep in mind, for example, A = � is theLaplacian with Dirichlet boundary conditions and IH1 =W 1;20 (
)).As in the previous section the parameter V is a random function of time give byVt = vn if t 2 [tn; tn+1), wheret0 = 0 ; limn!1 tn =1 ; 1Xn=0�tn+1 � tn�3=2 <1while Vn 2 
 are distributed according to a probability measure �.Assume that for almost every v, f(s; v) is a continuous function with respect to theparameter s. Let g(s; v) be the primitive function g(s; v) = R s f(�; v)d� and putG(U; v) = �12
AU;U� � Z
 g(U; v)dxthen DuG(U; v) = �AU � f(U; v), hence (3.1) is an example of the process (2.1). Also, weassume that the Nimitzky operator f(�; v) maps IHi\IL1, for i = 0; 1 into itself uniformlywith respect to v. In the case where 
 is bounded, this follows if, for example, f(�; v) 2C1loc(IR) uniformly with respect to v, and when 
 is unbounded, if f = f(�; x; v) 2C1loc(IR;
) uniformly in v and satis�es certain decay properties where x!1. Moreover,assume that there exists a function M > 0, independent of v, such that Uf(U;�) < 0whenever jU j >M .Denote by f = R f(u; v)d�(v) and set F (u) = R G(u; v)d�(v). Clearly uf(u) < 0 forjuj > M and f maps IH1 \ IL1 into itself as well. Thus, F is de�ned on IH1 \ B for anybounded set B � IL1(
). Moreover, by the maximum principle [PW] the solution of(3:2) @u@t = Au+ f (u) ; u(0) = x0and the solution U of (3.1) both satisfy(3:3) kU(�; t)k1 < M 0 ; ku(�; t)k1 < M 022



for any t � 0 provided kx0k1 <M 0 .Note that the steady states of (3.2) are the critical points of F and letK(1)M 0 = IH1\BM 0 ,where BM 0 is the ball of radius M 0 in IL1(
). By the maximum principle, all the steadystates of (3.2) are in the set K(1)M , which implies that the set of the critical points of F arein K(1)M as well.We shall show that under our assumptions, the process (2.1) converge a.s. to a criticalpoint of F , i.e., to a solution w 2 IH1 of Aw+f (w) = 0 provided that the set of its solutionsis totally disconnected (for example, if the number of solutions is countable). To that endwe show that the assumptions A1{A4 are ful�lled, hence the assertions of theorem 2:3 andcorollary 2:4 hold.Let the set of initial conditions K (appearing in assumption A4) be K(1)M 0 for someM 0 > M . For this K, assumption A4 is veri�ed. Indeed, the solution U of (3.1) isbounded by M 0 in IL1 by the maximum principle. By the assumed properties of f weobtain that f(U(�; Vt)) is bounded uniformly in time with respect to the IH0 norm.Consider the linear equation(3:4) dUdt = AU + g(�; t) ; U(0) = x0 2 IH1where g(�; t) = f(U; Vt). Since g 2 IL1(IR+; IH0) it follows that U 2 IL1(IR+; IH1).Together with the uniform IL1 estimate we have on U and the assumptions on f weobtain that g 2 IL1(IR+; IH1).Next we show that assumption A1 holds in an abstract Hilbert space setting. Toverify A1 it is enough to show that U 2 C1=2(IR+; IH1). This is obtained by a uniformestimate of the solution in IH2:Proposition 3.1. The solution U of (3.1) satis�es U 2 IL1(IR+; IH2).The proof of the H�older continuity of U in the IH1 norm follows from proposition 3.1in two steps. In the �rst step, we use the IH2 estimate on U to show that U is Lipschitzin the IH0 norm. Indeed, Let z� (t) = U(t + � ) � U(t). Since kUkIH2 and kAUkIH0 areequivalent then12 @@� kz� (t)k2IH0 = 
z� (t); @U(t + � )@� � = 
z� ; AU(t + � ) + g(t+ � )� �� kz�kIH0 �kg(t+ � )kIH0 + kU(t + � )kIH2 �23



Thus, since g = f(U; vt) is uniformly bounded in IH1 and by the proposition, U 2Lip(IR+; IH0). From the interpolation kz�kIH1 � C kz�k1=2IH0 kz�k1=2IH2 follows that U 2C1=2(IR+; IH1), as required. The proofs of the remaining assumptions A2 and A3 areself-evident.Proof of Proposition 3.1: We may assume x0 = 0 because it di�ers from the actualsolution by a solution of the homogeneous equation, which belongs to IHk for every k > 0.Using the presentation (3.4) with g(t) � f(U; Vt) and since g 2 IL1(IR+; IH1) then U(t) =R t0 e(t�s)Ag(s)ds. Denote by ��(d�) = 
�; dIP��� the spectral measures associated with� 2 IH0. Hence(3:5) dIP�U(t) = Z t0 e(t�s)�dIP�g(s)dsTaking the inner product of U(t) with (3.5) and since dIP� are orthogonal projections, itfollows that �U(t)(d�) = DZ t0 e(t�s0 )Ag(s0)ds0 ;Z t0 e(t�s)�dIP�g(s)dsE == Z t0 Z t0 e(t�s)�e(t�s0 )�
g(s0); dIP�g(s)�dsds0By the Cauchy-Schwartz inequality,
g(s0); dIP�g(s)� = 
dIP�g(s0); dIP�g(s)� � 
g(s0); dIP�g(s0)�1=2
g(s); dIP�g(s)�1=2and since the spectrum of A is negative then�U(t)(d�) � �Z t0 e(t�s)��1=2g(s)(d�)�2 � �Z t0 e(t�s)�ds��Z t0 e(t�s)��g(s)(d�)ds� �� ���1 Z t0 e(t�s)��g(s)(d�)dsTherefore, if �0 = sup�(A) < 0 thenkU(t)k2IH2 = Z�(A) �2�U(t)(d�) � �Z�(A) Z t0 �e(t�s)��g(s)(d�)ds �� Z t0 e(t�s)�0 Z�(A) ��g(s)d�ds � �Z t0 e(t�s)�0 kg(s)k2IH1 ds � ���10 sups2IR+ kg(s)k2IH1 �24



4 { Weak convergence of Lyapunov systemsIn this section we make a few observations on the question of weak convergence ofLyapunov systems de�ned by (1.1) in p{smooth strictly convex Banach spaces. Throughoutthis section we assume that Xn are uniformly bounded almost surely, that H is a Lipschitzfunction and that "n < 1 for every n. We derive our results from the following maximallemma:Lemma 4.1. Let � be the measure induced by the process (1.1). As in proposition 1.4,denote by X(t) the linear interpolation of Xn, put X̂n = X(tn + t) and set Xn(t) to bethe solution of (1.3) given that Xn(0) = Xn. Then ��� sup1�i�m 


Xn(ti)� X̂n(ti)


 � �	� �C(�)Sm;n where Sm;n =Pn+mn "pi .Proof: Recall that X̂n(t) � Xn(t) = U(tn + t) � U(tn) + Bn(t). Fix some tm, then forevery 1 � i �m���maxi 


Xn � X̂n


 (ti) � �	� �� ���maxi kU(ti + tn)� U(tn)k � �=2	�+ ���maxi kBn(ti)k � �=2	�As in the proof of lemma 1.1, since Xn are uniformly bounded, H is Lipschitz and IB isp{smooth ([P1], [P2]) then by Doob's maximal inequality follows that���maxi kU(ti + tn)� U(tn)k � �=2	� � C(�)Sn;m. Also, by Chebyshev's inequality���maxi kBn(ti)k � �=2	� � 2IE(maxi kBn(ti)k)=�. Our claim follows since kBn(ti)k �CPn+in "2j �Theorem 4.2.a. If ("n) 2 lp then 


Xn � X̂


L1(X) ! 0 uniformly � -almost surely.b. If "n ! 0 then for every � > 0 the fraction of time in which 

X(ti)�X(ti)

 � � tendsto 0 in probability.c. If "n ! 0 then there are subsequences nk and mk such that sup1�i�mk 


Xnk � X̂mk


! 0as k ! 1 almost surely. In particular, for every T > 0 there are an in�nite number offunctions Xnk and X̂nk which are arbitrarily close on an interval of time whose length isat least T . 25



d. Assume that "n = " for every n and let X"n be the position of the process at the n-thstage. Then X"n ! X̂1(tn) in probability as "! 0.Proof: (a) follows immediately from the fact that�n;� = ���


Xn � X̂n


L1(X) � �	� � ���supi 


Xn � X̂n


 (ti) � �	� � C(�) 1Xi=n "piSince ("n) 2 lp then for every � > 0, �n;� ! 0, hence 


Xn � X̂n


L1(X) ! 0 almost surely.To prove (b), put Z(t) = 

X(t) �X(t)

, �x � > 0 and let gm = 1mPm1 �fZ(ti)��g. ThenIEgm = 1mPm1 ���Z(ti) � �	� � C(�)m P1+m1 "pi and since "i ! 0 then IEgm ! 0 for every� > 0. Hence, since gm are nonnegative they converges in probability to 0.As for (c), since "n ! 0 there are sequences nk and mk such thatP1k=1Pnk+mknk "pi <1. Set Znk(t) = 


Xnk(t) � X̂nk(t)


.By the lemma X ��� max1�i�mk 


Xnk � X̂nk


 (ti) � �	� <1. Thus, by the Borel{Cantellilemma, max1�i�tm Znk(ti) converges a.s. to 0.Finally, since ���


Xn � X̂1(tn)


 � �	� = ���


X(tn) � X̂1(tn)


 � �	� � C(�)n",then Xn converges in probability to X̂1(tn). �Corollary 4.3. If "n ! 0 and limt!1X(t) exists and belongs to a set C for almost everyinitial condition then the fraction of time in which d(X(t); C) � � tends to 0 in probability.
26



