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1 Introduction

In these notes our aim is to survey recent (and not so recent) results regarding the math-
ematical foundations of learning theory. The focus in this article is on the theoretical side
and not on the applicative one; hence, we shall not present examples which may be inter-
esting from the practical point of view but have little theoretical significance. This survey
is far from being complete and it focuses on problems the author finds interesting (an opin-
ion which is not necessarily shared by the majority of the learning community). Relevant
books which present a more evenly balanced approach are, for example [1, 4, 35, 36]

The starting point of our discussion is the formulation of the learning problem. Con-
sider a class G, consisting of real valued functions defined on a space Ω, and assume that
each g ∈ G maps Ω into [0, 1]. Let T be an unknown function, T : Ω → [0, 1] and set µ to
be an unknown probability measure on Ω.

The data one receives are a finite sample (Xi)
n
i=1, where (Xi) are independent random

variables distributed according to µ, and the values of the unknown function on the sample
(

T (Xi)
)n

i=1
. The objective of the learner is to construct a function in G which is almost

the closest function to T in the set, with respect to the L2(µ) norm. In other words, given
ε > 0, one seeks a function g0 ∈ G which satisfies that

Eµ|g0 − T |2 ≤ inf
g∈G

Eµ|g − T |2 + ε, (1.1)

where Eµ is the expectation with respect to the probability measure µ. Of course, this
function has to be constructed according to the data at hand.

A mapping L is a learning rule if it maps every sample sn =
(

(Xi)
n
i=1,

(

T (Xi)
)n

i=1

)

to
some Lsn ∈ G. The measure of the effectiveness of the learning rule is “how much data”
it needs in order to produce an almost optimal function in the sense of (1.1).

The one learning rule which seems to be the most natural (and it is the one we focus
on throughout this article) is the loss minimization. For the sake of simplicity, we assume
that the L2(µ) minimal distance between T and members of G is attained at a point we
denote by PGT , and define a new function class, which is based on G and T in the following
manner; for every g ∈ G, let ℓ(g) = |g − T |2 − |PGT − T |2 and set L = {ℓ(g)|g ∈ G}. L is
called the 2-loss class associated with G and T , and there are obvious generalizations of
this notion when other norms are considered.

For every sample sn = {x1, ..., xn} and ε > 0, let g∗ ∈ G be any function which satisfies
that

1

n

n
∑

i=1

(

g∗(xi) − T (xi)
)2 ≤ inf

g∈G

1

n

n
∑

i=1

(

g(xi) − T (xi)
)2

+ ε. (1.2)

Thus, any g∗ is an “almost minimizer” of the empirical distance between members of G
and the target T . To simplify the presentation, let us introduce a notation we shall use
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throughout these notes. Given a set {x1, ..., xn}, let µn be the empirical measure supported
on the set. In other words, µn = n−1

∑n
i=1 δxi where δxi is the point evaluation functional

on the set {xi}. The L2(µn) norm is defined as ‖f‖2
L2(µn) = n−1

∑n
i=1 f2(xi). Therefore,

g∗ is defined as a function which satisfies that

‖g∗ − T‖2
L2(µn) ≤ inf

g∈G
‖g − T‖2

L2(µn) + ε.

From the definition of the loss class it follows that Eµnℓ(g∗) ≤ ε. Indeed, the second term
in every loss function is the same - |T − PGT |2, hence the infimum is determined only by
the first term |g − T |2. Thus,

Eµnℓ(g∗) ≤ inf
f∈L

Eµnf + ε ≤ ε,

since inff∈L Eµnf ≤ 0, simply by looking at f = ℓ(PGT ).
The question we wish to address is when such a function ℓ(g∗) will also be an “almost

minimizer” with respect to the original L2 norm. Since ‖g − T‖L2(µ) ≥ ‖PGT − T‖L2(µ) it
follows that for every g ∈ G, Eµℓ(g) ≥ 0. Therefore, our question is when

Eµℓ(g∗) ≤ inf
g∈G

Eµℓ(g) + ε = ε? (1.3)

Formally, we attempt to solve the following

Question 1.1 Fix ε > 0, let sn be a sample and set g∗ to be a function which satisfies
(1.2). Does it mean that Eµℓ(g∗) ≤ ε?

Of course, it is too much to hope for that the answer is affirmative for any given sample,
or even for any “long enough” sample, because one can encounter arbitrarily long samples
that give misleading information on the behaviour of T . The hope is that an affirmative
answer will be true with a relatively high probability as the size of the sample increases.
The tradeoff between the desired accuracy ε, the high probability required and the size of
the sample is the main question we wish to address.

Any attempt to approximate T with respect to any measure other than the measure
according to which the sampling is made will not be successful. For example, if one has two
probability measures which are supported on disjoint sets, any data received by sampling
according to one measure will be meaningless when computing distances with respect to
the other.

Another observation is that if the class G is “too large” it would be impossible to
construct any worthwhile approximating function using empirical data. Indeed, assume
that G consists of all the continuous functions on [0, 1] which are bounded by 1, and for
the sake of simplicity, assume that T is a Boolean function and that µ is the Lebesgue
measure on [0, 1]. By a standard density argument, there are functions in G which are
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arbitrarily close to T with respect to the L2(µ) distance, hence infg∈G Eµ|T − g|2 = 0. On
the other hand, for any sample

{

(xi),
(

T (xi)
)}

of T and every ε > 0 there is some g ∈ G
which coincides with T on the sample, but Eµ|T − g|2 ≥ 1 − ε.

The problem one encounters in this example occurs because the class in question is too
large; even if one receives as data an arbitrarily large sample, there are still “too many”
very different functions in the class which behave in a similar way to (or even coincide
with) T on the sample, but they are very far apart. In other words, if one wants an
effective learning scheme, the structure of the class should not be too rich, in the sense
that additional empirical data (i.e. a larger sample) decreases the number of class members
which are “close” to the target on the data. Hence, all the functions which the learning
algorithm may select become “closer” to the target as the size of the sample increases.

The two main approaches we focus on are outcomes of this line of reasoning. Firstly,
assume that one can ensure that when the sample size is large enough, then with high
probability, empirical means of members of L are uniformly close to the actual means
(that is, with high probability every f ∈ L satisfies that, |Eµf −Eµnf | < ε). In particular,
if Eµnℓ(g∗) < ε then Eµℓ(g∗) < 2ε. This naturally leads us to the definition of Glivenko-
Cantelli classes.

Definition 1.2 Let F be a class of functions. We say that F is a uniform Glivenko
Cantelli class if for every ε > 0,

lim
n→∞

sup
µ

Pr
{

sup
f∈F

|Eµf − 1

n

n
∑

i=1

f(Xi)| ≥ ε
}

= 0,

where (Xi)
∞
i=1 are independent random variables distributed according to µ.

The fact that the supremum is taken with respect to all probability measures µ is important
because one does not have a-priori information on the probability measure according to
which the data is sampled.

This definition has a quantified version. For every 0 < ε, δ < 1, let SF (ε, δ) be the first
integer n0 such that for every n ≥ n0 and any probability measure µ,

Pr
{

sup
f∈F

|Eµf − Eµnf | ≥ ε
}

≤ δ, (1.4)

where µn is the random empirical measure n−1
∑n

i=1 δXi .
SF is called the Glivenko-Cantelli sample complexity of the class F with accuracy ε

and confidence δ.
Of course, the ability to control the means of every function within the class is a very

strong property, and is only a (loose!) sufficient condition which suffices to ensure that g∗

is a “good approximation” of T . In fact, all that we are interested in is that this type of
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a condition holds for a function like ℓ(g∗) (i.e., an almost minimizer of ℓ(g) with respect
to an empirical norm). Therefore, one would like to estimate

sup
µ

Pr
{

∃f ∈ L, Eµnf < ε, Eµf ≥ 2ε
}

. (1.5)

Let CL(ε, δ) be the first integer such that for every n ≥ CL(ε, δ) the term in (1.5) is smaller
than δ. For such a value of n, there is a set of large probability on which any function
which is an “almost minimizer” of the empirical loss will be an “almost minimizer” of the
actual loss regardless of the underlying probability measure, implying that our learning
algorithm will be successful.

These notes are divided into two main parts. The first one deals with Glivenko-Cantelli
classes and the parameters which govern the sample complexity of such classes. In the
second section we focus on (1.5) and show that under mild structural conditions on the
class G it is possible to improve the estimates obtained using a Glivenko-Cantelli argument.

Notational conventions we shall use are that all absolute constants are denoted by c
and C. Their values may change from line to line, or even within the same line. If X and
Y are random variables, Ef(X, Y ) denotes the expectation with respect to both variables.
The expectation with respect to X is denoted by EXf(X, Y ) = E

(

f(X, Y )|Y
)

.

2 Glivenko-Cantelli Classes

In this section we study the properties of uniform Glivenko-Cantelli classes (uGC classes
for brevity), which are classes that satisfy (1.3) or (1.4). We examine various characteri-
zation theorems for uGC classes. The results which are relevant to the problem of sample
complexity estimates are presented in full. We assume that the reader has some knowledge
of the basic definitions in probability theory and empirical processes theory. One can turn
to [5] for a more detailed introduction, or to [34, 8] for a complete and rigorous analysis.

We start this section with a presentation of the classical approach, using which sample
complexity estimates for uGC classes were established in the past [37, 2]. This approach
has its own merit, though the estimates one obtains using this method are suboptimal.

2.1 The classical approach

Let F be a class of functions whose range is contained in [−1, 1]. We say that (Zi)i∈I

is a random process indexed by F if for every f ∈ F and every i ∈ I, Zi(f) is a ran-
dom variable. The process is called i.i.d. if the finite dimensional marginal distributions
(

Zi(f1), ..., Zi(fk)
)

are independent random vectors2.

2throughout these notes we are going to omit all the measurability issues one should address in a

completely rigorous exposition.
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One example the reader should have in mind is the following random process: let µ
be a probability measure on the domain Ω and let X1, ..., Xn be independent random
variables distributed according to µ. Set µn to be the empirical measure supported on
X1, ..., Xn - which is n−1

∑n
i=1 δXi . Hence, µn is a random probability measure given by

the average of point masses at Xi. Let Zi(·) =
(

δXi −µ
)

(·), where the last equation should
be interpreted as Zi(f) = f(Xi) − Eµ(f) for every f ∈ F . Note that Z1, ..., Zn is an i.i.d.
process with 0 mean (since for every f ∈ F , EZi(f) = 0). Moreover,

sup
f∈F

|
n

∑

i=1

Zi(f)| = sup
f∈F

|
n

∑

i=1

(

f(Xi) − Eµf
)

|,

which is exactly the random variable we are interested in.
Our strategy is based on the following idea, which, for the sake of simplicity, is ex-

plained for the trivial class consisting of a single element. We wish to measure “how close”
empirical means are to the actual mean. If this holds with high probability, then two ran-
dom empirical means should be “close” to each other. Thus, if (X ′

i) is an independent
copy of (Xi), then the probability that |∑n

i=1

(

f(Xi)−f(X ′
i)

)

| ≥ x should be an indication
of the probability of deviation of the empirical means from the actual one. By symmetry,
for every i, Yi = f(Xi) − f(X ′

i) is distributed as −Yi. Hence, for every selection of signs
εi,

Pr
{∣

∣

n
∑

i=1

f(Xi) − f(X ′
i)

∣

∣ ≥ x
}

= Pr
{∣

∣

n
∑

i=1

εi

(

f(Xi) − f(X ′
i)

)∣

∣ ≥ x
}

. (2.1)

Now, consider (εi)
n
i=1 as independent Rademacher (i.e. symmetric {−1, 1}-valued) random

variables, and (2.1) still holds, where Pr on the right hand side now denotes the product
measure generated by (Xi), (X ′

i) and (εi). By the triangle inequality,

Pr
{∣

∣

n
∑

i=1

f(Xi) − f(X ′
i)

∣

∣ ≥ x
}

≤ Pr
{∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≥ x

2

}

+ Pr
{∣

∣

n
∑

i=1

εif(X ′
i)

∣

∣ ≥ x

2

}

= 2Pr
{∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≥ x

2

}

since Xi and X ′
i are identically distributed. Therefore, Pr{|∑n

i=1 εif(Xi)| ≥ x/2} could
be the right quantity to control the deviation we require.