Introduction to supervised learning modelsThe following two chapters are devoted to supervised learning models. In a supervisedlearning model, the student is exposed to inputs and responds to them. If the responseis incorrect (i.e., it does not agree with that of the teacher), the student \learns" andmoves closer to the teacher in some sense. The �rst supervised learning model thoroughlyinvestigated was the Perceptron (see [MP],[H]). In this model, both the student S and theteacher T are halfspaces in IRd. Given an input v 2 IRd, the student's answer is incorrectif v is in S but not in T , or visa-versa. In this case, the student changes its position,and moves \closer" to the teacher by some learning rule. Note that this learning modelis on-line, i.e., at every \learning step" the system's response depends only on its currentstate and on the input, and not, for example, on other parameters of the state space.In the following chapters, we examine several learning processes. We formulate the wellknown Perceptron convergence theorem and give a counterexample which demonstratesthat the Perceptron may not converge if the distance between the teacher and the set ofinputs is 0. From this follows that the Perceptron may not be a proper learning process {if one wishes the student to converge to the teacher. Therefore, we suggest an alternativelearning model, in which (again) both the teacher and the student are halfspaces anddiscuss its convergence properties. The approach we take in both cases in mostly geometricand using that approach we show that the second model is useful in cases where thePerceptron fails. Finally, we turn to a general on-line learning model. In this case theresponse of the system is determined by an on-line error function, denoted by E(x; v). It isa nonnegative function such that for every state x (which represents a student) and everyinput v, E(x; v) = 0 if and only if x gives a correct response to the input v, i.e., E(x; v) = 0if and only if x agrees with the teacher on the input v.An example of such a model is the on-line Gibbs learning, �rst suggested in [KS]. Theidea behind the on-line Gibbs learning is to describe the conditional transition density fromstate to state { given the input at the n-th stage using an \on-line" energy function. Then-th stage transition operator is de�ned so that on average, the transition from the n-thstage to the n+1 stage reduces the energy. We introduce a new on-line learning process,investigate its convergence properties and compare it to the on-line Gibbs learning.27



Chapter 2 { Linear separation models

28



0 { IntroductionThe most elementary model for a two layer network consists of an input layer and anoutput layer with a single neuron. The output neuron has two possible responses: it caneither �re or not �re, and it �res if and only if the total input it receives surpasses a giventhreshold. Denote by s the threshold of the output neuron and let wi be the synapticweight representing the strength of the interaction between the i-th neuron in the inputlayer and the output neuron, which �res if and only if(0:1) Xi wivi > sLet U = (w1; :::; wn) be the \synaptic weights" vector. The neuron �res when U(v) =hU; vi > s where v = (v1; ::; vn) is the input, which implies that the \�ring zone" of eachneuron consists of vectors which are in the positive halfspace fvjU(v) > sg. If we assume,for example, that the threshold of every cell is 0 and that IRd is the set of all the possibleinputs, the response of each cell in the output layer is 1 on an open halfspace of IRd and0 on its complement, when the boundary of the \�ring zone" is a maximal subspace. Inthe learning process the synaptic weights vector of each neuron is adapted by some pre{determined rule, hence the relevant halfspace changes its location. Given a teacher T anda student S which are positive sides of a given maximal subspaces, IRd is divided to twosets: on the �rst one T and S agree { which means that for every input selected from thatset, S gives the same response as the T and on the other set T and S disagree.
Left: the Perceptron �res when P viwi > 0. Right: On the shaded area S and T disagree�gure 0.1Our goal is to ensure that the student converges to the teacher. To that end, we examinetwo learning models: the Perceptron learning rule and the projection model.29



Although the Perceptron convergence theorem implies that the learning process con-verges to a correct state, a crucial assumption used in the proof is that the distance betweenthe set of inputs and the boundary of the teacher is positive. This assumption implies thatthere are many halfspaces which agree with the teacher on every input, thus the limit ofthe process can be any one of the correct states and not just the teacher.If we impose that there is a unique correct state, the distance between the boundary ofthe teacher and the set of inputs must be 0 and the Perceptron convergence theorem fails.Indeed, in the �rst section we present a counterexample which demonstrates that withprobability 1 the Perceptron learning rule does not converge.To ensure the convergence of the learning process to the teacher, we formulate analternative linear learning model { the projection model. We show that if one uses thislearning rule the student converges to a correct state almost surely without further as-sumptions on the set of inputs. Thus, if the set of inputs is rich enough to ensure a uniquecorrect state, (which is, of course, the teacher) the process converges to the teacher almostsurely.Finally, we use the fact that we can control the limit of the learning process to con-struct three layer networks with several neurons in its second layer and a single neuronin the third layer, which can approximate any pre-determined number of bounded convexsets.Note that the number of cells in the second layer determines the number of halfspacesthe network teaches. Of course, each student halfspace may have a di�erent teacher andwe assume that each student learns independently of the other.To simplify our notations, we identify our inner product space IRd with its dual spaceand each open halfspace X with the norm 1 functional x such that X = fyj
x; y� > 0g.Clearly, we can assume that both the input space V and the state space are subsets ofthe sphere Sd�1, and we equip V with a probability measure � which is assumed to beabsolutely continuous with respect to the Haar measure on Sd�1. For every two halfspacesT and S, let fT;S(v) : Sd�1 ! IR be de�ned by fT;S = �T � �S , i.e., fT;S(v) = 0 if andonly if T and S agree on the input v. We say that a state is correct if ��fv 2 V jfT;S(v) 6=0g� = 0. 30



1 { The PerceptronThe �rst learning process we examine is the Perceptron learning rule, which is de�nedby(1:1) ~sn+1 = sn + "fT;Sn (vn)vn; sn+1 = ~sn+1k~sn+1kwhere vn are i.i.d. random variables representing the input to the system and are dis-tributed according to the probability measure �, Sn is the student halfspace in the n-thstage, sn is its representation in Sd�1 and " is some positive constant.All the analysis presented here is in the case "n = " for every n, but note that in thecase ("n) 2 l2nl1 and if we putH(s; v) = fT;S(v)v = ��T (v)� �S(v)�vour process is a stochastic approximation process with the constraint ksnk = 1.Let ~T be the boundary hyperplane of the teacher T . It is known (see [H]) that ifd( ~T ; V ) > 0 (i.e., if the in�mum of the distances between the boundary of the teacher andthe set of all the inputs is positive) then the process (1.1) converges to a correct answerin a �nite number of learning steps almost surely, and there in an estimate on the numberof steps required which depends only on " and d( ~T ; V ). This is the well know Perceptronconvergence theorem.Theorem 1.1. If d = d( ~T ; V ) > 0 there exists a random variable N = N("; d) such thatfor every n > N and every initial condition s, sn is a correct state. Also, the number oftimes in which the system changes its position is uniformly bounded.However, in this case a limit of the process (1.1) may not be T but some other halfspacewhich is \far away" from the teacher, yet they agree on almost every input. The followingcounterexample shows that theorem 1.1 does not hold in cases when the teacher is theunique correct state of the system: with probability 1 the learning rule does not convergeat all.Example 1.2. Let both the state space and the input set be subsets of S1. Put T =f(x; y)jx < 0g to be the teaching halfspace, hence t = (�1; 0) is its representation inS1, and assume that V = T \ S1 with the probability measure induced by the Haar31



measure on S1 (see �gure 1.1). The idea behind the construction is as follows: since theset of correct states has 0 measure, then with probability 1 the process does not enterthat set in a �nite number of steps. As for an in�nite number of learning steps, theorbits of the process oscillate around t. Thus, for almost every orbit the process doesnot converge to t due to overshooting. Formally, note that for every s 2 S1 and v 2 V ,fT;S(v) � 0. Let ICS = fvjfT;S(v) > 0g, i.e., ICS is the set of inputs on which S and Tdisagree. The process converges to a correct state if and only if sn ! t, which implies thatd(ICSn ; t)! p2. Assume that (vn) is a sequence of inputs such that sn ! t and w.l.o.g.vn 2 ICSn for every n, hence d(vn; t)! p2. By taking a converging subsequence of inputswith a limit u and passing to a limit in (1.1) we obtain that t = t+"ukt+"uk . Since kuk = 1and since t and u are linearly dependent then either t = u or t = �u, which is impossiblesince kt� uk = p2. �
�gure 1.1Example 1.2 shows that in some sense the Perceptron learning rule with a constantlearning step is not useful when the task at hand is to approximate a given halfspace. It alsodemonstrates that the important property used in the Perceptron convergence theorem isthat all the possible inputs are \far away" from the boundary of the teacher, which impliesthat the set of correct states has a positive measure. In the following section we formulateanother learning model in which both the student and the teacher are halfspaces, however,in this model, the student converges to the teacher when the system has a unique correctstate. This learning rule previously appeared in [KS] as an example to the on-line Gibbslearning process. Although their treatment deals with a more general case, it containsseveral gaps and di�ers from the approach presented here.32



2 { The projection modelThe model we suggest is as follows: let Sn; T be halfspaces and select v 2 Sd�1 suchthat fT;Sn(v) 6= 0. We de�ne(2:1) sn+1 = sn � 
sn; v�v

sn � 
sn; v�v

 = Pv?(sn)kPv?(sn)kwhere Pv? is the orthogonal projection on the space orthogonal to v. If fT;Sn(v) = 0 thensn+1 = sn.Our main result concerning the convergence of the process (2.1) is the following:Theorem 2.1. Let C be the set of the correct states and assume that the probabilitymeasure � by which the inputs are selected is absolutely continuous with respect to theHaar measure on Sd�1. Then for almost every orbit the process (2.1) converges and itslimit belongs to C. In particular, if there is a unique correct answer, the process convergesalmost surely to the teacher.As an example (see �gure 2.1 below), assume that the process (2.1) takes place in IR2and that V = S1. In this case, as shown in �gure 2.1 below, the angle between sn and tis a decreasing function of n. It is also clear that by selecting inputs close to T , sn movesarbitrarily close to t, which implies that the process 2.1 converges to t almost surely.
�gure 2.1The proof of theorem 2.1 goes along the same lines as the example: �rst we show thatksn � tk is monotone decreasing and then we prove that the distance between sn and tbecomes arbitrarily small with probability 1.Proof: Clearly, C is a closed set and for every x; y 2 C, fX;S = fY;S almost surely.Put t 2 C and let ht(sn; v) = ksn � tk � ksn+1 � tk. Note that if fT;S(v) 6= 0 then33