Since this is far from being rigorous, one has to make the above reasoning precise.
There are two main issues that need to be resolved; firstly, can this kind of a result be true
for a “rich” class of functions - consisting of more than a single function, and secondly, how
can one control the probability of deviation even after this “symmetrization” argument?
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2.1.1 The symmetrization procedure

Here we present the following symmetrization argument, due to Giné and Zinn [10], which
is the first step in the “classical” approach.

Theorem 2.1 Let (Zi)
n
i=1 be an i.i.d. stochastic process which has 0 mean, and for every

1 ≤ i ≤ n, set hi : F → R to be an arbitrary function. Then, for every x > 0

(

1 − 4n

x2
sup
f∈F

var
(

Z1(f)
)

)

Pr
{

sup
f∈F

|
n

∑

i=1

Zi(f)| > x
}

≤2Pr
{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f) − hi(f)
)

| >
x

4

}

,

where (εi)
n
i=1 are independent Rademacher random variables.

Before proving this theorem, let us consider its implications for “our” empirical process.
Fix a probability measure µ according to which the sampling is made. Then, Zi(f) =
f(Xi) − Eµf and put hi(f) = −Eµf . Also, set v2 = supf∈F var(f), and note that if

x ≥ 2
√

2
√

nv then 1 − 4n
x2 supf∈F var

(

Z1(f)
)

≥ 1/2. Therefore, for such a value of x,

Pr
{

sup
f∈F

|
n

∑

i=1

(

f(Xi) − Eµf
)

| > x
}

≤ 4Pr
{

sup
f∈F

|
n

∑

i=1

εif(Xi)| >
x

4

}

. (2.2)

Now, fix any ε > 0 and let x = nε. If n ≥ 8v2/ε2 then

Pr
{

sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | > ε
}

≤ 4Pr
{

sup
f∈F

|
n

∑

i=1

εif(Xi)| >
nε

4

}

. (2.3)

In particular, if each function in F maps Ω into [−1, 1] then v2 ≤ 1. Thus, (2.3) holds for
any n ≥ 8/ε2.

Proof of theorem 2.1: Let Wi be an independent copy of Zi and fix x > 0. Denote
by PZ (resp. PW ) the probability measure associated with the process (Zi) (resp. (Wi)).
Put β = inff∈F Pr{|

∑n
i=1 Zi(f)| < x/2} and let A = {supf∈F |

∑n
i=1 Zi(f)| > x}. For

every element in A there is a realization of the process Zi and some f ∈ F such that
|∑n

i=1 Zi(f)| > x. Fix this realization and f and observe that by the triangle inequality,
if |∑n

i=1 Wi(f)| < x/2 then |∑n
i=1 Zi(f) − Wi(f)| > x/2. Since (Wi)

n
i=1 is a copy of

(Zi)
n
i=1 then

β ≤ PW

{

|
n

∑

i=1

Wi(f)| <
x

2

}

≤ PW

{

|
n

∑

i=1

Wi(f) −
n

∑

i=1

Zi(f)| >
x

2

}

≤ PW

{

sup
f∈F

|
n

∑

i=1

Wi(f) −
n

∑

i=1

Zi(f)| >
x

2

}

.
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Since the two extreme sides of this inequality are independent of the specific selection of
f , this inequality holds on the set A. Integrating with respect to Z on A it follows that

βPZ

{

sup
f∈F

|
n

∑

i=1

Zi(f)| > x
}

≤ PZPW

{

sup
f∈F

|
n

∑

i=1

(

Zi(f) − Wi(f)
)

| >
x

2

}

.

Clearly, Zi − Wi has the same distribution as Wi − Zi = −(Zi − Wi), implying that for
every selection of signs (εi)

n
i=1 ∈ {−1, 1}n,

∑n
i=1 Zi − Wi has the same distribution as

∑n
i=1 εi(Zi − Wi). Hence,

PZPW

{

sup
f∈F

|
n

∑

i=1

(

Zi(f) − Wi(f)
)

| >
x

2

}

= PZPW

{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f) − Wi(f)
)

| >
x

2

}

= EεPZPW

{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f) − Wi(f)
)

| >
x

2

}

,

where Eε denotes the expectation with respect to the Rademacher random variables
(εi)

n
i=1. By the triangle inequality, for every selection of functions hi and every fixed

realization (εi)
n
i=1,

PZPW

{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f) − Wi(f)
)

| >
x

2

}

≤ 2PZ

{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f) − hi(f)
)

| >
x

2

}

,

and by Fubini’s Theorem

Eε

(

PZ

{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f)−hi(f)
)

| >
x

2

}∣

∣

∣
(εi)

n
i=1

)

= Pr
{

sup
f∈F

|
n

∑

i=1

εi

(

Zi(f)−hi(f)
)

| >
x

2

}

.

Finally, to estimate β, note that by Chebyshev’s inequality

Pr
{

|
n

∑

i=1

Zi(f)| >
x

2

}

≤ 4n

x2
var

(

Z1(f)
)

,

for every f ∈ F , and thus, β ≥ 1 − (4n/x2) supf∈F var
(

Z1(f)
)

.
¥

After establishing (2.3), the next step is to transform a very rich class to a trivial
class, consisting of a single function, and then estimate Pr

{∣

∣

∑n
i=1 εif(xi)

∣

∣ > x
}

. We
show that one can effectively replace the (possibly) infinite class F with a finite set which
approximates the original class in some sense. The “richness” of the class F will be
reflected by the cardinality of the finite approximating set. This approximation scheme
is commonly used in many areas of mathematics, and the main notion behind it is called
covering numbers.
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2.1.2 Covering numbers and complexity estimates

Let (Y, d) be a metric space and set F ⊂ Y . For every ε > 0, denote by N(ε, F, d) the
minimal number of open balls (with respect to the metric d) needed to cover F . That is,
the minimal cardinality of the set {y1, ..., ym} ⊂ Y with the property that every f ∈ F
has is some yi such that d(f, yi) < ε. The set {y1, ..., ym} is called an ε-cover of F . The
logarithm of the covering numbers is called the entropy of the set.

We will be interested in metrics endowed by samples; for every sample {x1, ..., xn}
let µn be the empirical measure supported on that sample. For 1 ≤ p < ∞ and a

function f , put ‖f‖Lp(µn) =
(

n−1
∑n

i=1 |f(xi)|p
)1/p

and set ‖f‖∞ = max1≤i≤n |f(xi)|. Let

N
(

ε, F, Lp(µn)
)

be the covering numbers of F at scale ε with respect to the Lp(µn) norm.
Two easy observations we require are the following. Firstly, if n−1|∑n

i=1 f(xi)| > t
and if ‖f − g‖L1(µn) < t/2 then

1

n
|

n
∑

i=1

g(xi)| ≥
1

n
|

n
∑

i=1

f(xi)| −
1

n

n
∑

i=1

|f(xi) − g(xi)| >
t

2
.

Secondly, for every empirical measure µn and every 1 ≤ p ≤ ∞, ‖f‖L1(µn) ≤ ‖f‖Lp(µn) ≤
‖f‖L∞(µn). Hence,

N
(

ε, F, L1(µn)
)

≤ N
(

ε, F, Lp(µn)
)

≤ N
(

ε, F, L∞(µn)
)

.

In a similar fashion to the notion of covering numbers one can define the packing numbers
of a class. Roughly speaking, a packing number is the maximal cardinality of a subset of
F with the property that the distance between any two of its members is “large”.

Definition 2.2 Let (X, d) be a metric space. We say that K ⊂ X is ε-separated with
respect to the metric d if for every k1, k2 ∈ K, d(k1, k2) ≥ ε.

Given a set F ⊂ X, define its ε-packing number as the maximal cardinality of a subset of
F which is ε-separated, and denote it by D(ε, F, d).

It is easy to see that the covering numbers and the packing numbers are closely related.
Indeed, assume that K ⊂ F is a maximal ε-separated subset. By the maximality, for every
f ∈ F there is some k ∈ K for which d(x, k) < ε, which shows that N(ε, F, d) ≤ D(ε, F, d).
On the other hand, let {y1, ..., ym} be an ε/2 cover of F and assume that f1, ..., fk is a
maximal ε-separated subset of F . In every ball {y|d(y, yi) < ε/2} there is at most a single
element of the packing (by the triangle inequality, the diameter of this ball is smaller than
ε). Since this is true for any cover of F then D(ε, F, d) ≤ N(ε/2, F, d).

Our discussion will rely heavily on covering and packing numbers. We can now combine
the symmetrization argument with the notion of covering numbers and obtain the required
complexity estimates.
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Theorem 2.3 Let F be a class of functions which map Ω into [−1, 1] and set µ to be a
probability measure on Ω. Let (Xi)

∞
i=1 be independent random variables distributed accord-

ing to µ. For every ε > 0 and any n ≥ 8/ε2,

Pr
{

sup
f∈F

| 1
n

∑

i=1

f(Xi) − Eµf | > ε
}

≤ 8Eµ

[

N
(

ε, F, L1(µn)
)]

e−
nε2

128 ,

where µn is the (random) empirical measure supported on {X1, ..., Xn}.
One additional preliminary result we need before proceeding with the proof will enable
us to handle the “trivial” case of classes consisting of a single function. This case follows
from Hoeffding’s inequality [12, 34]

Theorem 2.4 Let (ai)
n
i=1 ⊂ R and let (εi)

n
i=1 be independent Rademacher random vari-

ables (that is, symmetric {−1, 1}-valued). Then,

Pr
{

|
n

∑

i=1

εiai| > x
}

≤ 2e−
1
2
x2/‖a‖2 ,

where ‖a‖2 =
(
∑n

i=1 a2
i

)1/2
.

In our case, (ai)
n
i=1 is going to be the values of the function f on a fixed sample {x1, ..., xn}.

Proof of theorem 2.3: Let A =
{

supf∈F |∑n
i=1 εif(Xi)| > nε

4

}

, and denote by χA the
characteristic function of A. By Fubini’s Theorem,

Pr(A) = Eµ

(

EεχA|X1, ..., Xn

)

= Eµ

(

Pr
{

sup
f∈F

|
n

∑

i=1

εif(Xi)| >
nε

4

}

|X1, ..., Xn

)

. (2.4)

Fix a realization of X1, ..., Xn and let µn be the empirical measure supported on that
realization. Set G to be an ε/8 cover of F with respect to the L1(µn) norm. Since F
consists of functions which are bounded by 1, we can assume that the same holds for every
g ∈ G. If supf∈F |∑n

i=1 εif(Xi)| > nε/4, there is some f ∈ F for which this inequality
holds. G is an ε/8-cover of F with respect to the L1(µn), hence, there is some g ∈ G which
satisfies that n−1

∑n
i=1 |f(Xi) − g(Xi)| < ε/8. Therefore, supg∈G |∑n

i=1 εig(Xi)| > nε/8,
implying that for that realization of (Xi),

Pr
{

sup
f∈F

|
n

∑

i=1

εif(Xi)| >
nε

4

}

≤ Pr
{

sup
g∈G

|
n

∑

i=1

εig(Xi)| >
nε

8

}

.

Applying the union bound, Hoeffding’s inequality and the fact that for every g ∈ G,
∑n

i=1 g(xi)
2 ≤ n,

Pr
{

sup
g∈G

|
n

∑

i=1

εig(Xi)| >
nε

8

}

≤ 2|G|Pr
{

|
n

∑

i=1

εig(Xi)| >
nε

8

}

≤ 2N
(ε

8
, F, L1(µn)

)

e−
nε2

128 .
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Finally, our claim follows from (2.4) and (2.3).
¥

Unfortunately, it might be very difficult to compute the expectation of the covering
numbers. Thus, one natural thing to do is to introduce uniform entropy numbers.

Definition 2.5 For every class F , 1 ≤ p ≤ ∞ and ε > 0, let

log Np

(

ε, F, n) = sup
µn

log N
(

ε, F, Lp(µn)
)

,

and
log Np

(

ε, F ) = sup
n

sup
µn

log N
(

ε, F, Lp(µn)
)

.

log Np(ε, F ) are called the uniform entropy numbers of F with respect to the Lp(µn).

The only hope for establishing non-trivial uniform entropy bounds is when the covering
numbers do not depend on the cardinality of the set on which the empirical measure is
supported. In some sense, this implies that classes for which one can obtain uniform
entropy bounds must be “small”. As we will show in sections to come, one can establish
such dimension-free bounds in terms of the combinatorial parameters which are used to
“measure” the size of a class of functions.

The following result seems to be a weaker version of the theorem, but in the sequel we
prove that it is a necessary condition for the uniform GC property as well.

Theorem 2.6 Assume that F is a class of functions which are all bounded by 1. If there
is some 1 ≤ p ≤ ∞ such that for every ε > 0 the uniform entropy numbers satisfy

lim
n→∞

log Np(ε, F, n)

n
= 0,

then F is a uniform Glivenko-Cantelli class.

An easy observation is that it is possible to bound the Glivenko-Cantelli sample com-
plexity using the uniform entropy numbers of the class.

Theorem 2.7 Let F be a class of functions which map Ω into [−1, 1]. Then for every
0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that n ≥ 128
ε2

(

log N1(ε, F ) + log(8/δ)
)

.

In particular, if the uniform entropy is of power type q (that is, log N1(ε, F ) = O(ε−q)),
then the uGC sample complexity is (up to logarithmic factors in δ−1) O(ε−(2+q)).

As an example, assume that F is the 2-loss class associated with G and T . In this
case, the Lp entropy numbers of the loss class can be controlled by those of G.

11



Lemma 2.8 Let G be a class of functions whose range is contained in [0, 1] and assume
that the same holds for T . If L is the 2-loss class associated with G and T , then for every
ε > 0, every 1 ≤ p ≤ ∞ and every probability measure µ,

N
(

ε,L, Lp(µ)
)

≤ N
(ε

4
, G, Lp(µ)

)

.

Proof: Since L is a shift of the class (G − T )2, and since covering numbers of a shifted
class are the same as those of the original one (a shift is an isometry with respect to
the Lp norm), it is enough to estimate the covering numbers of the class (G − T )2. Let
{y1, ..., ym} be an ε-cover of G in Lp(µ). If ‖g − yi‖Lp(µ) < ε, then pointwise

|g − T |2 − |yi − T |2 = |g − yi| · |g + yi − 2T | ≤ 4|g − yi|.

Hence, ‖|g − T |2 − |yi − T |2‖Lp(µ) ≤ 4‖g − yi‖Lp(µ) < 4ε.
¥

Corollary 2.9 Using the notation of the previous theorem, for every 0 < ε, δ < 1,

SL(ε, δ) ≤ 128

ε2

(

log N1

(

ε/4, G
)

+ log(8/δ)
)

The natural question which comes to mind is how to estimate the uniform entropy
numbers of a class. Historically, this was the reason for the introduction of several com-
binatorial parameters. We will show that by using them one can control the uniform
entropy.

2.2 Combinatorial parameters and covering numbers

The first combinatorial parameter was introduced by Vapnik and Chervonenkis [37] to
control the empirical L∞ entropy of Boolean classes of functions.

Definition 2.10 Let F be a class of {0, 1}-valued functions on a space Ω. We say that F
shatters {x1, ..., xn} ⊂ Ω, if for every I ⊂ {1, ..., n} there is a function fI ∈ F for which
fI(xi) = 1 if i ∈ I and fI(xi) = 0 if i 6∈ I. Let

V C(F, Ω) = sup
{

|A|
∣

∣

∣
A ⊂ Ω, A is shattered by F

}

.

V C(F, Ω) is called the VC dimension of F , but when the underlying space is clear we
denote it by V C(F ).

12



The VC dimension has a geometric interpretation. A set sn = {x1, .., xn} is shattered if
the set {

(

f(x1), ..., f(xn)
)

|f ∈ F} is the combinatorial cube {0, 1}n. For every sample σ
denote by PσF the coordinate projection of F ,

PσF = {
(

f(xi)
)

xi∈σ

∣

∣ f ∈ F}.

Hence, the VC dimension is the largest cardinality of σ ⊂ Ω such that PσF is the combi-
natorial cube of dimension |σ|.

Next, we present bounds on the empirical L∞ and L2 uniform entropy estimate using
the VC dimension.

2.2.1 Uniform entropy and the VC dimension

We begin with the L∞ estimates mainly for historical reasons. The following lemma,
known as the Sauer-Shelah Lemma was proved independently at least three times, by
Sauer [29], Shelah [30] and Vapnik and Chervonenkis [37].

Lemma 2.11 Let F be a class of Boolean functions and set d = V C(F ). Then, for every
finite subset σ ⊂ Ω of cardinality n,

|PσF | ≤
(en

d

)d
.

In particular, for every ε > 0, N
(

ε, F, L∞(σ)
)

≤ |PσF | ≤
(

en/d
)d

.

Using the Sauer-Shelah Lemma, one can characterize the uniform Glivenko-Cantelli prop-
erty of a class of Boolean functions in terms of the VC dimension.

Theorem 2.12 Let F be a class of Boolean functions. Then F is a uniform Glivenko-
Cantelli class if and only if it has a finite VC dimension.

Proof: Assume that VC(F ) = ∞ and fix an integer d ≥ 2. There is a set σ ⊂ Ω, |σ| = d
such that PσF = {0, 1}d, and let µ be the uniform measure on σ (assigns a weight of 1/d
to every point). For any A ⊂ σ of cardinality n ≤ d/2, let µA

n be the empirical measure
supported on A. Since there is some fA ∈ F which is 1 on A and vanishes on σ\A then
|EµfA −EµnfA| = |1−n/d| ≥ 1/2. Hence, supf∈F |EµA

n
f −Eµf | ≥ 1/2. Therefore, for any

n ≤ d/2,
Pr

{

sup
f∈F

|Eµnf − Eµf | ≥ 1/2
}

= 1,

and since d can be made arbitrarily large, F is not a uniform GC class.
To prove the converse, recall that for every 0 < ε < 1 and every empirical measure µn

supported on the sample sn, N
(

ε, F, L∞(sn)
)

≤ |PsnF | ≤
(

en/d
)d

. Since the empirical

13



L1 entropy is bounded by the empirical L∞ one, log N1(ε, F, n) ≤ d log(en/d). Thus, for
every ε > 0, log N1(ε, F, n) = o(n), implying that F is a uniform GC class.

¥

In a similar fashion one can characterize the uGC property for Boolean classes using
the Lp entropy numbers.

Corollary 2.13 Let F be a class of Boolean functions. Then, F is a uniform Glivenko-
Cantelli class if and only if for every 1 ≤ p ≤ ∞ and every ε > 0, log Np(ε, F, n) = o(n).

Proof: Fix any 1 ≤ p ≤ ∞. If for every ε > 0 log Np(ε, F, n) = o(n), then by theorem
2.3, F is a uGC class. Conversely, if F is a uGC class then it has a finite VC dimension.
Denote V C(F ) = d, let σ be a sample of cardinality n and set µn to be the empirical
measure supported on σ. For every ε > 0 and 1 ≤ p < ∞

log N
(

ε, F, Lp(µn)
)

≤ log N
(

ε, F, L∞(σ)
)

≤ log |PσF | ≤ d log
(en

d

)

= o(n).

¥

There is some hope that with respect to a “weaker” norm, one will be able to obtain
uniform entropy estimates (which can not be derived from the L∞ bounds presented
here), that would lead to improved complexity bounds. Although the uGC property is
characterized by the entropy with respect to any Lp norm (and in that sense, the L∞ one
is as good as any other Lp norm), from the quantitative point of view, it is much more
desirable to obtain L1 or L2 entropy estimates, which will prove to be considerably smaller
than the L∞ ones.

Therefore, the next order of business is to estimate the uniform entropy of a VC class
with respect to empirical Lp norms. This result is due to Dudley [7] and it is based on
a combination of an extraction principle and the Sauer-Shelah Lemma. The probabilistic
extraction argument simply states that if K ⊂ F is “well separated” in L1(µn) in the sense
that every two points are different on a number of coordinated which is proportional to
n, one can find a much smaller set of coordinates (which depends of the cardinality of K)
on which every two points in K are different on at least one coordinate.

Theorem 2.14 Let F be a class of Boolean functions and assume that V C(F ) = d. Then,
for every 1 ≤ p < ∞,

Np(ε, F ) ≤
(

(2pe2) log
2e2

ε

)d(1

ε

)pd
.

Proof: Since the functions in F are {0, 1}-valued, it is enough to prove the claim for
p = 1. The general case follows since for any f, g ∈ F and any probability measure µ,
‖f − g‖p

Lp(µ) = ‖f − g‖L1(µ).

Let µn = n−1
∑n

i=1 δxi and fix 0 < ε < 1. Set Kε to be any ε-separated subset of F
with respect to the L1(µn) norm and denote its cardinality by D.
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If V = {fi − fj |fi 6= fj ∈ Kε} then every v ∈ V has at least nε coordinates which
belong to {−1, 1}. Indeed, since Kε is ε-separated then for any v ∈ V

ε ≤ ‖v‖L1(µn) = ‖fi − fj‖L1(µn) =
1

n

n
∑

l=1

|fi(xl) − fj(xl)| =
1

n

n
∑

l=1

|v(xl)|,

and for every 1 ≤ l ≤ n, |v(xl)| = |fi(xl) − fj(xl)| ∈ {0, 1}. In addition, it is easy to see
that |V | ≤ D2.

Take (Xi)
t
i=1 to be independent {x1, ..., xn}-valued random variables, such that for

every 1 ≤ i ≤ t and 1 ≤ j ≤ n, Pr(Xi = xj) = 1/n. It follows that for any v ∈ V ,

Pr
{

∀i, v(Xi) = 0
}

=
t

∏

i=1

Pr
{

v(Xi) = 0
}

≤ (1 − ε)t.

Hence,

P
{

∃v ∈ V, ∀i, v(Xi) = 0
}

≤ |V | (1 − ε)t ≤ D2(1 − ε)t.

Therefore,

P
{

∀v ∈ V, ∃i, 1 ≤ i ≤ t |v(Xi)| = 1
}

≥ 1 − D2(1 − ε)t,

and if the latter is greater than 0, there is a set of σ ⊂ {1, ..., n} such that |σ| = t and

|PIKε| =
∣

∣

{(

f(xi)
)

i∈σ

∣

∣f ∈ Kε

}∣

∣ = D.

Select t = 2 log D
ε which suffices to ensure the existence of such a set σ. By the Sauer-Shelah

Lemma,

D = |PσKε| ≤ |PσF | ≤
(e|σ|

d

)d
=

(2e log D

dε

)d
. (2.5)

It is easy to see that if α ≥ 1 and α log−1 α ≤ β then

α ≤ β log(eβ log β).