s; v�
t; v� � 0. Since kPv?(sn)k � ksnk = 1 then
sn+1; t� = 
sn; t�= kPv?(sn)k � 
sn; v�
v; t�= kPv?(sn)k � 
sn; t�hence(2:2) ksn � tk � ksn+1 � tk = ht(sn; v) � 0Therefore, the sequence (ksn � tk) is decreasing and bounded, which implies that for every" > 0 and every t 2 C, the ball B"(t) is an absorbing set. Thus, to prove our claim it isenough to show that for almost every sequence (sn) and every " > 0, there is some T 2 Csuch that sn 2 B"(t) for some n, i.e., that sn 2 [x2CB"(x).Put As = fvjfT;S(v) 6= 0g and An;s = fvj jfT;S(v)j ht(s; v) � 1=ng, let g(s) = ��As� andgn(s) = ��An;s�. Clearly, for every s, An;s is an increasing sequence and [n An;s = As,thus gn is a monotone sequence which tends to g pointwise. Note that both gn andg are continuous functions. Indeed, if sm ! s then Sd�1 \ Sm ! Sd�1 \ S in theHausdor� metric, hence fT;Sm converges to fT;S almost surely { which implies that gis continuous. By the same argument, jfT;Sm(v)jht(sm; v) converges almost surely tojfT;S(v)jht(s; v), therefore, up to a set of zero measure, lim supm!1 An;sm � An;s. Also, since��fvj jfT;S(v)j ht(s; v) = 1=ng� = 0 then An;s � lim infm!1 An;sm up to a set of zero measure.Thuslim supm!1 ��An;sm� � ��lim supm!1 An;sm� � ��An;s� � ��lim infm!1 An;sm� � lim infm!1 ��An;sm�hence for every t 2 C limm!1 gn(sm) = gn(s). In particular, by Dini's theorem gn ! guniformly.Fix " > 0 and t 2 C. Since g is positive on the compact set Sd�1n [x2CB"(x) and sincegn ! g uniformly, then there are � > 0 and N such that gn(s) � � for every n > N andevery s 2 Sd�1n [x2CB"(x). Thus, if sm 62 [x2CB"(x) there is a set Ism � V such that�(Ism) � �("), and for every v 2 Ism ksm+1 � tk � ksm � tk� 1=n. From this follows thatalmost every orbit (sm) must enter [x2CB"(x). �34



So far, we formulated a linear learning process with the feature that the student Sconverges to the teacher T if we assume that the set of inputs is rich enough to allow aunique correct state. Next, we show how in that case the process (2.1) may be used tolearn complex geometric shapes. This feature is important since one of the disadvantagesfound in the Perceptron learning rule was that it could be used only in systems whichare linearly separable (see [MP],[H]). Here, we show that it is possible for a network tolearn the most general shape possible, which is in this case, a pre{determined number ofconvex sets. We shall approximate every convex set from the inside by a polytope. Since apolytope is the intersection of halfspaces we can use the process 2.1 to ensure convergenceto the halfspaces determining the polytope.First, note that theorem 2.1 may be used even when the boundary of either theteacher's or the student's \�ring zone" is not a maximal subspace but some hyperplane.In a neural network that boundary is a maximal subspace if and only if the threshold of theoutput unit is 0. Therefore, given a Perceptron for which the output unit has a thresholds, we add a unit to the input layer which receives the input �1, its synaptic interactionwith the output unit is s and the output unit is assumed to have a threshold 0.From a geometric point of view, we identify our copy of IRd with the set X = fx 2IRd+1jxd+1 = �1g, extend each hyperplane in X to a maximal subspace in IRd+1 andcontinue the analysis in IRd+1. Now, both the teacher and the student have boundarieswhich are maximal subspaces, thus, both the process (2.1) and theorem 2.1 can be extendedto include the case where the boundaries are hyperplanes. Our next goal is to show how thismay be used to \teach" complex shapes to a given network. To this end we demonstratehow a convex set may be approximated by an intersection of a �xed number of halfspaces.Assume that K � IRd is a bounded convex set, denote by j j the Lebesgue measureon IRd and let " > 0. Suppose that we can construct a polytope P which has �("; d) facetssuch that K � P and jPnKj < ". Therefore P = �\1 Ti where Ti are halfspaces. Let N be anetwork which contains � units in its second layer, such that every Perceptron determinesone of the halfspaces. The network has a single neuron in the third layer with a threshold� � 1 < s < � and its synaptic interaction with every cell in the second layer is 1. Thus,a vector v belongs to P if and only if every cell in the second layer of this network �resin response to v and this occurs if and only if the neuron in the output layer �res. Given35



S1; :::; S� halfspaces and since Si and Sj learn independently, then by theorem 2.1 if weadapt Si using Ti then �\1 Si ! �\1 Ti, i.e., the limit network N determines the polytopeP which approximates K.The following theorem allows us to construct the set of teaching halfspaces whichdetermine P and gives a bound on the number of vertices required for this construction.From this follows that such a bound also exists on the number of facets needed, which isthe number of neurons required in the second layer of the adapting network.Theorem 2.2 ([GMR]). For every bounded convex set K � IRd and a given number ofvertices m, one can construct a polytope P with m vertices contained in K such that thevolume ratio jKnP jjKj � f(d)m 2d�1 .In particular, for every K � B1(0) and " > 0, one can construct a polytope P withm =m("; d) vertices at the most, such that P � K and jKnP j < ".Corollary 2.3. Let K1; :::Kl � B1(0) be convex sets. Then for every " > 0 it is possible toconstruct T1; :::Tn, n � l�("; d) teachers which determine P1; ::::Pl such that P jPinKij <". A network with at most l�("; d) neurons in its second layer adapted by the process (2.1)using the teachers Ti will converge, and for every v 2 V and 1 � i � l the limit networkcan determine if v 2 Pi.3 { ConclusionsWe demonstrated that the Perceptron learning rule may be problematic when the onlycorrect state is the teacher, while the projection model converges to that correct state.Thus, the projection model is useful when one wishes to ensure that the student convergesto the teacher. Then, we used the fact that every bounded convex set may be approximatedby a polytope with a pre{determined number of facets to construct a set of teachinghalfspaces which determine the approximating polytope. Using the projection model foreach halfspace separately, it is possible for the network to \learn" the approximatingpolytope. Hence, a 3{layer network with a pre{determined number of units in its secondlayer and with a �xed synaptic interactions between the second and third layers can adaptand approximate every bounded convex set.36



Chapter 3 { General on-line learning models

37



0 { IntroductionIn this chapter we discuss an on-line learning process. The behavior of such a processis determined by an on-line error function E(x; v) which is a nonnegative function whosedomain is the product space of the state space and the input set. E(x; v) = 0 if and only ifthe student x agrees with the teacher on the input v. In such a process x is a correct stateif it agrees with the teacher on almost every input, i.e., E(x; v) = 0 almost surely. Clearly,this is the same as having IEg(x) = RV E(x; v)d�(v) = 0. The function IEg is called theglobal error function.In the general case, there may not be a correct state. Therefore, the goal of thelearning process is to converge to the global minimum of IEg. To that end, we formulate aprocess for which, on average, every learning step decreases IEg. Unfortunately, as shownin later sections, even those processes might not converges to the global minimum of IEg.In most supervised learning models suggested so far, the transition density from x tox0 depended on both IEg(x) and IEg(x0) { and not on the response of x and x0 to eachinput separately. Hence, those models do not enter into the category of on-line learning.The strength of the non on-line learning models is that at each learning step the globalerror decreases, hence, it is easy to guarantee that the student converges at least to alocal minimum of IEg. In [KS] the authors claimed that the on-line learning model theyintroduced, called \On{line Gibbs learning" had the capabilities of the non on-line models:it converges to a minimum of IEg. Moreover, they claimed that the convergence is to aglobal minimum of IEg, both when the on-line error function is smooth and when it is a0 � 1 function. In section 4 we show that there are several di�culties with the resultsstated in [KS] and that some of them are not true.The on-line model we introduce is a variation of the on-line Gibbs learning. Weexamine it in two cases. First, when the learning step (i.e., the maximal distance betweenthe n-th state and the n+1 state) is a constant, and in the second case the learning stepdecreases to 0. The main focus in this chapter is on the process with a constant learningstep, but we also give an example of a convergence theorem for the non homogeneous caseunder some additional assumptions on the on-line error function.This chapter is divided to �ve sections. In the �rst one we de�ne our model and statemost of the convergence results concerning the homogeneous process. We also present38



several examples in which the process may be used, two of which are the well knownPerceptron and the multi layer Perceptron learning rules (see [H],[RMS]). In the secondsection, we give an example of a convergence theorem in the non-homogeneous case. Inthis example we take into account the possibility that at every stage the teacher has aprobability p < 1=2 to make a mistake. In the third section we prove the results statedin the �rst section and the fourth contains an analysis of the main results from [KS]. Weshow that in some cases, there are counterexamples to claims concerning the convergenceof the on-line Gibbs learning. We end the chapter with some concluding remarks.Let us turn to some de�nitions and notations: throughout the section (X;�) is acompact metric probability space. Xn is the product space of n copies of X with theinduced topology and measure. (V; �) is the compact metric space of all possible inputswhere � is a probability measure on V . Denote by � the product measure �� � on X �V .For a random variable X, IEX is the expectation of X, and kXk1 = IE jXj. B�(x) is theclosed ball of radius � centered at x, and for a set A, A denotes its closure. Finally, wesay that (an) 2 lp, if P janjp <1.1 { The model and some examplesIn this section we de�ne our model and list some results concerning it. Then, we giveexamples for ways in which this learning process may be used. We separate our discussionto two cases: one is when the error function is a 0-1 function and the other is when E(x; v)is a nonnegative smooth function. We begin with the following notations:For every x 2 X, put Cx = fvjE(x; v) = 0g and denote by O � X the set of local minimaof the energy function IEg(x).Our process is A Markov process (Xn; Vn), where (Vn) are i.i.d. which are distributedaccording to � and independent of (Xn), while (Xn) are adapted using the conditionaltransition density from x to x0 given the input v which is(1:1) Pn(x0jx; v) = 1cn(x) � E(x; v)e�E(x0 ;v)=Tn E(x; v) > 0 ; d(x; x0) � ��x;x0 otherwisecn(x) = �(Cx) + RB�(x) RV E(x; v)e�E(x0 ;v)=Tnd�(v)d�(x) is a normalizing constant, Tn is asequence decreasing to 0, and � is the size of the maximal learning step.The de�nition implies that the state x does not move if x responds in a correct way to theinput v and it never moves to a point for which d(x; x0) > �.39