Applying this to (2.5),

log D ≤ d log
(2e2

ε
log(

2e

ε
)
)

,

as claimed.
¥

This result was strengthened by Haussler in [11] in a very difficult proof, which removed
the superfluous logarithmic factor.

Theorem 2.15 There is an absolute constant C which satisfies that for every Boolean
class F , any 1 ≤ p < ∞ and every ε > 0, Np(ε, F ) ≤ Cd(4e)dε−pd, where VC(F ) = d.
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The significance of theorem 2.14 and theorem 2.15 is that they provide uniform Lp entropy
estimates for VC classes, while the L∞ estimates are not dimension-free. These uniform
entropy bounds play a very important role in our discussion. In particular, they can be
used to obtain uGC complexity estimated for VC classes, using theorem 2.3.

Theorem 2.16 Let F be a class of Boolean functions which has a finite VC dimension
d. Then, for every 0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that n ≥ 128
ε2

(

d log(2e2/ε) + log(8/δ)
)

.

Using the same reasoning and by lemma 2.8 it is possible to prove analogous results when
F is the 2-loss class associated with a VC class and an arbitrary target T which maps Ω
into [0, 1].

2.2.2 Generalized combinatorial parameters

After obtaining covering results (and generalization bounds) in the Boolean case, we at-
tempt to extend our analysis to classes of real-valued functions. We focus on classes which
consist of uniformly bounded functions, though it is possible to obtain some results in a
slightly more general scenario ([34]). Hence, throughout this section F will denote a class
of functions which map Ω into [−1, 1].

The path we take here is very similar to the one we used for VC classes. Firstly, one
has to define a combinatorial parameter which measures the “size” of the class.

Definition 2.17 For every ε > 0, a set σ = {x1, ..., xn} ⊂ Ω is said to be ε-shattered by
F if there is some function s : σ → R, such that for every I ⊂ {1, ..., n} there is some
fI ∈ F for which fI(xi) ≥ s(xi) + ε if i ∈ I, and fI(xi) ≤ s(xi) − ε if i 6∈ I. Let

fatε(F ) = sup
{

|σ|
∣

∣

∣
σ ⊂ Ω, σ is ε−shattered by F

}

.

fI is called the shattering function of the set I and the set
{

s(xi)|xi ∈ σ
}

is called a
witness to the ε-shattering.

The first bounds on the empirical L∞ covering numbers in terms of the fat-shattering
dimension was established in [2], where is was shown that F is a uGC class if and only
if it has a finite fat-shattering dimension for every ε. The proof that if F is a uGC it
has a finite fat-shattering dimension for every ε follows from a similar argument to the
one used in the VC case. For the converse one requires empirical L∞ entropy estimates
combined with theorem 2.6. Dimension-free Lp entropy results for 1 ≤ p < ∞ in terms of
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the fat-shattering dimension were first proved in [19]. Both these results were improved
in [22] and then in [23]. The proofs of all the results mentioned here are very difficult,
and go beyond the scope of these notes. The second part of the following claim is due to
Vershynin (still unpublished).

Theorem 2.18 There is an absolute constant C which satisfies that for every F ⊂
B

(

L∞(Ω)
)

, every sample sn, every 1 ≤ p < ∞ and any 0 < ε < 1,

N
(

ε, F, Lp(µ)
)

≤
(2

ε

)Kpfatcpε(F )
,

and
log N

(

ε, F/sn, L∞(sn)
)

≤ K · fatcε(F ) log1+δ
( n

δε

)

,

where Kp and cp are constants which depend only on p.

The significance of these entropy estimates goes far beyond learning theory. They are
essential in solving highly non-trivial problems in convex geometry and in empirical pro-
cesses [23, 26, 32, 33].

Using the bounds on the uniform entropy numbers and theorem 2.3, one can establish
the following sample complexity estimates.

Theorem 2.19 There is an absolute constant C such that for every class F ⊂ B
(

L∞(Ω)
)

and every 0 < ε, δ < 1,

sup
µ

Pr
{

sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | ≥ ε
}

≤ δ,

provided that

n ≥ C

ε2

(

fatε/8(F ) · log
(2

ε

)

+ log
(8

δ

))

.

Unfortunately, the VC dimension and the fat-shattering dimension have become the
central issue in machine learning literature. One must remember that the combinatorial
parameters were introduced as a way to estimate the uniform entropy numbers. If fact,
they seem to be the wrong parameters to measure the complexity of learning problems.
Ironically, they have a considerable geometric significance as many results indicate.

To sum-up the results we have presented so far, it is possible to obtain uGC sample
complexity estimates via symmetrization, a covering argument and Hoeffding’s inequality.
The combinatorial parameters are used only to estimate the covering numbers one needs.
One point in which a slight improvement can be made, is by replacing Hoeffding’s inequal-
ity with inequalities of a similar nature, (e.g. Bernstein’s inequality or Bennett’s inequality
[34]) in which additional data on the moments of the random variables is used to obtain
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tighter deviation bounds. However, this does not resolve the main problem in this line
of argumentation - that passing to an ε-cover and applying the union bound is horribly

loose. To solve this problem one needs a stronger deviation inequality for a supremum
over a family of functions and not just a single one. This “functional” inequality is the
subject of the next section and we show it yields tighter complexity bounds.

2.3 Talagrand’s inequality

Let us begin by recalling Bernstein’s inequality [18, 34].

Theorem 2.20 Let µ be a probability measure on Ω and let X1, ..., Xn be independent
random variables distributed according to µ. Given a function f : Ω → R, set Z =
∑n

i=1 f(Xi), let b = ‖f‖∞ and put v = E(
∑n

i=1 f2(Xi)). Then,

Pr
{

|Z − EµZ| ≥ x
}

≤ 2e
− x2

2(v+bx/3) .

This deviation result is tighter than Hoeffding’s inequality because one has additional data
on the variance of the random variable Z, which leads to potentially sharper bounds. It has
been a long standing open question whether a similar result can be obtained when replacing
Z by supf∈F |∑n

i=1

(

f(Xi) − Eµf
)

|. This “functional” inequality was first established by
Talagrand [33], and later was modified and partially improved by Ledoux [15], Massart
[18], Rio [28] and Bousquet [3].

Theorem 2.21 [18] Let µ be a probability measure on Ω and let X1, ..., Xn be indepen-
dent random variables distributed according to µ. Given a class of functions F , set Z =
supf∈F |∑n

i=1

(

f(Xi)−Eµf
)

|, let b = supf∈F ‖f‖∞ and put σ2 = supf∈F

∑n
i=1 var

(

f(Xi)
)

.
Then, there is an absolute constant C ≥ 1 such that for every x > 0 there is a set of prob-
ability larger than 1 − e−x on which

Z ≤ 2EZ + C(σ
√

x + bx). (2.6)

Observe that if F consists of functions which are bounded by 1 then b = 1 and σ ≤ √
n.

If we select x = nε2/4C2 then with probability larger than 1 − e−
nε2

4C2 ,

sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | ≤ 2E sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf | + 3ε

4
.

This equation holds with probability larger than 1 − δ provided that n ≥ (4C2/ε2) log 1
δ .

It follows that the dominating term in the complexity estimate is the expectation of
the random variable Z. Again, the notion of symmetrization will come to our rescue in
the attempt to estimate EZ. Let us define the (global) Rademacher averages associated
with a class of functions.
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Definition 2.22 Let µ be a probability measure on Ω and set F to be a class of uniformly
bounded functions. For every integer n, let

Rn(F ) = EµEε
1√
n

sup
f∈F

|
n

∑

i=1

εif(Xi)|,

where (Xi)
n
i=1 are independent random variables distributed according to µ and (εi)

n
i=1 are

independent Rademacher random variables.

The reason for the seemingly strange normalization (of 1/
√

n instead of 1/n) will become
evident in the next section. Now, we can prove an “averaged” version of the symmetriza-
tion result:

Theorem 2.23 Let µ be a probability measure and set F to be a class of functions on Ω.
Denote

Z = sup
f∈F

| 1
n

n
∑

i=1

f(Xi) − Eµf |,

where (Xi)
n
i=1 are independent random variables distributed according to µ. Then,

EµZ ≤ 2
Rn(F )√

n
≤ 4EµZ + 2

∣

∣sup
f∈F

Eµf
∣

∣ · Eε|
1

n

n
∑

i=1

εi|.

Proof: Let Y1, ..., Yn be an independent copy of X1, ..., Xn. Then,

EX sup
f∈F

∣

∣

1

n

n
∑

i=1

f(Xi)−EY f
∣

∣ = EX sup
f∈F

∣

∣

1

n

n
∑

i=1

f(Xi)−EY f −EY

( 1

n

n
∑

i=1

f(Yi)−EY f
)

| = (1)

Conditioning (1) with respect to X1, ..., Xn and then applying Jensen’s inequality with
respect to EY and Fubini’s Theorem, it follows that

(1) ≤ 1

n
EXEY sup

f∈F

∣

∣

n
∑

i=1

f(Xi) −
n

∑

i=1

f(Yi)
∣

∣ =
1

n
EXEY sup

f∈F

∣

∣

n
∑

i=1

εi

(

f(Xi) − f(Yi)
)∣

∣,

where the latter inequality holds for every (εi)
n
i=1 ∈ {−1, 1}n. Therefore, it also holds

when taking the expectation with respect to the Rademacher random variables (εi)
n
i=1.

By the triangle inequality,

1

n
EXEY Eε sup

f∈F

∣

∣

n
∑

i=1

εi

(

f(Xi) − f(Yi)
)∣

∣ ≤ 2

n
EXEε sup

f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ =
2Rn(F )√

n
.
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To prove the upper bound, the starting point is the triangle inequality which yields that

1

n
EXEε sup

f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤ 1

n
EXEε sup

f∈F

∣

∣

n
∑

i=1

εi

(

f(Xi) − Eµf
)
∣

∣ +
∣

∣sup
f∈F

Eµf
∣

∣ · Eε

∣

∣

1

n

n
∑

i=1

εi

∣

∣.

To estimate the first term, let (Zi) be the stochastic process defined by Zi(f) = f(Xi)−Eµf
and let Wi be an independent copy of (Zi). For every f ∈ F , EWi(f) = 0, thus,

EXEε sup
f∈F

∣

∣

n
∑

i=1

εi

(

f(Xi) − Eµf
)∣

∣ = EZEε sup
f∈F

∣

∣

n
∑

i=1

εiZi(f)
∣

∣

= EεEZ sup
f∈F

∣

∣

n
∑

i=1

εi

(

Zi(f) − EW Wi(f)
)
∣

∣.

For every realization of the Rademacher random variables (εi)
n
i=1 and by Jensen’s inequal-

ity conditioned with respect to the Zi,

EZ sup
f∈F

∣

∣

n
∑

i=1

εi

(

Zi(f) − EW Wi(f)
)
∣

∣ ≤ EZEW sup
f∈F

∣

∣

n
∑

i=1

εi

(

Zi(f) − Wi(f)
)
∣

∣,

which is invariant for under any selection of signs εi. Therefore,

EεEZ sup
f∈F

∣

∣

n
∑

i=1

εi

(

Zi(f) − EW Wi(f)
)
∣

∣ ≤ EZEW sup
f∈F

∣

∣

n
∑

i=1

(

Zi(f) − Wi(f)
)
∣

∣

≤ 2EZ sup
f∈F

∣

∣

n
∑

i=1

Zi(f)
∣

∣,

as claimed.
¥

This result implies that the expectation of the deviation of the empirical means from
the actual ones is controlled by Rn(F )/

√
n. Therefore, we can formulate the following

Corollary 2.24 Let µ be a probability measure on Ω, set F ⊂ B
(

L∞(Ω)
)

and put σ2 =
supf∈F

∑n
i=1 var

(

f(Xi)
)

, where (Xi) are independent random variables distributed accord-
ing to µ. Then, there is an absolute constant C ≥ 1 such that for every x > 0, there is a
set of probability larger than 1 − e−x on which

sup
f∈F

∣

∣

1

n

n
∑

i=1

f(Xi) − Eµf
∣

∣ ≤ 4Rn(F )√
n

+
C

n
(σ
√

x + bx). (2.7)

In particular, there is an absolute constant C such that if

n ≥ C

ε2
max

{

R2
n(F ), log

1

δ

}

,

then Pr
{

supf∈F | 1n
∑n

i=1 f(Xi) − Eµf | ≥ ε
}

≤ δ.
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After establishing that the random averages control the GC sample complexity, the
natural question is how to estimate them. In particular, it is interesting to try and
estimate them using the covering numbers and the combinatorial parameters which where
investigated in previous sections.

2.4 Random averages, combinatorial parameters and covering numbers

In this section we present several ways in which one can bound the Rademacher averages
associated with a class F . Firstly we present structural results, which enable one to
compute the averages of complicated classes using those of simple ones. Next, we give an
example of a case in which the averages can be computed directly. Finally, we show how
estimates on the empirical entropy of a class can be used to bound the random averages.

2.4.1 Structural results

The following theorem summarizes some of the properties of the Rademacher averages
we shall use. The difficulty of the proofs of the different observations varies considerably.
Some of the claims are straightforward while others are very deep facts. Most of the results
are true when replacing the Rademacher random variables with independent standard
gaussian ones (with very similar proofs), but we shall not present the analogous result in
the gaussian case.

Theorem 2.25 Let F and G be classes of real-valued functions on (Ω, µ). Then, for every
integer n,

1. If F ⊂ G, Rn(F ) ≤ Rn(G).

2. Rn(F ) = Rn(conv F ) = Rn(absconvF ), where conv(F ) is the convex hull of F and
absconv(F ) = conv(F ∪ −F ) is the symmetric convex hull of F .

3. For every c ∈ R, Rn(cF ) = |c|Rn(F ).

4. If φ : R → R is a Lipschitz function with a constant Lφ and satisfies that φ(0) = 0,
then Rn(φ ◦ F ) ≤ 2LφRn(F ), where φ ◦ F = {φ

(

f(·)
)

|f ∈ F}.

5. For every 1 ≤ p < ∞, there is a constant cp which depend only on p, such that for
every {x1, ..., xn} ∈ Ω,

cp

(

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣

p) 1
p ≤ Eε sup

f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≤
(

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣

p) 1
p .

6. For any function h ∈ L2(µ), Rn(F +h) ≤ Rn(F )+(Eµh2)
1
2 , where F +h = {f+h|f ∈

F}.
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7. For every 1 < p < ∞ there is an absolute constant cp for which

cp

(

E sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

p) 1
p ≤ E sup

f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤
(

E sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

p) 1
p ,

provided that supf∈F Eµf2 ≥ 1/n.

Proof: Parts 1 and 3 are immediate from the definitions. To see part 2, observe that
Rn(F ) ≤ Rn

(

conv(F )
)

≤ Rn

(

absconv(F )
)

. To prove the reverse inequality, note that
H = absconv(F ) is symmetric and convex. Hence, for every sample x1, ..., xn and any
realization of (εi)

n
i=1, suph∈H |∑n

i=1 εih(xi)| = suph∈H
∑n

i=1 εih(xi). Since every h ∈ H is
given by

∑m
i=1 λjfj where

∑m
j=1 |λj | = 1, then

n
∑

i=1

εih(xi) =
m

∑

j=1

λj

n
∑

i=1

εifj(xi) ≤ sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣.

Hence, the supremum with respect to F and to H coincide.
Part 4 is called the contraction inequality, and is due to Ledoux and Talagrand [16,

Corollary 3.17].
Part 5 is the Kahane-Khintchine inequality [25]. As for part 6, note that for every

sample x1, ..., xn,

Eε sup
f∈F

∣

∣

n
∑

i=1

εi

(

f(xi) + h(xi)
)
∣

∣ ≤ Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ + Eε

∣

∣

n
∑

i=1

εih(xi)
∣

∣ = (∗).

By Khintchine’s inequality for the second term and the fact that (εi)
n
i=1 are independent,

(∗) ≤ Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ +
(

n
∑

i=1

h2(xi)
)

1
2 .

Normalizing by 1/
√

n, taking the expectation with respect to µ and by Jensen’s inequality,

Rn(F + h) ≤ Rn(F ) + (Eµh2)
1
2 .

Finally, part 7 follows from a concentration argument which will be presented in ap-
pendix A.

¥

Remark 2.26 A significant fact we do not use but feel can not go unmentioned is that
the gaussian averages and the Rademacher averages are closely connected. Indeed, one
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can show (see, e.g. [25]) that there are absolute constants c and C which satisfy that for
every class F , every integer n and any realization {x1, ..., xn}

cEε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≤ Eε sup
f∈F

∣

∣

n
∑

i=1

gif(xi)
∣

∣ ≤ CEε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ · log n.

When one tries to estimate the random averages, the first and most natural approach
is to try and compute them directly. There are very few cases in which such an attempt
would be successful, and the one we chose to present is the case of kernel classes.

2.4.2 Example: Kernel Classes

Assume that Ω is a compact set and let K : Ω × Ω → R to be a positive definite,
continuous function. Let µ be a probability measure on Ω, and consider the integral
operator TK : L2(µ) → L2(µ) given by TKf =

∫

K(x, y)f(y)dµ(y). By Mercer’s Theorem,
TK has a diagonal representation, that is, there exists a complete, orthonormal basis
of L2(µ), which is denoted by

(

φn(x)
)∞
n=1

, and a non-increased sequence of eigenvalues
(λn)∞i=1 which satisfy that for every sequence (an) ∈ ℓ2, TK(

∑∞
n=1 anφn) =

∑∞
n=1 anλnφn.

Under certain mild assumptions on the measure µ, Mercer’s Theorem implies that for
every x, y ∈ Ω,

K(x, y) =
∞

∑

n=1

λnφn(x)φn(y).

Let FK be the class consisting of all the functions of the form
∑m

i=1 aiK(xi, ·) for every m ∈
N∪{∞}, every (xi)

m
i=1 ⊂ Ω and every sequence (ai)

m
i=1 for which

∑m
i,j=1 aiajK(xi, xj) ≤ 1.

One can show that FK is the unit ball of a Hilbert space associated with the integral
operator, called the reproducing kernel Hilbert space, and we denote it by H. In fact, the
unit ball of H is simply

√
TK

[

B
(

L2(µ)
)]

, which is the image of the L2(µ) unit ball by the
operator which maps φi to

√
λiφi. An important property of the inner product in H is

that for every f ∈ H,
〈

f, K(x, ·)
〉

H = f(x).
An alternative way to define the reproducing kernel Hilbert space is via the feature

map. Let Φ : Ω → ℓ2 be defined by Φ(x) =
(√

λiφi(x)
)∞
i=1

. Then,

FK =
{

f(·) =
〈

β,Φ(·)
〉

H
∣

∣‖β‖2 ≤ 1
}

.

Observe that for every x, y ∈ Ω,
〈

Φ(x), Φ(y)
〉

H = K(x, y).
Let us compute the Rademacher averages of FK with respect to the probability measure

µ.
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Theorem 2.27 Assume that the largest eigenvalue of TK satisfies that λ1 ≥ 1/n. Then,
for every such integer n,

c
(

∞
∑

i=1

λi

)
1
2 ≤ Rn(FK) ≤ C

(

∞
∑

i=1

λi

)
1
2 ,

where (λi)
∞
i=1 are the eigenvalues of the integral operator TK arranged in a non increasing

order, and C, c are absolute constants.

Remark 2.28 As the proof we present reveals, the upper bound on Rn(FK) is true even
without the assumption on the largest eigenvalue of TK .

Before proving the claim, we require the following lemma:

Lemma 2.29 Let FK be the unit ball of the reproducing kernel Hilbert space H associated
with the kernel K. For every sample sn = {x1, ..., xn} let

(

θi(sn)
)n

i=1
be the singular values

of the operator T : R
n → H defined by Tei = K(xi, ·). Then,

Eε
1√
n

sup
f∈FK

∣

∣

n
∑

i=1

εif(xi)
∣

∣

2
=

n
∑

i=1

θ2
i .

Proof: By the reproducing kernel property,

Eε sup
f∈FK

∣

∣

n
∑

i=1

εif(xi)
∣

∣

2
= Eε sup

f∈FK

∣

∣

n
∑

i=1

〈

εiK(xi, ·), f
〉

H
∣

∣

2
= Eε sup

f∈FK

∣

∣

〈

n
∑

i=1

εiTei, f
〉

H
∣

∣

2
.

Since FK is the unit ball in H then Eε supf∈FK
|
〈
∑n

i=1 εiTei, f
〉

H|
2 = Eε‖

∑n
i=1 εiTei‖2

H.
Thus,

Eε sup
f∈FK

∣

∣

n
∑

i=1

εif(xi)
∣

∣

2
= Eε

∥

∥

n
∑

i=1

εiTei

∥

∥

2

H =
n

∑

i=1

‖Tei‖2
H =

n
∑

i=1

θ2
i (sn),

proving our claim.
¥

Proof of Theorem 2.27: Firstly, it is easy to see that there exists some f ∈ FK for which
Eµf2 ≥ 1/n. Indeed, f =

√
TKφ1 =

√
λ1φ1 ∈ H satisfies that Eµf2 = λ1 ≥ 1/n. Thus,

using part 7 of theorem 2.25, Rn(F ) is equivalent to n−1/2
(

E supf∈FK

∣

∣

∑n
i=1 εif(Xi)

∣

∣

2)1/2
.

Applying the previous lemma and using its notation,

Eµ

(

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

2∣
∣X1, ..., Xn

)

= Eµ

n
∑

i=1

θ2
i (sn).
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By the definition of the operator T ,
(

θ2
i (sn)

)n

i=1
are the eigenvalues of T ∗T , and it is easy

to see that T ∗T =
(

K(xi, xj)
)n

i,j=1
. Therefore,

n
∑

i=1

θ2
i (sn) = tr(T ∗T ) =

n
∑

i=1

K(xi, xi).

Hence,

Eµ

(

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

2∣
∣X1, ..., Xn

)

= Eµ

(

n
∑

i=1

K(Xi, Xi)
)

.

To conclude the proof, one has to take the expectation with respect to µ and recall that

EµK(Xi, Xi) = Eµ

∞
∑

j=1

λjφ
2
j (Xi) =

∞
∑

j=1

λj .

¥

Corollary 2.30 Let (Ω, µ) be a probability space, set FK to be the kernel class and put
tr(K) =

∑∞
i=1 λi. Let T ∈ B

(

L∞(Ω)
)

and denote by L the loss class associated with FK

and T . Then, there is an absolute constant C such that

Pr
{

sup
f∈L

∣

∣

1

n

n
∑

i=1

f(Xi) − Eµf
∣

∣ ≥ ε
}

≤ δ,

provided that n ≥ C
ε2 max{1 + tr(K), log 1

δ}.