The 0-temperature process is the process for which P (x0jx; v) = limn!1Pn(x0jx; v) and thelimit is in the pointwise sense. A key part in the analysis of the model is the fact thatfor every A � X the convergence of Pn(Ajx) = RA RV Pn(x0jx; v)d�(v)d�(x0) to P (Ajx) isuniform. Therefore, we can approximate the behavior of our process by the 0-temperatureprocess. Throughout we Assume that �(Cx�Cx0) is continuous in each variable separately,whereA�B = (A\Bc)[(B\Ac). We also assume that there is a � > 0 such that �(Cx) � �for every x.We formulate the main results concerning the process (1.1):Theorem 1.1. Assume that the error function is a 0-1 function. Then:a) For every � > 0 and every sequence (Tn) ! 0 the process (1.1) will enter every neigh-borhood of O in�nitely often almost surely.b) Put Q = fxjIEg(x) = 0g and assume that Q has a �{positive measure. Then for� = diam(X) and for every sequence (Tn) ! 0 the process (1.1) converges almost surelyto Q.Note that Q is an absorbing set, i.e., the probability of leaving Q is 0.In the case where the error function is not a 0-1 function, we have to make an additionalassumption:Theorem 1.2. Assume that IEg is monotone in the sense that IEg(y) � IEg(x) whenCy � Cx. Assume also that for every x 62 O and for every " > 0 there exists a y 2 B"(x)such that Cy � Cx. Then the assertions of theorem 1.1.a remain true. The assertion oftheorem 1.1.b holds with no additional assumptions.The reason for the additional assumption is simple. When we deal with a 0-1 error function,IEg(x) = 1 � �(Cx). Therefore, if we increase �(Cx), we come closer to a minimal pointof IEg(x). On the other hand, for a general error function, we do not know if CynCxand IEg(y) � IEg(x) are correlated. In the �nal section, we present a counterexample (seeexample 4.2), in which the error function is a smooth nonnegative bounded function, butthe orbits can not leave the global maximum of IEg(x).Next we present three examples in which model (1.1) may be used. In all three cases, theerror function is a 0-1 function.Example 1.3: The simplest case in which we can apply the process (1.1) is the Perceptron40



learning rule (see chapter 2). In this process we adapt a halfspace in IRd using a teacherwhich is also a halfspace. Denote the teacher by T = fx 2 IRdjy�(x) > 0g where y� is alinear functional on IRd, and the student by S = fx 2 IRdjz�(x) > 0g, kz�k = ky�k = 1.In this case, the error function is 0 for x which are in T \S or in T c \Sc and 1 otherwise.Assume that the input set V is a �nite union of balls disjoint from the boundary of T andthat the probability measure is given by a continuous density function supported on V .(see �gure 1.1)
�gure 1.1Clearly, �(Cx�Cy) is continuous and the conditions of theorem 1.1.b hold. Therefore, theprocess (1.1) converges a.s. to fxjIEg(x) = 0g.Example 1.4: Here we present two examples which deal with the uniform approximationof a continuous function f : V ! IR by a function selected from a family of continuousfunctions fgx : V ! IRjx 2 Xg. Here, X and V are compact sets in IRd and IRk. Fix� > 0, and de�ne E(x; v) = � 0 jf(v) � gx(v)j < �1 otherwiseOf course, if we want to use theorem 1.1, we have to �nd some kind of continuity conditionon the family fgxg, which is the object of the following lemma:Lemma 1.5. Assume that limr!s kgr � gsk1 = 0. Then �(Cx�Cy) is continuous with respectto each variable separately.Proof: First, we show that for every s, �(CsnCr) is continuous with respect to r. Since� is regular, there exist a compact set K � Cs such that �(CsnK) < "=2. There-fore, there is a � > 0 such that supt2K jgs(v) � f(v)j � � � �. By Chebyshev's inequality,�fjgs(v)� gr(v)j � �=2g � kgs�grk1�=2 , hence, if s and r are close enough, �(K \ Ccr) � "=2,41



implying that �(CsnCr) = �(K \ Ccr) + ��(CsnK) \ Ccr� � ". A similar argument showsthat limr!s �(CrnCs) = 0. �We are ready to present the two examples:a) Multi Layer Perceptron (MLP)The MLP is composed of several layers of Perceptrons and an output function h. It isformed by using the output of each layer of Perceptrons as an input to the next one.Usually, the output function h of each Perceptron in the MLP is assumed to be smooth.We assume that h Lipschitz and that the network has three layers. Let X be the closed unitball in IRd, in which case the MLP may be viewed as a function M : Xn �X � IRd ! IR.For every v 2 IRd the response of the MLP is Mx;y(v) = h� nXj=1(yjh( dXi=1 xijvi)�, wherex 2 Xn and y 2 X. If we view the MLP as a neural network, d is the number of cellsin the input layer, n is the number of units in the second layer and (xij )ni=1 representsthe synaptic weights between the �rst layer and the j-th cell in the second layer. Henceh(Pni=1 xijvi) is the response of the j-th cell in the second layer. yj is the synaptic weightbetween the j-th cell in the second layer and the output cell. Therefore the response of theoutput cell is Mx;y(v). (see �gure 1.2)
�gure 1.2We assume that all the inputs v are selected from some compact set K � IRd. It is knownthat if h is not an algebraic polynomial, the set of all possible MLPs is dense in C(K) (see[LLPS]). Thus, for every " > 0 there are an n and fx0; y0g such that kMx0;y0 � fk1 � ��",i.e., it is possible to construct an MLP which can (� � ") approximate f .We show that the conditions of theorem 1.1.b hold, implying that the MLP convergesto a correct state almost surely. 42



First, to prove that the set of correct states Q has a positive measure, it is enough to showthat the set fx; yg for which Mx;y �{approximates f has a non empty interior. Indeed, ifMx0;y0 2 Q then for some " > 0, Mx0;y0 � � " approximates f . Since h is Lipschitz thensupv2K jMx0;y0(v) �Mx;y(v)j � C�kx � x0k+ ky � y0k �, where C is some absolute constant.Therefore, a small perturbation in fx0; y0g gives an �{approximation of f . By the sameargument, if fxn; yng converges to fx; yg, thenMn converges toM uniformly which impliesconvergence in the L1 norm. Therefore, since the conditions of lemma 1.6 hold, �(Cx�Cy)is continuous. Thus the process (1.1) converges to a function which �-approximates f .b) Polynomial approximation of a Lipschitz function in [-1,1].The idea is similar to the one presented above, so most of the details are omitted. Thereis a 1-1 correspondence between the polynomials of degree � n and IRn. Note thatit is possible to �{approximate every continuous function by a polynomial. However,the process requires to pre{determine the degree of polynomials we use, as well as thecompact set from which the coe�cients are selected. Assume that we have some addi-tional information on the function f we wish to approximate { for example, its Lipschitzconstant �. For a bound on the degree of the approximating polynomial, we estimateEn(f) = infa0;:::;an�1 supv2[�1;1] �����n�1Xi=0 aivi � f(v)�����. By Jackson's theorem ([C]), if En(f) = �then n � C �� , where C is some absolute constant. Next, to estimate the size of the setfrom which the coe�cient (ai) are selected, we use Bernstein's inequality, which statesthat kp0nk1 � n kpnk1 where pn is a polynomial of degree n. Thus, ja0j � kpnk1,ja1j � ���p0n(0)��� � 


p0n


1, and so on. Therefore, for every �, there are an integer n and avector (a1; :::; an) such that supt2[�1;1] ����� nX1 aivi � f(v)����� < �, where both n and k(a1; :::; an)k1depend only on � and �. A similar argument to the one used in example (a) shows thatthe conditions of theorem 1.1.b hold. Thus, the process (1.1) converges to a correct statealmost surely.2 { An example of a 0 temperature processHere, we present an example of a 0 temperature process. In this example we replacethe constant learning step � by a positive sequence �n which decreases to 0. We prove that43



in the case presented here, the process converges a.s. to a correct state even if at everystep there is a probability p < 1=2 for the teacher to make a mistake.Since the learning steps decrease to 0, the Markov process is not homogeneous. To dealwith that we use a similar idea to the one Blum used in his proof of the convergence ofthe n-dimensional Robbins-Monro process (see [W]).Example: Let X � IRd be a compact set and put V = [0; 1], both equipped with thenormalized Lebesgue measure. Assume that for every x 2 X Cx = [0; f(x)], where f 2C2(X) and 0 < f(x) � 1. Thus the error function E(x; v) is:(2:1) E(x; v) = � 1 v > f(x)0 v � f(x)If we assume that in every step the teacher has a probability p < 1=2 to make amistake, then for y 2 B�n(x) the conditional transition density from x to y is(2:2) Gn(yjx; v) = 1dn�(1� p)E(x; v)e�E(y;v)=Tn + p�1� E(x; v)�e��1�E(y;v)�=Tn�where dn is a normalizing constant. Therefore, in our example the transition operators forthe 0 temperature process are:(2:3)Gn(yjx) = 1cn(x)Qn(yjx) = 1cn(x) 8<: (1� p)�f(y) � f(x)� ff(y) > f(x)g \B�n(x)p�f(x) � f(y)� ff(y) < f(x)g \B�n(x)0 otherwisewhere cn(x) = (1 � p)f(x) + p�1� f(x)� + RB�n (x)Q(yjx)d(y).Theorem 2.1. Denote by �n the sequence of the learning step and assume that (�n) 2ld+3nld+2. If f has a unique critical point in X and if that point is a global maximum, theprocess de�ned by (2:3) converges in probability to that point. If p = 0 the convergence isalmost surely.Let Xn be the position of our process in the n-th stage. Put �n = �d+2n , Yn(x) =(Xn+1 �Xn)=�n { given that Xn = x, denote by H(x) the Hessian of f at x and setUn(x) = IE�
rf(x); Yn(x)�jXn = x�. Let o be the unique point for which rf(x) = 0 andassume that o is a global maximum of f .The following lemma describes the properties of the random variables de�ned above.44