Proof: The proof follows immediately from corollary 2.24 and the estimates on the
Rademacher averages of FK . Indeed, by theorem 2.25,

Rn(L) = Rn

(

(FK − T )2 − (PFK
T − T )2

)

≤ 4Rn(FK − T ) + ‖PFK
T − T‖2

∞
≤ 4

(

Rn(FK) + C‖T‖∞ + 1
)

where C is an absolute constant.
¥

2.4.3 Entropy and averages

Unfortunately, in the vast majority of cases, it is next to impossible to compute the random
averages directly. Thus, one has to resort to alternative routes to estimate the random
averages, especially from above - since this is the direction one needs for sample complexity
bounds. We show that it is possible to bound the Rademacher and gaussian averages
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using the empirical L2 entropy of the class. This follows from results due to Dudley [6]
and Sudakov [31]. Originally, the bounds were established from gaussian processes, and
later they were extended to the sub-gaussian setup ([8, 34]), which includes Rademacher
processes.

Theorem 2.31 There are absolute constants C and c for which the following holds. For
any integer n, any sample {x1, ..., xn} and every class F ,

c sup
ε>0

ε log
1
2 N

(

ε, F, L2(µn)
)

≤ 1√
n

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≤ C

∫ ∞

0
log

1
2 N

(

ε, F, L2(µn)
)

dε,

where µn is the empirical measure supported on the sample.

This result implies that if the class is relatively small, then its Rademacher averages are
uniformly bounded.

Corollary 2.32 There is an absolute constant C such that for every Boolean class F with
VC(F ) = d and every integer n, Rn ≤ C

√
d.

Proof: Since F is a Boolean class, all of its members are bounded by 1. Thus, for every
ε ≥ 1 only a single ball of radius ε is needed to cover F . Using the uniform L2 entropy
bound in theorem 2.15 it follows that for every integer n and every empirical measure µn,

log N
(

ε, F, L2(µn)
)

≤ Cd log
(

1/ε
)

,

and the claim is evident from theorem 2.31.
¥

In a similar way one can show that if F ⊂ B
(

L∞(Ω)
)

has a polynomial fat-shattering
dimension with exponent strictly less than 2, it has uniformly bounded Rademacher av-
erages. This is true because one can obtain a uniform L2-entropy bound for which the
entropy integral converges. It is less obvious what can be done if the entropy integral
diverges, in which case theorem 2.31 does not apply.

To handle this case, we present a stronger version of Dudley’s entropy bound, which
will be formulated for gaussian random variables.

Lemma 2.33 [19] Let µn be an empirical measure supported on {x1, ..., xn} ⊂ Ω, put
F ⊂ B

(

L∞(Ω)
)

and set (εk)
∞
k=0 to be a monotone sequence decreasing to 0 such that

ε0 = 1. Then, there is an absolute constant C such that for every integer N ,

1√
n

E sup
f∈F

∣

∣

n
∑

i=1

gif(xi)
∣

∣ ≤ C
N

∑

k=1

εk−1 log
1
2 N

(

εk, F, L2(µn)
)

+ 2εNn
1
2 ,
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where (gi)
n
i=1 are standard gaussian random variables. In particular,

1√
n

E sup
f∈F

∣

∣

n
∑

i=1

gif(xi)
∣

∣ ≤ C
N

∑

k=1

εk−1fat
1/2
εk/8(F ) log

1
2
( 2

εk

)

+ 2εNn
1
2 . (2.8)

The latter part of lemma 2.33 follows from its first part and theorem 2.18. Before pre-
senting the proof of lemma 2.33, we require the following lemma, which is based on the
classical inequality due to Slepian [27, 8].

Lemma 2.34 Let (Zi)
N
i=1 be gaussian random variables (i.e., Zi =

∑m
j=1 ajgj where (gi)

are independent standard gaussian random variables). Then, there is some absolute con-

stant C such that E supi Zi ≤ C supi,j ‖Zi − Zj‖2 log
1
2 N .

Proof of lemma 2.33: We may assume that F is symmetric and contains 0. The
proof in the non-symmetric case follows the same path. Let µn be an empirical measure
supported on {x1, ..., xn}. For every f ∈ F , let Zf = n−1/2

∑n
i=1 gif(xi), where (gi)

n
i=1

are independent standard gaussian random variables on the probability space (Y, P ). Set
ZF = {Zf |f ∈ F} and define V : L2(µn) → L2(Y, P ) by V (f) = Zf . Since V is an
isometry for which V (F ) = ZF then

N
(

ε, F, L2(µn)
)

= N
(

ε,ZF , L2(P )
)

.

Let (εk)
∞
k=0 be a monotone sequence decreasing to 0 such that ε0 = 1 and set Hk ⊂ ZF to

be a 2εk cover of ZF . Thus, for every k ∈ Z and every Zf ∈ ZF there is some Zk
f ∈ Hk such

that ‖Zf −Zk
f ‖2 ≤ 2εk, and we select Z0

f = 0. Writing Zf =
∑N

k=1(Z
k
f −Zk−1

f )+Zf −ZN
f

it follows that

E sup
f∈F

Zf ≤
N

∑

k=1

E sup
f∈F

(Zk
f − Zk−1

f ) + E sup
f∈F

(Zf − ZN
f ).

By the definition of Zk
f and lemma 2.34, there is an absolute constant C for which

E sup
f∈F

(Zk
f − Zk−1

f ) ≤E sup
{

Zi − Zj |Zi ∈ Hk, Zj ∈ Hk−1, ‖Zi − Zj‖2 ≤ 4εk−1

}

≤C sup
i,j

‖Zi − Zj‖2 log
1
2 |Hk| |Hk−1|

≤Cεk−1 log
1
2 N

(

εk, F, L2(µn)
)

.

Since ZN
f ∈ ZF , there is some f ′ ∈ F such that ZN

f = Zf ′ . Hence,

(

n
∑

i=1

(f(xi) − f ′(xi)√
n

)2
)

1
2

=
∥

∥Zf − Zf ′

∥

∥

2
≤ 2εN ,
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which implies that for every f ∈ F and every y ∈ Y ,

∣

∣Zf (y) − ZN
f (y)

∣

∣ ≤
n

∑

i=1

∣

∣

∣

∣

f(xi) − f ′(xi)√
n

gi(y)

∣

∣

∣

∣

≤ 2εN

(

n
∑

i=1

g2
i (y)

)
1
2

.

Therefore, E supf∈F Zf − ZN
f ≤ εNE

(
∑n

i=1 g2
i

)
1
2 = 2εN

√
n, and the claim follows.

¥

Using this result it is possible to estimate the Rademacher averages of classes with a
polynomial fat-shattering dimension.

Theorem 2.35 Let F ⊂ B
(

L∞(Ω)
)

and assume that there is some γ > 1 such that for
any ε > 0, fatε(F ) ≤ γε−p. Then, there are absolute constants Cp, which depends only on
p, such that

Rn(F ) ≤ Cpγ
1
2











1 if 0 < p < 2

log3/2 n if p = 2

n
1
2
− 1

p if p > 2.

Proof: Let µn be an empirical measure on Ω. If p < 2 then by theorem 2.18,

∫ ∞

0
log

1
2 N

(

ε, F, L2(µn)
)

dε ≤ Cpγ
1
2

and the bound follows from the upper bound in theorem 2.31.
Assume that p ≥ 2 and, using the notation of lemma 2.33, select εk = 2−k and

N = p−1 log n. By (2.8),

Rn(F ) ≤ Cpγ
1
2

N
∑

i=1

ε
1− p

2
k log

1
2

2

εk
+ 2εNn

1
2

≤ Cpγ
1
2

N
∑

i=1

√
k2k( p

2
−1) + 2n

1
2
− 1

p .

If p = 2, the geometric sum is bounded by

Cpγ
1
2 N2 ≤ Cpγ

1
2 log3/2 n,

whereas is p > 2 it is bounded by Cpγ
1
2 n

1
2
− 1

p .
¥

These bounds on Rn are “worst case” bounds, since they hold for any empirical mea-
sure. In fact, the underlying measure µ plays no part in the bounds. Using a geometric
interpretation of the fat-shattering dimension, it is possible to show that the “worst case”
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bounds we established are tight, in the sense that if fatε(F ) = Ω(ε−p) for p > 2, then for
every integer n there will be a sample {x1, ..., xn} for which

1√
n

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≥ cn
1
2
− 1

p ,

where c is an absolute constant. Since this is not the main issue we wish to address in
these notes, we refer the interested reader to [19].

The complexity bounds that one obtains using corollary 2.24 and theorem 2.35 are
a significant improvement to the ones obtained via theorem 2.19. Indeed, the sample
complexity estimate obtained there was that if fatε(F ) = O(ε−p) then

SF (ε, δ) = O
( 1

ε2+p
· (log2 2

ε
+ log

2

δ
)
)

.

Using Talagrand’s inequality, we obtain a sharper bound:

Theorem 2.36 Let F ⊂ B
(

L∞(Ω)
)

and assume that fatε(F ) ≤ γε−p. Then, there is a
constant Cp, which depends only on p, such that

SF (ε, δ) ≤ Cp max
{ 1

εp
,

1

ε2
log

1

δ

}

if p 6= 2. If p = 2 there is an additional logarithmic factor in 1
ε .

We were able to obtain this improved result is because we removed the major looseness-the
union bound in the “classical” argument. But this is not the end of the story.... There
is still one additional source of sub-optimality; as we said in the introduction, using the
uGC property only yields upper bounds to the quantity we wish to explore - the learning
sample complexity. In the next section, we use very similar methods to the ones used here
and obtain even tighter bounds.

3 Learning sample complexity

After bounding the uGC sample complexity using corollary 2.24 and establishing bounds
on the Rademacher averages, we now turn to the alternative approach which will prove
to yield tighter learning sample complexity bounds.

Recall that the question we wish to answer is how to ensure that an “almost minimizer”
of the empirical loss will be close to the minimum of the actual loss.

Thus, our aim is to bound

Pr
{

∃f ∈ L,
1

n

n
∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
}

. (3.1)

To that end, we need to impose an important structural assumption on the class at hand.
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Assumption 3.1 Assume that there is an absolute constant B such that for every f ∈ F ,
Eµf2 ≤ BEµf .

Though this assumption seems restrictive, it turns out that it holds in all the cases we are
interested in.

Lemma 3.1 Let F ⊂ B
(

L∞(Ω)
)

which satisfies assumption 3.1. Fix ε > 0 and define

H =
{ εf

Eµf

∣

∣f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε
}

, (3.2)

and set
Fε =

{

f ∈ F | Eµf2 ≤ ε
}

, Hε =
{

h ∈ H| Eµh2 ≤ Bε
}

.

Then,

Pr
{

∃f ∈ F,
1

n

n
∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
}

≤

Pr
{

sup
f∈Fε

|Eµf − Eµnf | ≥ ε

2

}

+ Pr
{

sup
h∈Hε

|Eµh − Eµnh| ≥ ε

2

}

In particular, for every 0 < δ < 1,

CL(
ε

2
, δ) ≤ max

{

SFε

(ε

2
,
δ

2

)

, SHε

(ε

2
,
δ

2

)}

.

Proof: Denote by µn the random empirical measure n−1
∑n

i=1 δXi . Then,

Pr
{

∃f ∈ F, Eµnf ≤ ε/2, Eµf ≥ ε
}

≤
Pr

{

∃f ∈ F, Eµf ≥ ε, Eµf2 < ε, Eµnf ≤ ε/2
}

+

Pr
{

∃f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε, Eµnf ≤ ε/2
}

= (1) + (2).

If Eµf ≥ ε then Eµf ≥ 1
2(Eµf + ε) ≥ 1

2Eµf + Eµnf . Therefore, |Eµf − Eµnf | ≥ 1
2Eµf ≥

ε/2, hence,

(1) + (2) ≤ Pr
{

∃f ∈ F, Eµf2 < ε, |Eµf − Eµnf | ≥ ε

2

}

+ Pr
{

∃f ∈ F, Eµf ≥ ε, Eµf2 ≥ ε, |Eµf − Eµnf | ≥ 1

2
Eµf

}

= (3) + (4).

The first term is bounded by Pr
{

supf∈Fε
|Eµnf −Eµf | ≥ ε/2

}

. As for the second, assume
that |Eµnf − Eµf | ≥ (Eµf)/2 and that Eµf ≥ ε. Then, h = εf/Eµf satisfies that
|Eµnh − Eµh| ≥ ε/2 and since Eµf2 ≤ B(Eµf) then

Eµh2 ≤ B
ε2

Eµf
≤ Bε.
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Therefore, (4) ≤ Pr
{

∃h ∈ Hε, |Eµnh − Eµh| ≥ ε/2
}

.
¥

To simplify this estimate, we require the following definition:

Definition 3.2 Let X be a normed space and let A ⊂ X. We say that A is star-shaped
with center x if for every a ∈ A the interval [a, x] = {tx + (1− t)a|0 ≤ t ≤ 1} ⊂ A. Given
A and x, denote by star(A, x) the union of all the intervals [a, x], where a ∈ A.

It is easy to see that each element h ∈ H is given by αff , where 0 ≤ αf ≤ 1. Thus,
H ⊂ star(F, 0) and obviously F ⊂ star(F, 0). Therefore,

Pr
{

∃f ∈ F,
1

n

n
∑

i=1

f(Xi) < ε/2, Eµf ≥ ε
}

≤ (3.3)

2Pr
{

∃h ∈ star(F, 0), Eµh2 ≤ Bε, |Eµh − Eµnh| ≥ ε

2

}

.

This implies that the question of obtaining sample complexity estimates may be reduced
to a GC deviation problem for a class which is the intersection of star(F, 0) with an L2(µ)
ball, centered at 0 with radius proportional to the square-root of the required deviation.
Combining this with corollary 2.24 yields the following fundamental result:

Theorem 3.3 Let F ⊂ B
(

L∞(Ω)
)

and assume that assumption 3.1 holds. Set H =
star(F, 0) and for every ε > 0 let Hε = H ∩ {h : Eµh2 ≤ ε}. Then, for every 0 < ε, δ < 1,

Pr
{

∃f ∈ F,
1

n

n
∑

i=1

f(Xi) ≤ ε/2, Eµf ≥ ε
}

≤ δ

Provided that

n ≥ C max
{R2

n(Hε)

ε2
,
B log 2

δ

ε

}

.

The proof of this theorem follows immediately from theorem 2.21.

Theorem 3.3 shows that the important quantity which governs the learning sample
complexity is the “localized” Rademacher average Rn(Hε), assuming, of course, that as-
sumption 3.1 holds.

Before presenting bounds on the localized Rademacher averages of some classes, let us
comment on assumption 3.1. Assumption 3.1 clearly holds for 2-loss classes if the target
function is a member of the original class G, since in that case, PGT = T , and every
loss function is nonnegative and bounded by 4. The situation when T 6∈ G is much more
difficult. One can show that if G ⊂ B

(

L∞(Ω)
)

is convex and T ∈ B
(

L∞(Ω)
)

, then for
every probability measure µ and every 2-loss function f , Eµf2 ≤ 16Eµf [17, 20]. In fact, it
is possible to obtain results of a similar flavor for q-loss classes, where the “usual” exponent
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2 is replaced with some q ≥ 2 (see [20]). Even the convexity assumption can be relaxed in
the following sense; if G ⊂ L2(µ) is not convex, then there will be functions which have
more than a single best approximation in G. The set of functions which do not have a
unique best approximation in G is denoted by nup(G, µ) and it clearly depends on the
probability measure µ, because a change of measure generates a different way of measuring
distances. One can show ([24]) that given a measure µ and a target T 6∈ nup(G, µ), the
2-loss class L satisfies that Eµf2 ≤ BEµf for every f ∈ L. The constant B will depend
on “how far” T is from nup(G, µ). Thus, the complexity bounds one obtains in this case
are both target and measure dependent.

For the sake of simplicity, in all the cases we shall be interested in we impose the
assumption that either T ∈ G, or that G is convex. In both these cases, a selection of
B = 16 suffices to ensure that assumption 3.1 holds.

3.1 Localized random averages

In an analogous way to what we did in section 2.4, we present two paths one can take
when computing the random averages. For the direct approach we present the example of
kernel classes. The second approach, which may be used in the vast majority of examples
is to apply uniform entropy estimates.

3.1.1 Localized averages of kernel classes

Here, we present a direct tight bound on the localized Rademacher averages of FK in terms
of the eigenvalues of the integral operator TK . It is important to note that the underlying
measure in the definition of Rn and of TK has to be the same, which emphasizes the
difficulty from the learning theoretic viewpoint, since one does not have a priori knowledge
on the underlying measure.

Theorem 3.4 [21] There are absolute constants c and C for which the following holds.
Let K be a kernel and set µ to be a probability measure on Ω. If (λi)

∞
i=1 are the eigenvalues

of the integral operator TK (with respect to µ) and if λ1 ≥ 1/n, then for every ε ≥ 1/n,

c
(

∞
∑

j=1

min{λi, ε}
)

1
2 ≤ 1√

n
EµEε sup

f∈Fε

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤ C
(

∞
∑

j=1

min{λi, ε}
)

1
2 ,

where Fε = {f ∈ FK , Eµf2 ≤ ε}

Remark 3.5 The upper bound in theorem 3.4 holds even without the assumptions on λ1

and ε, and this is the direction we require for sample complexity bounds. The assumption
is imposed only to enable one to obtain matching upper and lower bounds.
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Proof: Let Rε = supf∈Fε

∣

∣

∑n
i=1 εif(Xi)

∣

∣. Just as in the proof of theorem 2.27, there
is some f ∈ FK for which Eµf2 ≥ 1/n. Hence, there will be some 0 < t ≤ 1 for which
f1 = tf ∈ Fε and Eµf2

1 ≥ 1/n. Thus, supf∈Fε
Eµf2 ≥ 1/n and by theorem 2.25, part 7,

ERε is equivalent to (ER2
ε)

1/2.
We can assume that ℓ2 is the reproducing kernel Hilbert space and recall that FK =

{f(·) =
〈

β,Φ(·)
〉

| ‖β‖2 ≤ 1}, where Φ is the kernel feature map. By Setting B(ε) =
{f |Eµf2 ≤ ε} it follows that f ∈ FK is also in B(ε) if and only if its representing vector
β satisfies that

∑∞
i=1 β2

i λi ≤ ε. Hence, in ℓ2,

Fε = FK ∩ B(ε) = {β|
∞

∑

i=1

β2
i ≤ 1,

∞
∑

i=1

β2
i λi ≤ ε}.

Let E ⊂ ℓ2 be defined as {β|∑∞
i=1 µiβ

2
i ≤ 1}, where µi = (min{1, ε/λi})−1 and note that

E ⊂ FK ∩ B(ε) ⊂
√

2E .

Therefore, one can replace Fε by E in the computation of Rn(Fε), losing a factor of
√

2 at
the most. Finally,

E sup
β∈E

|
〈

β,
n

∑

j=1

εjΦ(Xj)
〉

|2 = E sup
β∈E

|
〈

∞
∑

i=1

√
µiβiei,

∞
∑

i=1

(λi

µi

)
1
2
(

n
∑

j=1

εjφi(Xj)
)

ei

〉

|2

= E
(

∞
∑

i=1

λi

µi

∞
∑

j=1

εjφi(Xj)
)2

= Eµ

∑

i,j

λi

µi
φ2

i (Xj) = n
∞

∑

i=1

λi

µi
,

which proves our claim.
¥

As an example, consider the case where the eigenvalues of TK are λi ∼ 1/ip, for some
p > 1. It is easy to see that in that case, Rn(Fε) ≤ Cε1/2−1/p. Therefore, if T ∈ FK , then
according to theorem 3.3 the learning sample complexity (when the sampling is done with
respect to the measure µ!!!) is

C(ε, δ) = O
(

max
{ 1

ε1+1/p
,
log(2/δ)

ε

})

.

3.1.2 Using the Entropy

The previous section is somewhat misleading since the reader might develop the feeling
that computing localized averages directly is a winning strategy. Unfortunately, even if
the geometry of the original class is well behaved and enables direct computation, the
problem becomes considerably harder in the localized case. In the latter, one has to take
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into account the intersection body of the original class and an L2(µ) ball. Thus, in most
cases one has no choice but to resort to indirect methods, like entropy based bounds.

Theorem 2.31 may be used to compute the localized version of the Rademacher aver-
ages in the following manner; let Y be a random variable which measures the empirical
radius of the class, which is (supf∈F n−1

∑n
i=1 f2(Xi))

1/2. Given a sample {x1, ..., xn} and

any ε ≥ Y 1/2(x1, ..., xn), only a single ball is needed to cover the entire class. Hence,

1√
n

sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≤ C

∫ Y 1/2(x1,...,xn)

0
log

1
2 N

(

ε, F, L2(µn)
)

dε.

Taking the expectation with respect to the sample it follows that there is an absolute
constant C such that for every class F ,

Rn(F ) ≤ CE

∫

√
Y

0
log

1
2 N

(

ε, F, L2(µn)
)

dε.

where Y = supf∈F n−1
∑n

i=1 f2(Xi).
Of course, the information we have is not on the random variable Y , but rather on

σ2
F = supf∈F Eµf2. Fortunately, it is possible to connect the two, as the following result

which is due to Talagrand [33], shows.

Lemma 3.6 Let F ⊂ B
(

L∞(Ω)
)

and set σ2
F = supf∈F Eµf2. Then,

Eµ sup
f∈F

n
∑

i=1

f2(Xi) ≤ nσ2
F + 8

√
nRn(F )

Using this fact, it turn out that if one has data on the uniform entropy, one can estimate
the localized Rademacher averages. As an example, consider the case when the entropy is
logarithmic in 1/ε.

Lemma 3.7 Let F ⊂ B
(

L∞(Ω)
)

and set σ2
F = supf∈F Eµf2. Assume that there are

γ > 1, d ≥ 1 and p ≥ 1 such that

log N2(ε, F ) ≤ d logp
(γ

ε

)

.

Then, there is a constant Cp,γ which depend only on p and γ for which

Rn(F ) ≤ Cp,γ max
{ d√

n
logp 1

σF
,
√

dτ log
p
2

1

σF

}

.

Before proving the lemma, we require the next result:
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Lemma 3.8 For every 0 ≤ p < ∞ and γ > 1, there is some constant cp,γ such that for
every 0 < x < 1,

∫ x

0
logp γ

ε
dε ≤ 2x logp cp,γ

x
,

and x1/2 logp cp,γ

x is increasing and concave in (0, 10).

The first part of the proof follows from the fact that both terms are equal at x = 0,
but for an appropriate constant cp,γ , the derivative of the function on left-hand side is
smaller than that of the function on the right-hand one. The second part is evident by
differentiation.
Proof of lemma 3.7: Set Y = n−1 supf∈F

∑n
i=1 f2(Xi). By theorem 2.31 there is an

absolute constant C such that

1√
n

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤ C

∫

√
Y

0
log

1
2 N

(

ε, F, L2(µn)
)

dε = C
√

d

∫

√
Y

0
log

p
2

γ

ε
dε.

By lemma 3.8 there is a constant cp,γ such that for every 0 < x ≤ 1,

∫ x

0
log

p
2

γ

ε
dε ≤ 2x log

p
2

cp,γ

x
,

and v(x) =
√

x logp/2(cp,γ/x) is increasing and concave in (0, 10).
Since Y ≤ 1,

1√
n

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤ Cp

√
dY log

p
2

cp,γ

Y
,

and since σ2
F + 8Rn/

√
n ≤ 9, then by Jensen’s inequality, lemma 3.6 and the fact that v

is increasing in (0, 10),

Eµ

(

Y
1
2 log

p
2

cp,γ

Y

)

≤ (EµY )
1
2 log

p
2

cp,γ

EµY

≤ cp,γ

(

σ2
F + 8

Rn√
n

)
1
2 log

p
2

1

σ2
F + 8Rn√

n

≤ cp,γ

(

σ2
F +

8Rn√
n

)
1
2 log

p
2

1

σF
.