Lemma 2:2. For every compact set K for which d(K; o) > 0 there are N and L > 0 suchthat for every n > N , infx2KUn(x) � L. Also, for n large enough IEUn � 0. Next, putan = supx �2nIE kYn(x)k2. Then (an) 2 l1.Proof: Let S be the unit sphere in IRd and denote by j j the Haar measure on S. PutSx = fs 2 Sj
rf(x); s� > 0g and S+x;r = fs 2 Sjf(x + rs) > f(x)g. S�x;r is de�ned in asimilar way with the reversed inequality. Since cn(x) tends to (1 � p)f(x) + p(1 � f(x))uniformly and since Un(x) = 1�
rf(x); IE(Xn+1 �XnjXn = x)� it is enough to prove the�rst claim for the function Un(x)cn(x)1�nD(1� p)ZAn(x)(y � x)(f(y) � f(x))dy + pZBn(x)(y � x)(f(x) � f(y))dy;rf(x)E = (�)where An(x) = ff(y) > f(x)g\B�n (x) and Bn(x) = ff(x) > f(y)g\B�n (x). By Taylor'sformula f(y) � f(x) = 
rf(x); y � x�+O(ky � xk2), hence(�) = 1�n�(1� p)ZAn(x)
rf(x); y � x�2dy � pZBn(x)
rf(x); y � x�2dy++ ZB�n(x) O(ky � xk3)dy�A simple calculation shows that the third term converges uniformly on K to 0, thus it isenough to estimate the �rst and second terms. Note that1�n�(1� p)ZAn(x)
rf(x); y � x�2dy � pZBn(x)
rf(x); y � x�2dy� =1�n Z �n0 �(1 � p)ZS+x;r
rf(x); rs�2rd�1h(s)ds � pZS�x;r
rf(x); rs�2rd�1h(s)ds�dr =1�n Z �n0 rd+1�(1� p)ZS+x;r
rf(x); s�2h(s)ds � pZS�x;r
rf(x); s�2h(s)ds�drwhere rd�1h(s) is the Jacobian of the transformation to spherical coordinates.Set g(x; r) = (1� p) RS+x;r
rf(x); s�2h(s)ds � p RS�x;r
rf(x); s�2h(s)ds. Theng(x; r) = ZS+x;r
rf(x); s�2h(s)ds � pZS
rf(x); s�2h(s)ds = g1(x; r) � pg2(x)To �nish the proof of the �rst claim, it is enough to �nd R and l such that for everyr < R and every x 2 K, g(x; r) � l. Indeed, note that in this case if �n < R, then1�n R �n0 rd+1g(x; r)dr � 1�n R �n0 rd+1l � l=(d+ 2).45



Denote Dx;v = fs 2 Sj
rf(x); s� > vg. Clearly, Dx;v increases to Sx as v tends to 0and since jDx;vj and jSxj are both continuous functions of x, jDx;vj converges uniformlyto jSxj on K by Dini's theorem. Fix " > 0. There is some v such that for every x,jSxnDx;vj = jSxj � jDx;vj < "=2M , where M = supx krf(x)k. Since rf is continuous,there is a �x > 0 such that for every y 2 B�x(x), Dx;v � Dy;v=2 and �(Cx�Cy) < "=2M .Note that if ky � xk < �x, s 2 Dx;v and z = y+rs then f(z)�f(y) = 
rf(y); s�r+o(r2) �vr=2�Cr2, where C is some uniform constant. Hence, there is an R > 0 such that if r < Rand y 2 B�x(x), then Dx;v � S+y;r \Dy;v=2 � Sy.For such r and y we see thatg1(y; r) = ZS+y;r
rf(y); s�2h(s)ds � ZDx;v
rf(y); s�2h(s)ds == ZSy
rf(y); s�2h(s)ds � ZSynDx;v
rf(y); s�2h(s)ds >> ZSy
rf(y); s�2h(s)ds �M�jSynSxj+ jSxnDx;vj� >> ZSy
rf(y); s�2h(s)ds � "on the other hand for every ypg2(y) = pZS
rf(y); s�2h(s)ds = 2pZSy
rf(y); s�2h(s)dsTherefore, g(y; r) � (1 � 2p)ZSy
rf(y); s�2h(s)ds � ". Since f 2 C2(X) and rf(x) 6= 0on K, then RSx
rf(x); s�2h(s)ds � C on K, so g(y; r) > (1 � 2p)C � ". The rest followsfrom a standard compactness argument.Let us turn to the second claim. By the same argument used above,lim infr!0 g(x; r) � (1 � 2p)ZSx
rf(x); s�2h(s)ds = �(x)Therefore, by Fatou's lemmalim infn!1 Un(x)c(x) = lim infn!1 1�n Z �n0 rd+1g(x; r)dr � 1�n Z �n0 rd+1�(x)dr = �(x)=(d + 2)Hence, lim infn!1 IEUn � IE �(x)(d+ 2)c(x) > 0. 46



Turning to the �nal claim, note that�2nIE kYn(x)k2 � 1(1� p)f(x) + p(1 � f(x)) ZAn(x)[Bn(x) ky � xk2 jf(y) � f(x)j dy �� C ZAn(x)[Bn(x) ky � xk2 ���
rf(x); y � x�+O(ky � xk2)��� dy = (�)For every n > N and every x, (�) � C 0 RB�n (x) ky � xk3 dy = C 00�d+3n , where C,C 0 and C 00are some absolute constants. Thus,PN an � C 00PN �d+3n <1. �Corollary 2.3. If IEUn converges to 0, IE jUnj converges to 0 too.Proof: For every " > 0 �x a compact set K � X, such that �(XnK) < " and d(K; o) > 0.By the lemma, for n large enough, Un are nonnegative on K. Also, Un are uniformlybounded and w.l.o.g we assume that they are bounded by 1. Thus:IE jUnj = ZXnK jUnj d�+ ZK Und� �= IEUn + 2ZXnK jUnj d� < IEUn + 2" �Proof of Theorem 2.1: The idea behind the proof is to use Taylor's formula to approx-imate the di�erences f(Xn+1)� f(Xn). Indeed, given Xn, we see thatf(Xn+1) = f(Xn + �nYn) = f(Xn) + �n
rf(Xn); Yn�+ 1=2�2n
Yn;H(Xn + ��nYn)Yn�Put Vn(x) = IE�
Yn;H(Xn + ��nYn)Yn�jXn�, then the conditional expectation of theexpression for f(Xn+1) is(2:4) IE�f(Xn+1)jXn� = f(Xn) + �nUn(x) + 1=2�2nVn(x)Taking expectations on both sides and iterating, we see that(2:5) IE�f(Xn+1)� = IEf(X1) + nX1 �iIEUi + nX1 1=2�2i IEViFor every sequence (xn), f(xn) is bounded by 1, thus IE�f(Xn+1)� is bounded. Bythe Cauchy-Schwarz inequality jVij � C supx IE kYi(x)k2, which implies that �2i IE jVij �47



C�2i supx IE kYi(x)k2 = Cai. By Lemma (2.2) (ai) 2 l1, so Pn1 1=2�2i IEVi converges, there-fore Pn1 �iIEUi is bounded. Again, by the lemma, P �iIEUi is a nonnegative series fori large enough so it must converge { which implies that IE�f(Xn)� converges too. Since(�n) 62 l1, there is a subsequence IEUnj which tends to 0 and by corollary 2.3 IE ��Unj �� tendsto 0 too. Using Chebyshev's inequality Unj converges in probability to 0, thus there is asubsequence of Unj , also denoted by Unj , which converges a.s to 0. According to lemma(2.2) Un are uniformly bounded away from 0 on every compact set not containing o, there-fore Xnj must converge a.s. to o. Since IE�f(Xn)� converges and since it is a continuousfunction of Xn, it must converge to IEf(o) = f(o). Note that o is a unique maximum off , hence for every " > 0 there is a � > 0 such that fkXn � ok � "g � ff(o) � f(Xn) � �gand by Chebyshev's inequality, the measure of the later set tends to 0.To prove the second claim, note that if p = 0, f(Xn) is increasing a.s. { therefore, itconverges almost surely. Since IE�f(Xn)� converges to f(o), f(Xn) must converge to f(o)a.s., thus, since o is a unique maximum, Xn must converge to o almost surely. �3 { Proofs of the results from part 1Our next goal is to proof the results stated in section 1. Recall the following notations:for every set A of positive measure, Pn(Ajx) is the transition probability from x to A inthe n-th stage. Clearly(3:1) Pn(Ajx) = 1cn(x) ZA\B�(x) ZV E(x; v)e�E(x0 ;v)=Tnd�(x0)d�(v) = fAn (x)cn(x)converges pointwise to(3:2) P (Ajx) = RA\B�(x) RV E(x; v)�Cx0 d�(v)d�(x0)�(Cx) + RB�(x) RV E(x; v)�Cx0 d�(v)d�(x0) = fA(x)c(x)Let P0 be the probability measure induced by the orbits (Xn) of the 0-temperature process(3.2) and P is the induced measure by the orbits of the process (3.1).We will show that the convergence of Pn to P is uniform in both x and A. First, weprove that fAn (x) converges uniformly in both x and A to fA(x). With a similar argumentone shows that cn(x) converges uniformly to c(x). The desired convergence follows since48



cn(x)andc(x) are bounded away from 0. Indeed: w.l.o.g. assume that E(x0; v) is boundedby 1 and set E = f(x0; s)jE(x0 ; s) > 0g. Note that if (x0; v) 62 E then e�E(x0;v)=Tn = �Cx0 (v).Also, for every " > 0 there is a set K � E such that � (EnK) < " and E(x0 ; v) > � on K.Then supx2X ��fAn � fA�� � supx2X ZX�V E(x; v) ���e�E(x0;v)=Tn � �Cx0 (v)��� d� == supx2X ZE E(x; v) ���e�E(x0;v)=Tn � �Cx0 (v)��� d� = (�)Since the integrands are uniformly bounded by 2 and � (EnK) < " then:(�) � 2" + ZK E(x; v)e��=Tnd� � 2"+ e��=TnClearly the estimates above are uniform in the set A, which proves our claim.Another observation which follows using a similar computation is that for every A thefunction P (Ajx) is continuous. Moreover, for every measurable A2; A3; :::; An the functionP (Xn 2 An; :::;X2 2 A2jX1 = x) is continuous in x. To prove this fact, we use theassumption that for every x, �(Cx�Cx0) is a continuous function of x0.Next, our aim is to use information concerning the 0-temperature process (3.2) toderive similar results about process (3.1). We begin with some additional notations. If(Xn) denotes an orbit then for every set O � X put Oi = f(Xn)jXi 2 O for n = ig,L0n(x;O) = P0fXi 2 O for some i � njXn = xg, Ln(x;O) = PfXi 2 O for some i �njXn = xg, and L0(x;O) is the P0 probability to enterO in�nitely often given thatX1 = x.Assume that O has the following property: there are � > 0 and N , such that for everyx 2 X, P0f[N1 OijX1 = x) > �. Since the 0{temperature is a homogeneous Markovprocess, P0f[m+Nm OijXm = x) > � for every m and every x, and since Pn convergesuniformly to P then for m large enough and for every x, Pf[m+Nm OijXm = xg > �=2.Hence for m large enough and every x, Ln(x;O) > �=2.Lemma 3.1. If there are N and � such that for every n > N and every x Ln(x;O) > �then the orbits of the process (3.1) enter O i.o. P{almost surely.This result appears in [O] in a slightly weaker form. The proof uses the same idea as theone presented in [O] and is brought for the sake of completeness.Proof: The �rst part of the proof is a version of a 0-1 law which is due to P. L�evy [L]:Let Y1; Y2; :::; be a sequence of random variables and let Y be a random variable de�ned49



on Y1; Y2; ::: such that IEjY j < 1. Note that Zn = IE(Y jY1; :::; Yn) forms a martingale,thus, by the martingale convergence theorem ([L], pg. 393), Zn converges a.s. to Y . Inparticular, if we set Bi = fXi 2 Og, B = fXn 2 O i:o:g, Yn = Xn and Y = �B, thenP(BjY1; :::; Yn) = IE(Y jY1; :::; Yn) converges a.s. to �B and P([1k BijY1; :::; Yn) tends to�[1k Bi for every �xed k.On the other hand, for every k � n, note thatP([1k BijY1; :::; Yn) � P([1n BijY1; :::; Yn) � P(BjY1; :::Yn)thus, by taking n!1,�[1k Bi � lim supn!1 P([1n BijY1; :::; Yn) � lim infn!1 P([1n BijY1; :::; Yn) � �BAgain, taking k ! 1, the left side converges a.s. to �B, hence P([1n BijY1; :::; Yn) tendsto �B.Denote by X1 the set of all the orbits of the process.Since Ln(Xn; O) = P([1n BijY1; :::; Yn) then by the 0-1 law Ln(Xn; O) tends to the char-acteristic function of the set fXn 2 O i:o:g. By our assumption for n large enough andevery x, Ln(x;O) > �, thus for such n Ln(Xn; O) > � almost surely. Therefore,X1 � flim supn!1 Ln(xn; O) > 0g � f limn!1Ln(Xn;O) = 1g = fXn 2 O i:o:gHence, almost every orbit enters O in�nitely often almost surely. �Remark 3.2: 1. By a similar method one shows that if there are N and � > 0 suchthat for n > N and every x Ln(x;B) > �, then P{almost surely the orbits which visits Ain�nitely often also visit B in�nitely often.2. Lemma 3.1 implies that in order to prove theorem 1.1.a, it is enough to show that forevery neighborhood A of O there are N and � > 0 such that for every x, P0([N1 Aijx) > �.Proof of Theorem 1.1: We begin with the proof of (b). Let A be an open set containingQ. Note that since � = diamX and since Q has a �{positive measure, every x has apositive P0{probability to enter Q. Since Ac is compact, a simple continuity argumentshows that there is some � > 0 such that for every x 62 A, P (Qjx) � �. Therefore,50



for n large enough infx62APn(Q;x) � �=2. Hence, by remark 3.2, orbits which visit Ac i.o.must enter Q P{almost surely. This is impossible { since Q is an absorbing set. Thus Palmost every orbit enters Ac a �nite number of times, implying that process (3.1) convergesP3{a.s. to Q.To prove (a) we use the second part of remark 3.2. Assume that we limit the size ofthe learning step to � and let A be a neighborhood of O. Recall that Ai = f(Xn)jXi 2A for n = ig and that P0(Ain[i�11 Aj jX1 = x) = P0(Xi 2 A;Xi�1 2 Ac; :::;X2 2 AcjX1 =x) is a continuous function of x. Since P0([n1AijX1 = x) = Pn1 P0(Ain [i1 Aj jX1 = x)then for every n, hn(x) = P0([n1AijX1 = x) are continuous functions too.Note that if we show that for every x there is some n such that hn(x) = "x > 0, then bythe continuity of hn there is a neighborhood Ux of x on which hn(x) > "=2. Since X iscompact and �hn(x)� is a monotone increasing sequence, we can take a �nite sub-cover(Uxi) and �nd � > 0 and N such that for every x, hN (x) > �. Hence, it is enough to showthat L0(x;A) > 0 for every x, since this implies that for every x there is an n such thathn(x) > 0.Indeed, for every x, let yx be a point in B�(x) in which the maximum of �(Cx) is attained.De�ne a sequence x1 = x, x2 = yx, x3 = yyx and so on. A simple compactness argumentshows that xi = x0 for i larger than some n, thus x0 must be a local maximum of �(Cx) =1 � IEg(x). Note that if �(Cx) < �(Cy) there is a positive transition density from x to y.By the continuity of the transition density, x has a positive probability to enter A whichimplies that L0(x;A) > 0. �Theorem 1.2 { Sketch of proof: The proof of theorem 1.2 goes along the same linesas the proof of theorem 1.1. The only di�erence is in proving that L0(x;A) > 0. Theidea is to equip B�(x) with the partial order � de�ned by: x � y if and only if Cx � Cy.Then, use Zorn's lemma to �nd a maximal element in B�(x) and let yx be that maximalelement. Again de�ne the sequence (xn) and use a compactness argument to show boththat for i > n, xi = x0 and that x0 is the maximal element in B�(x0). According to ourassumption, the only elements which are maximal in their neighborhood are elements ofO.The proof of 1.2.b is identical to that of 1.1.b and does not require any additional assump-51



tions. �4 { DiscussionThis investigation was motivated by the work of Kim and Sompolinsky [KS]. We beginthis section with a summary of their main results.The on-line Gibbs learning is slightly di�erent than the model we de�ned. In theon-line Gibbs learning the conditional transition density is given by(4:1) Pn;m(x0jx; v) = 1c e�En(x0;x;v)2Tmwhere En(x0; x; v) = E(x0 ; v) + 12�n kx � x0k2.In the 0 temperature process, x moves during the n-th stage to the nearest point x0 whichgives a correct response to the input v { assuming that kx � x0k � p2=�n, and remainsstationary otherwise.The main results presented is [KS] are as follows:1. In the limit �n ! 1 and Tm ! 0 the process (4.1) converges in distribution to ameasure supported on the set of global minima of IEg. The rates by which the limits aretaken is not stated.2. In the limit Tm ! 0 and for a large enough �, process (4.1) behaves like the 0 temper-ature process both when E(x; v) is a C2 function and when it is a 0-1 function.3. Using simulations, the authors analyzed several well known learning models (for exam-ple, the Perceptron and the committee machine) even in cases where at every stage theteacher has a probability p < 1=2 to make a mistake. It was claimed that the 0 temper-ature process converges to an optimal solution and estimates on the optimal convergencerates were given.There are several di�culties with the results stated in [KS]. To demonstrate this, wewill construct two on-line error functions. The 0{temperature process induced by the �rston-line error function will be a counterexample to (1), since it does not converge to aglobal minimum of the energy function. The 0{temperature process induced by the seconderror function implies that (1) and (2) may contradict each other in the case where the52



error function is C2, since in this case the global maximum of the energy function is anabsorbing state.Example 4.1: Set X = [�1=2; 2], V = [�1; 1] and assume that the error function is 0-1.We de�ne E(x; v) which induces the 0{temperature process using �gure 4.1:
�gure 4.1Here, E(x; v) = 0 on the shaded area and 1 otherwise. Note that he global minimum of IEgin X is attained at x = 2 and at this state, the student is in complete agreement with theteacher. However, if x < �p2=�n, it can not move towards 2. Indeed, if x < v < 0, x givesa correct response to v so it remains stationary. For v > 0, x does not move because thenearest point which yields a correct response to v is too far away. Hence, if for example,the initial distribution is supported in [-1/2,-1/4] and �n > 32, the 0 temperature processconverges almost surely to x = �1=2.In a similar fashion, for every learning step sequence p2=�n tending to 0, there are initialdistributions such that the 0-temperature does not converge in distribution to the globalminimum of IEg(x). Moreover, for some initial distributions and for every sequence �nsuch that each �i > M , the process (4.1) converges almost surely to a local minimum ofIEg which is not the global minimum in contradiction to (1).Example 4.2: Here we construct a continuous function E(x; v) on the set D = X � V =[�1=2; 1=2]� [0; 2] with respect to the normalized Lebesgue measure, such that the globalmaximum of IEg is an absorbing state. Therefore, it is impossible that both (1) and (2)hold for this process.De�ne the error function on D by E(x; v) = � 2(1�x2)(v+x2�1)x2+1 v > 1� x20 v � 1� x2 . Clearly, forevery x Cx = fvj0 � v � 1 � x2g, thus Co � Cx, E(x; v) � 0 on D and x = 0 is an53



absorbing state. Indeed, for every input v > 1 there is no state for which E(x; v) = 0 andfor 0 � v � 1, E(0; v) = 0.On the other hand, IEg(x) = (1�x2) R 21�x2 2(v+x2�1)x2+1 dv. Changing the integration variableto z = 2(v+x2�1)x2+1 we see that IEg(x) = 1�x42 R 20 zdz = 1� x4. Thus IEg(x) attains a globalmaximum in x = 0.In a similar fashion, it is possible to construct such a function with any degree ofsmoothness.5 { Concluding remarksNote that an easy way to generalize part (a) of theorem 1.1 is to formulate a stoppingprocedure which freezes the process once a state is close enough to a correct answer. Onepossibility is to count the number of consecutive correct responses at each state and stopthe process once the number passes a given threshold. This gives an estimate on themeasure �(Cx). However, if the error function is not 0-1, the fact that �(Cx) is close toits global maximum does not imply that IEg(x) is close to the global minimum (this is theidea behind example 4.2). For that, one needs additional assumptions on the structure ofthe error function.Let us point out that the reason for the assumption �n !1 in [KS] was to overcomethe possibility that the teacher makes a mistake. We did not treat this problem outsidethe case presented in section 2 and it deserves additional consideration. Our �nal remarkconcerns theorem 2.2. We were not able to formulate a more general theorem than the onepresented here. Even when the error function is 0-1, the function �(Cx) does not determinethe transition density from state to state. All we know is that when �(Cx) > �(Cy) there isa positive transition density from y to x. Unfortunately, it is possible to construct naturalexamples for which �(Cy) > �(Cx), but still there is a positive transition density from yto x and it is possible that the analogous convergence theorem may not be true.
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Chapter 4 { The Kohonen learning rule
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0 { IntroductionFor several years researchers have been puzzled by the self organizing property of theadaptive model suggested by Kohonen in [K].The basic idea behind the Kohonen model is simple: given a set of elements and an input,the input in
uences a neighborhood of the nearest point to it in the given set. If the inputsare selected at random, the given set is adapted to form an approximation of the set ofinputs.Formally, let Kn = fK1n; :::Kin; ::g be the given set, Ckin is the neighborhood of Kin 2Kn, ~vn is the input and PKn(~v) is the nearest element to ~v in Kn. Denote by Cn theneighborhood of PKn(~vn). Then the Kohonen adaptive process is:(0:1) Kin+1 = Kin + "n�cn(~vn)(~vn �Kin)where �cn is the characteristic function of the set CPKn(~v) and ("n) is a positive sequencerepresenting the size of the learning step.Usually, the process is divided into two parts. In the �rst one, the learning step "n isassumed to be constant { which means that the process is a homogeneous Markov process.After the adapting set becomes organized in some sense, ("n) decreases to 0 fast enoughto ensure the convergence of the process.Let us give a simple example of this process. Assume that the given set is some�nite set �K10 ; : : : ;Km0 	 � [�1; 1] with the metric d(x; y) = jx� yj. For every in-dex 1 < i < m, the neighborhood of Kit is �Ki�1t ;Kit ;Ki+1t 	 while CK1t = �K1t ;K2t 	,CKmt = �Km�1t ;Kmt 	 and the set from which inputs are selected is [-1,1] equipped withthe Lebesgue measure. It can be shown (see [K]) that if ("n) is a constant sequence theset �K10 ; : : : ;Km0 	 adapts to a set �K1; : : : ;Km	 organized in a monotone order almostsurely. The proof of this claim is very di�cult and the idea behind it can not be appliedto other examples.An example with some biological signi�cance may be found in [RMS]. It describes amonotone ordering of cells within a one{dimensional layer of the bat's auditory cortex.In this model, �ve one-dimensional layers simulate an area in the auditory cortex. Aneighborhood of a cell contains cells which are close enough to it, i.e., that the distancebetween them and the cell is smaller than some given r > 0.56