Therefore,

Rn(F ) ≤ Cp,γ

√
d
(

σ2
F +

Rn√
n

)
1
2 log

p
2

1

σF
,

and our claim follows from a straightforward computation.
¥
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In a similar manner one can show that if that there are γ and p < 2 such that

log N2(ε, F ) ≤ γ

εp

then
Rn(F ) ≤ Cp,γ max

{

n
− 1

2
2−p
2+p , σ

1− p
2

F

}

, (3.4)

and if

log N2(ε, F ) ≤ γ

εp
log2 2

ε

then

Rn(F ) ≤ Cp,γ max
{

n
− 1

2
2−p
2+p logβ 2

σF
, σ

1− p
2

F log
2

σF

}

, (3.5)

where β = 4/(2 + p).

Let F ⊂ B
(

L∞(Ω)
)

and set Fε =
{

f ∈ F
∣

∣Eµf2 ≤ ε
}

. Since Fε ⊂ F then its entropy
must be smaller than that of F . Therefore, all the estimates above hold for Fε when one
replaces σ2

F by ε.
The next step is to connect the entropy of the original class G to that of F = star(L, 0).

Let us recall that the uniform entropy for the loss class is controlled by that of G (see
lemma 2.8). Hence, all that remains is to see whether taking the star-shaped hull of L
with 0 increases the entropy by much.

Lemma 3.9 Let X be a normed space and let A ⊂ B(X) be totally bounded. Then, for
any ‖x‖ ≤ 1 and every ε > 0,

log N
(

2ε, star(A, x)
)

≤ log
2

ε
+ log N

(

ε, A
)

.

Proof: Fix ε > 0 and let y1, ..., yk be an ε-cover of A. Note that for any a ∈ A and any
z ∈ [a, x] there is some z′ ∈ [yi, x] such that ‖z′ − z‖ < ε. Hence, an ε-cover of the union
∪n

i=1[yi, z] is a 2ε-cover for star(A, x). Since for every i, ‖x − yi‖ ≤ 2, then each interval
may be covered by 2ε−1 balls of radius ε and our claim follows.

¥

Corollary 3.10 Assume that G consists of functions which map Ω into [0, 1] and that the
same holds for T . Then, for any ε, ρ > 0,

log N2(ρ, Fε) ≤ log N2(ρ/8, G) + log
(

2/ρ
)

,

where Fε =
{

f ∈ star(L, 0)
∣

∣Eµf2 ≤ ε
}

.

This result yields sample complexity estimates when one has estimates on the L2

entropy of the class (which can be obtained using the combinatorial parameters or other
methods). The case we present here is when the class has a polynomial uniform entropy.
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Theorem 3.11 Let G ⊂ B
(

L∞(Ω)
)

be a convex class of functions and assume that
N2(ε, G) ≤ γε−p for some 0 < p < ∞. Set T ∈ B

(

L∞(Ω)
)

and put L to be the loss
class associated with G and T . Then,

Pr
{

∃f ∈ L,
1

n

n
∑

i=1

f(Xi) ≤ ε, Eµf ≥ 2ε
}

≤ δ,

provided that

n ≥ C(p, γ)max
{

(1

ε

)1+ p
2 ,

log(1/δ)

ε

}

if 0 < p < 2,

and

n ≥ C(p, γ)max
{

(1

ε

)p
,
log(1/δ)

ε

}

if p > 2.

Proof: Let F = star(L, 0) and set Fε =
{

f ∈ F
∣

∣Eµf2 ≤ ε
}

. Applying theorem 2.35 it
follows that for every integer n, every ε > 0 and any p > 2,

Rn(Fε) ≤ Rn(F ) ≤ Cpn
1
2
− 1

p .

To estimate the localized averages for 0 < p < 2, one uses the previous corollary and (3.4).
Both parts of the theorem are now immediate from theorem 3.3.

¥

3.2 The iterative scheme

The biggest downside in the our analysis is the fact that the localized Rademacher averages
are very hard to compute, and it almost impossible to estimate them using the empirical
data one receives. If fact, all the results presented here were based on some kind of an a-
priori data on the learning problem we had to face; for example, we imposed assumptions
on the growth rates of the uniform entropy of the class.

It is highly desirable to obtain estimates which are data-dependent. This could be done
if we had the ability to replace the L2(µ) ball in the definition of the localized averages
by the empirical ball

{

f ∈ F
∣

∣n−1
∑n

i=1 f(Xi) ≤ ε
}

Koltchinskii and Panchenko [13] have introduced a computable iterative scheme which
enabled them to replace the “actual” ball by an empirical one for a random sequence of
radii rk = rk(X1, ..., Xn). In some cases, this method proved to be an effective way of
bounding the localized averages. In fact, when one has some “global” data (e.g. uniform
entropy bounds), the iterative scheme gives the same asymptotic bounds as the ones
obtained using the entropic approach. To this day, there is no proof that the iterative
scheme always converges to the “correct” value of the localized averages. Even more so,
the question of when is it possible to replace the L2(µ) ball by an empirical ball remains
open.
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A Concentration of measure and Rademacher averages

In this section we prove that all the Lp norms of the Rademacher averages of a class are
equivalent, as long as the class is not contained in a “very small” ball.

Theorem A.1 For every 1 < p < ∞ there is an absolute constant cp for which the
following holds. Let F be a class of functions, set µ to be a probability measure on Ω and
put σ2

F = supf∈F Eµf2. If n satisfies that σ2
F ≥ 1/n then

cp

(

E sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

p) 1
p ≤ E sup

f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤
(

E sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣

p) 1
p ,

where (Xi)
n
i=1 are independent random variables distributed according to µ and the ex-

pectation is taken with respect to the product measure associated with the Rademacher
variables and the variables Xi.

The proof of this theorem is based on the fact that supf∈F |∑n
i=1 εif(Xi)| is highly con-

centrated around its mean value, with an exponential tail. The first step in the proof is
to show that if one can establish such an exponential tail for a class of functions, then all
the Lp norms are equivalent on the class. In fact, we prove a little more:

Lemma A.2 Let G be a class of nonnegative functions which satisfies that there is some
absolute constant c0 such that for every g ∈ G and every integer m,

Pr
{

|g − Eg| ≥ mEg
}

≤ 2e−c0m.

Then, for every 0 < p < ∞ there are constants cp and Cp which depend only on p and c0,
such that for every g ∈ G,

cp(Egp)
1
p ≤ Eg ≤ Cp(Egp)

1
p .

Proof: Fix some 0 < p < ∞ and g ∈ G, and set a = Eg. Clearly,

Egp = Egpχ{g<a} +
∞

∑

m=0

Egpχ{(m+1)a≤g≤(m+2)a}.

By the exponential tail of g, Pr
{

g ≥ (m + 1)a
}

≤ 2e−c0m, and thus

Egp ≤ ap + 2ap
∞

∑

m=0

(m + 2)pe−c0m,

proving that cp(Egp)1/p ≤ Eg.
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To prove the upper bound, set hm = Egχ{g≥ma}. We will show that there is a constant
C ≥ 1 which depends only on c0, with the property that for every m ≥ C, hm ≤ (Eg)/2.
Indeed,

hm =
∞

∑

n=m

Egχ{na≤g<(n+1)a} ≤ 2a
∞

∑

n=m

(n + 1)e−c0n,

which is a tail of a converging series that does not depend on the choice of g. Thus, for a
sufficiently large m our assertion holds.

Set A = {g ≤ a/4}, and observe that

a

2
≤ Egχ{g≤Ca} = EgχA + Egχ{a/4<g≤Ca} ≤

a

4
Pr(A) + Ca(1 − Pr(A)).

It follows that Pr(Ac) ≥ 1/(4C − 1) and thus,

Egp ≥ EgpχAc ≥
(a

4

)p · 1

4C − 1
= Cpa

p,

as claimed.
¥

Before we continue with our discussion, let us observe that the exponential tail as-
sumption can be slightly relaxed. In fact, all that we need is that the probability that g
is much larger than its expectation must decay rapidly, uniformly in g.

Now, we can show that for any class of functions F , Rn(F ) may be bounded from
below by σF .

Lemma A.3 There is an absolute constant c such that for any class F ⊂ B
(

L∞(Ω)
)

,
Rn(F ) ≥ cσF , provided that σ2

F > 1/n.

Proof: By the assumption on σF , there is some f ∈ F for which σ2
f = Eµf2 ≥ 1/n.

Applying the Kahane-Khintchine’s inequality, there is an absolute constant c such that
for every x1, ..., xn

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣ ≥ c
(

Eε sup
f∈F

∣

∣

n
∑

i=1

εif(xi)
∣

∣

2) 1
2 ≥ c

(

n
∑

i=1

f2(xi)
)

1
2

(in fact c = 1/
√

2 will suffice, as shown in [14]). Hence, Rn(F ) ≥ cEµ

(

n−1
∑n

i=1 f2(Xi)
)

1
2 .

Define g(X1, ..., Xn) = n−1
∑n

i=1 f2(Xi) and since f is bounded by 1 then Eg2 ≤ σ2
f .

By Bernstein’s inequality (theorem 2.20) and selecting x = nmEµg for some integer m,

Pr
{

|g − Eµg| ≥ mEµg
}

≤ 2e
−c

n2m2(Eµg)2

σ2
f

n+nmEµg
.
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But since Eµg = σ2
f then the exponent is of the order of nmσ2

f , and because nσ2
f ≥ 1 then

there is an absolute constant c such that

Pr
{

|g − Eµg| ≥ mEµg
}

≤ 2e−cm.

Using the previous lemma for p = 1/2 it follows that there are absolute constants c and
C such that c(Eµg1/2)2 ≤ Eµg ≤ C(Eµg1/2)2. Thus,

(Eµg
1
2 ) ≥ c(Eµg)

1
2 = c

( 1

n
Eµ

n
∑

i=1

f2(Xi)
)

1
2 = cσf ,

as claimed.
¥

proof of theorem A.1: First, note that the upper bound holds, by applying Hölder’s
inequality. As for the lower bound, denote by E the expectation with respect to the
product measure νn = (ε ⊗ µ)n and set H = n−1/2 supf∈F |

∑n
i=1 εif(Xi)|. Instead of the

applying Bernstein’s inequality, we will use its functional version (2.6), for the random
variable

Z = sup
f∈F

∣

∣

n
∑

i=1

εif(Xi) − E

n
∑

i=1

εif(Xi)
∣

∣ =
√

nH.

Using the notation of theorem 2.21, σ2 = nσ2
F , and with probability larger than 1 − e−x,

1√
n

sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ ≤ 2E
1√
n

sup
f∈F

∣

∣

n
∑

i=1

εif(Xi)
∣

∣ + C
(

σF

√
x +

x√
n

)

,

for some absolute constant C. By our assumption, σF ≥ 1/
√

n, and by lemma A.3,
σF ≤ n−1/2

E supf∈F |∑n
i=1 εif(Xi)|. Thus, selecting x = m for some integer m, it follows

that there is an absolute constant C such that with probability larger that 1 − e−m,
H ≤ CmEH. Hence,

Pr
{

H ≥ mEH
}

≤ e−cm,

for an appropriate absolute constant c. Using the same argument as in lemma A.2, it
follows that all the Lp norms of H are equivalent, which proves our assertion.

¥
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