Each cell has an initial value between 20 and 100 assigned to it which describes thebest frequency in Khz to which the cell is tuned. The probability measure on [20,100] isconcentrated around a small neighborhood of 61Khz.A computerized simulation of the Kohonen process shows that each layer becomeslinearly ordered and most of the cells are tuned to a best frequency near 61Khz.In both examples the set enters an \organized" state { which in this case is a linearorder. In general, two major questions are open: the convergence of the process, and itsself organizing abilities. In this chapter we investigate the second question. We prove ageneral recurrence theorem which guarantees that the process always enters an organizedstate, and from this theorem we easily derive the previously mentioned result in the one{dimensional case.Note that there is no clear way to de�ne \organization" in a multi{dimensional case,at least, not as obvious interpretation as linear order on the interval [�1; 1]. We givethis term a very broad interpretation which may be applied in many cases. Furthermore,we introduce a simple IRn analog to the concept of linear ordering in IR. This chapter isdivided to four sections. The �rst section consists of our generalization to Kohonen's modeland several notations. In the second and third sections we prove a recurrence theorem andthen give examples for its use in proving self{organization results.1 { The basic modelThe Kohonen adaptive process in made up of two sets: one is the set we wish to adaptand the other one is the set of possible inputs. Our �rst assumption is that both thesesets are contained in some �nite dimensional ormed space and that the set of inputs iscompact.Denote the input set by ~V , the state space (i.e. - all the possible positions our adaptivesets can arrive at) by S and the adapting set in the n-stage by Kn. Given ~v 2 ~V , let PKn(~v)be the set of nearest points to ~v in Kn and put i(x) the index of x in Kn. Our learningprocess is:(1:1) xn+1 = xn + "nfn(i(PKn (~v))(~vn � xn)where xn 2 Kn, "n > 0 and fn : IN! [0; 1].57



this implies that the value of fn depends only on the index of the nearest point in Knto the selected input ~v. We in
uence our adaptive process through the functions fn, forexample, de�ne fn to be 1 for a nearest point to the input and zero otherwise. A moreinteresting possibility is to change not only the nearest point, but also points which arenear in some topological sense to elements of PKn(~v).
�gure 1.1Note that if "n 6! 0 the process (1.1) does not converge pointwise. In sections 1{3 wedeal only with the question of organization so throughout those sections ("n) is assumedto be a constant sequence.Clearly, if all the functions fn are equal then the Kohonen learning process is a stochas-tic approximation process. Since the nearest point map is not smooth the methods devel-oped in chapter 1 can not be applied in this case. However, most of the results concerningthe convergence of the process (1.1) are derived using general results in stochastic approx-imation.Let ~� be a regular Borel probability measure on ~V through which the inputs areselected. Let V be the space of input vectors, (i.e. V = Q ~V with the product topology)equipped with the measure � which is de�ned by i.i.d. copies of �. Since ~V is compact, sois V .Given v 2 V and x 2 IRd, denote by xv the orbit of x1 = x when v = (~v1; : : :) is thesequence of inputs to the process (1.1). Thus, xvn is the position x arrived at after n steps.Assume that the adapting sets are �nite and that each has N elements. Hence, thestate space is S = f(x1; : : : ; xN ) j kxik �Mg and the metric on S is k k1, implying thatS is compact. Let B be a Borel �-algebra and � a measure on S. Denote by � = �� � theprobability measure on (S1;B1), which are the in�nite product of S with the induced �-algebra on the product space. Hence, � is the probability measure induced by the Markov58



process on the set of possible orbits.Finally, we assume that ~�n~v 2 ~V j kx� ~vk = ky � ~vko = 0 for all x 6= y 2 IRd. Thereason for this �nal assumption is that the set of points in which the n-th stage of the pro-cess in not continuous is contained in Sx;y2Kn n~v 2 ~V j kx� ~vk = ky � ~vko, which is assumedto be of zero measure.2 { The recurrence theoremIn this section our aim is to prove a general recurrence theorem which shows that theadapting set visits a desired set in the state space in�nitely often almost surely.Lemma 2.1. Let O 2 B which is open in S. Set hO : S ! IR by:hO(s) = � (fs enters O after a �nite number of stepsg)Then h is a lower semicontinuous function.Proof: Let Bs = n~v 2 ~V js enters O after a �nite number of stepso. We separate Bs intodisjoint sets Bs;i = fs �rst enters O in the i� th stepg. The main observation in the proofis that for every " > 0 and every i, there exists a neighborhood Ui of s and Cs;i � Bs;i forwhich � (Bs;inCs;i) < " , such that if r 2 Ui and v 2 Cs;i, then v 2 Br;i . In other words,it is possible to �nd a large subset of Bs;i such that if the states r and s are close enough,the elements of Cs;i bring r into O after i steps. For the sake of simplicity, we shall provethis claim for i = 1, but the general case follows in a similar fashion.Fix " > 0. For every set A � Bs;1, let �A = inf �v 2 A; i 6= j j �� 

~v � si

� 

~v � sj

 ��	,where s = fs1; : : : ; sNg. Since � f~vj k~v � sik � k~v � sjk = 0; i 6= jg = 0, there is a compactset Cs;1 � Bs;1 such that � (Bs;inCs;i) < " and �Cs;1 > 0. Clearly, for every r in the setnr 2 Sjd(s; r) < �Cs;12 o and for every v 2 Cs;1, i(Ps(~v1)) = i(Pr(~v1)). Hence f(s; x; ~v1) =f(r; y; ~v1) when x 2 s, y 2 r with the same index, implying that d (sv2; rv2) � d(s; r).Let �2 = inf fd(sv2 ; @O); when v 2 Cs;1g. Since Cs;1 is compact, O is open and the mapv ! sv2 is continuous on Cs;1, it is clear that �2 > 0. Therefore, if d(s; r) < �2 then rv2 2 O.Put � = minn�2; �Cs;12 o and let U1 = fr 2 Sjd(r; s) < �g. Clearly, if v 2 Cs;1 and r 2 U1,then rv2 2 O as claimed.Next, in order to end the proof, �x � > 0. Since 1Pi=1� (Bs;i) < 1, there is some n0for which �� 1Si=n0Bs;i� < �2 . Choose �1; : : : ; �n0�1 such that Pn0�1i=1 �i < �2 , let Ui and59



Cs;i be the sets constructed for � = �i and de�ne U = n0�1Ti=1 Ui, Cs = n0�1Si=1 Cs;i. It is easyto verify that � (BsnCs) < � and that if r 2 U , v 2 Cs then rv enters O after a �nitenumber of steps. Thus Cs � Br , which implies that � (BsnBr) < �. Hence, if rn ! s,lim infn!1 � (Brn) � � (Bs). �Theorem 2.2. Let O be an open set in S and A � S such that for every s 2 SnA,hO(s) > 0. Then almost every orbit (svn) either enters O in�nitely often, or it convergesto A.Proof: Put Rm = fvjd�(svn); A� � 1m i:o:g and denote On = fvjsvn 2 Og. Our claim willfollow if we show that for everym, Rm � limsupOn. Note that the set fs 2 Sjd(s;A) � 1mgis compact, thus by lemma 2.1 hO attains a positive minimumon that set. From the proof oflemma 3.3.1 (see also [O], pg. 22, proposition 5.1) follows that in this case Rm � limsup Onas claimed. �Remark 2.3: Note that the proof of lemma 2.1 does not use the fact that our pro-cess is homogeneous. However, for a general Markov process, even the claim \if everystate has a positive probability (which is larger than some � ) to enter O, the processenters O a.s." is wrong. The reason for the failure of the non-homogeneous claim isthat since the probability to enter O from a state s depends on the step in which theorbit visits s. Put �i = "n+i and assume that one uses the learning steps (�i). De-�ne �n = infs2S ���s enters O in a �nite number of stepsg� . Since lemma 2.1 remains true,�n > 0 for every n. Thus to ensure the validity of theorem 2.2 it is enough to �nd positivelower bound for (�n).3 { A few examples of self organizationWe begin with a re{statement of the example from the introduction.Example 3.1: Let (x10; : : : ; xn0 ) 2 [�1; 1]n. Our object is to use Kohonen's process toorder the points according to their index { in either ascending or descending order. De�ne~V = [�1; 1], let ~� be the normalized Lebesgue measure and S = [�1; 1]n. A neighborhoodof xi is the set Cxi = �xi�1; xi; xi+1	 for 1 < i < n, and �x1; x2	, �xn�1; xn	 for i = 1,60



i = n. Let fn �sn; �xi�n ; ~vn� = � 1 xin 2 Psn(~vn)0 otherwise .During the process, a neighborhood of each of the nearest points to the input isadapted by the learning step and the rest of the points remain stationary. Note that theset of \organized" states (i.e. - x1 < x2 < : : : < xn or x1 > x2 > : : : > xn ) is an openset in S and let A = f(x1; :::xn)jxi = xj for some i 6= jg. We show that for every s 62 A,hO(s) > 0, hence the assertion of theorem 2.2 holds. The key point in our proof is thefact that from any given state s and for every x 2 s, the set f~vjPs (v) = xg has positivemeasure. We do not give a complete proof to the claim, rather, we demonstrate how asimple disorder may be corrected.Suppose that s = (x1; : : : ; x4) and x1 < x4 < x2 < x3. First, we move x2 to itsrightful position { by selecting any input ~v for which Ps(~v) = x1. The new state is(3:1) s1 = (x1 + "(~v � x1); x2 + "(~v � x2); x3; x4)An easy calculation shows that:(3:2) d(x1new; x2new) = (1� ")d(x1; x2)Using (3.2) repeatedly, after a �nite number of steps, \x2" takes its place between \x1"and \x4". We continue with such a ~v for which the nearest point is \x2", which brings\x3" to its place, giving us an organized state.Remark 3.2: In example 3.1 the set O is made up of all the organized states, and\degenerate" organized states, i.e., sets with the correct ordering, but instead of strictinequality, we may �nd that xi = xi+1. Note that O is an absorbing set: once an adaptingset enters it, the set remains inside O, hence, by theorem 2.2, all the limit points of theprocess belong to O almost surely.It is easy to see that every state has a positive probability to enter O if and only ifevery interval has ~� positive probability. One direction of the proof follows in a similarfashion to the argument presented in example 3.1. On the other hand, if ~�([a; b]) = 0,the state (x2; x1; : : : ; xn�1; xn) � [a; b]n never becomes organized, since the only way tocorrect the disorder is to select an input for which PK(~v) = x3 and that event has zeroprobability.Example 3.1 may be extended to IRd: let ~V be a compact set in IRd with a non-emptyinterior and set S = ~V N . Note that an alternative way to describe a linearly ordered set61



in IR is to say that the two nearest points to ki are ki�1 and ki+1. Having that in mind,we suggest the following de�nition:De�nition 3.3. A state s is called organized, if the two nearest points to ki are elementsin Cki { de�ned in example 3.1.Let fn be as in example 3.1, ~� the normalized Lebesgue measure on ~V and assume that("n) is a constant sequence. Using the same idea as in the example above, it is clear thatone can reach O from any initial state s 62 A with a positive probability.Again, let us emphasize that the key point is that for every x 2 s, ~� f~vjPs (~v) = xg > 0.Using theorem 2.2, almost every orbit either enters O i.o. or converges to A.The attempt to generalize this example to the case where S is not necessarily containedin ~V causes a di�culty, since we have no prior knowledge of the function P�1sn . To use thealgorithm mentioned above, it is vital that for every x 2 sn, ~� �P�1sn (x)� > 0. Since weknow nothing about the norm on IRd, there is a possibility that ~� �P�1sn (x)� = 0 (see �gure3.1).
�gure 3.1To solve this problem, we introduce a new selection of ~� and fn, in what we call \the aceup the sleeve" routine.Example 3.4: Let ~V ,~� be as in the extension of example 3.1 to IRd. Fix m points�y1; : : : ; ym	 in IRd, let ~� be an atomic measure supported on �y1; : : : ; ym	 such that~� �yi� = �m , where 0 < � < 1 and set ~� = ~�+~�1+� .Say that ��P�1s (xi)� = 0. We de�ne the process to respond to the input yi as if xiitself was selected as the nearest point (even though it may not be the case) and the pointsin the neighborhood of xi move in some random direction. It is easy to see that for everys 2 S and xi 2 s, ~� �P�1s (xi)� � �n(1+�) . 62



Thus, it is possible to use the ordering algorithm and for every initial state, theprocess arrives to an organized state with �-positive probability. Next, we have to showthat lemma 3.1 is still valid. Recall that one of the conditions in the proof was that~� n~v 2 ~V j kx� ~vk = ky � ~vko = 0, but since ~� is atomic this assumption does not hold.However, examining the proof closely reveals that only minor technical adjustments arenecessary to extend it so that it includes this case too. For example, divide Bs;1 to twosets: �vj~v1 = yi	 and �vj~v1 6= yi	. For the second set, proceed just as in the original proofand �nd the set Cs;1. The required set will be Cs;1 [ �v 2 Bs;1j~v1 = yi	. To conclude, theassertion of theorem 2.2 holds in this case too.4 { Stochastic Approximation and its application to a smoothKohonen processThe Kohonen learning rule has two main features. The �rst one is that the process isa \winner takes all" process, in the sense that the nearest point to the input is selected.The other feature is that only an \index topology" neighborhood of the nearest point isadapted. Both these facts indicate that this process is not smooth, which makes its analysisdi�cult. Our aim is to formulate a smooth process which has similar properties to thosepresented above. Let(4:1) Xin+1 = Xin + "n��(Xi�1n +Xi+1n � 2Xin) + e�kXin�vnk2TPmj=1 e�kXjn�vnk2T (vn �Xin)�where Xin is the i-th element in the set Xn, V � IRd is the compact set of inputs with theprobability measure � and ("n) 2 l2nl1.Note that Xin+1 is in
uenced by the neighborhood of Xin in the index topology usinga di�usion type interaction.This process is smooth because it is derived from the smooth stochastic Lyapunovfunction(4:2) GT (X; v) = �2 mXi=1 

Xi+1 �Xi

2 � T2 log mXi=1 e�kXi�vk2Tand the second term in (4.1) is a smooth approximation to the \winner takes all" conditionin the Kohonen learning rule. 63



The process (4.1) has a continuous version when Xn 2 IH1(S1; IRd), i.e., Xn is aperiodic function on [0; 2�]. Then the process (4.1) becomes:(4:3) Xn+1(s) = Xn(s) + "n���Xn(s) + e�kXn(s)�vnk2TRS1 e�kXn(u)�vnk2T du (vn �Xn(s))�which is induced by the stochastic Lyapunov functional(4:4) GT (X; v) = �2 krX(s)k2L2(S1) � T2 log ZS1 e�kX(u)�vk2T duNext, Consider the following problem: a traveling salesman has to visit the citiesv1; ::vn. If he fails to visit a city he loses income which depends on the minimal distanceto that city. On the other hand, he wishes the trip to be as short as possible. We wish tohelp the salesman �nd the optimal path in two cases. In the �rst case we assume that hemust make m stops and that he can work only in those stops. Thus, the money he losesis a function of the distance between each city and the nearest stop to that city. In thesecond (continuous) case, he can do business at any time, in which case his loses dependon the minimal distance between each city and his path. First, we turn our attention tothe discrete case. LetFT (X) = �2 mXi=1 

Xi+1 �Xi

2 � T2 nXk=1 log mXi=1 e�kXi�vkk2Tthen, when T ! 0, FT (X) tends pointwise toF (X) = �2 mXi=1 

Xi+1 �Xi

2 + T2 nXk=1mini 

Xi � vk

2We wish to �nd stops Xi such that X = (X1; :::Xm) is the global minimum of F . SinceF in not smooth, we relax the problem and seek the minimum of FT . Note that FT (X) =IE�GT 0(X;V )jX� when T 0 = nT , GT 0(X; v) is given by (4.2) and �(vi) = 1n . Hence, to�nd local minima of FT we can use the stochastic approximation process(4:5) Xn+1 = Xn � "nrxGT (Xn; Vn)We may assume that all the critical points of FT are non degenerate because the set offunctions with non degenerate critical points is of the second category.64



Lemma 4.1. For every T > 0 the process (4.5) is uniformly bounded.Proof: Let �in = e�kXin�vnk2=TPmj=1 e�kXjn�vnk2=T . It is easy to see thatXin+1 = "n�Xi�1n + "n�Xi+1n + "n�inv + (1 � �in � 2"n�)Xinfor "n small enough, all the coe�cients are nonnegative and their sum is 1. Hence, Xin+1is a convex combination of Xi+1n , Xin, Xi�1n and vn. �Corollary 4.2. The process (4.5) converges almost surely to a local minimum of FT .Proof: The proof follows immediately from corollary 1.1.7. �Remark 4.3. A straight forward computation shows that for T large enough FT is convex,thus it has a unique local minimum. By corollary 4.2 the process (4.5) converges to thatminimum almost surely.Next, we turn to the continuous case. Here, the relaxed cost function we wish tominimize is FT (X) = �2 krX(s)k2L2(S1) � T2 ZV log ZS1 e�kX(u)�vk2T dud�(v)which is the average of the stochastic Lyapunov functional (4.4). Note that DxG(X; v) =��X(s)+ e�kX(s)�vk2=TRS1 e�kX(u)�vk2=T du(v�X(s)). Thus, we can use the process (1.2.1), i.e., stochas-tic approximation of the form @u@t = �DGx(U; v). Using the notations of section 1.3, setA = ��� and f(u; v) = e�ku(s)�vk2=TRS1 e�ku(s)�vk2=T ds (v � X(s)). Then, for i=0,1 f(u; v) mapsIHi\L1 into itself uniformly with respect to v and since the input set V is bounded, thereexists some functionM such that uf(u;�) < 0 whenever juj > M . It is also clear that FTsatis�es the P.S. condition on bounded sets in IH1. Indeed, since (DFT )Xn = �Xn+h(Xn)then if (DFT )Xn ! 0 in IH�1 and (Xn) is bounded in IH1, there is a subsequence Xnjwhich converges weakly in IH1. Since weak convergence in IH1 implies uniform convergence,then for every g 2 IH1, 
r(Xng � X); g� ! 0 and 
h(Xnj ); g� ! 
h(X); g�. Hence, forevery g 2 IH1
(DFT )X ; g� = 
r(Xnj �X); g�+ 
h(Xnj ) � h(X); g�+ 
DFXn ; g�! 065



Therefore, the assertions of theorem 1.2.3 and corollary 1.2.4 hold. In particular, for everysample path (Xn) there is a critical value � such that all the limit points of (Xn) arecontained in K�.5{ Concluding remarksClearly, there are major di�culties when one passes from the one-dimensional modelto the multi-dimensional one. The key stumbling block is the fact that the set of organizedstates in the multi-dimensional case is not an absorbing set. To this day, there is no de�-nition of multi-dimensional organization for which the set of organized states is absorbing(see, for example, [F],[FP] which show that with positive probability, the exit time fromthe set O is �nite).Another question concerns the process in the non{homogeneous case. One possiblecourse of action is to �nd an analogous result to the recurrence theorem 2.2. A di�erentapproach it to apply methods of stochastic approximation. Unfortunately, we where unableto obtain sharp results similar to those presented in chapter 1 for non{smooth processes.
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