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Abstract

We study the predictive performance of `1-regularized linear regres-
sion, including the case where the number of covariates is substantially
larger than the sample size. We introduce a new analysis method that
does not require uniformly bounded covariates, an assumption that
was often necessary with previous techniques. This technique provides
an answer to a conjecture of Greenshtein and Ritov [12] regarding the
“persistence” rate for linear regression and allows us to prove an oracle
inequality for the error of the regularized minimizer.

1 Introduction

In this article we study the problem of linear regression with an `1 constraint
or with an `1 regularization. In the `1 constraint case, one considers a
random variable (X,Y ) ∈ Rd × R of which one has n independent samples
X1, Y1, . . . , Xn, Yn. For a fixed b > 0, the `1 constraint regression produces
β̂ defined by

β̂ = argmin{β∈Rd:‖β‖
`d
1
≤b}

n∑
i=1

(〈
Xi, β

〉
− Yi

)2
. (1.1)

This regression is known as “lasso” regression and it is often motivated by
the fact that it tends to select solutions β̂ that are sparse [29] (that is, it
selects some β̂ ∈ Rd with considerably fewer than d non-zero coordinates),
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particularly when compared with least squares or with `2-regularized (or
“ridge”) regression. Naturally, from a practical point of view, sparsity is
desirable because it allows for fast computation of

〈
X, β̂

〉
on future samples.

In the standard setup, the dimension d and the `d1 radius of the set of
constraints b are fixed, while the sample size n grows to infinity. In this case,
the quality of the prediction of the empirical minimizer β̂ is determined by
an appropriate notion of complexity of the set {β ∈ Rd : ‖β‖`d1 ≤ b}.

A more interesting problem is what happens when the dimension (the
number of explanatory variables) and the radius increase with the sample
size. Motivated by many practical prediction problems, including those
that arise in microarray data analysis and natural language processing, this
problem has been extensively studied in recent years. The results can be
divided into two categories: those that study the predictive power of β̂ [9, 30,
12] and those that study its sparsity pattern and reconstruction properties [4,
32, 18, 19, 17, 8]; this article falls into the first of these categories.

Unfortunately, thus far there have been no satisfactory bounds on the
way the error of the empirical minimizer β̂ depends on the radius b and the
dimension d; the existing estimates in the case where b and d are allowed to
grow to infinity with the sample size n were rather loose. The main aim of
this article is to identify the predictive power of β̂ as a function of all three
parameters b, d, and n.

A notable difficulty in studying this problem arises from the fact that
linear functions are unbounded. And although the problem of empirical
minimization in a fixed function class has been extensively studied already
(see, for example, [3, 6] and the references therein), the most satisfactory
results apply only to function classes that are bounded almost surely. The
problem is made more difficult by our use of the quadratic loss, which takes
away some potential sources of uniform regularity (for example, we cannot
rely on a bounded Lipschitz constant). Thus, the techniques used in the
bounded case break down completely in the unbounded, quadratic setting.

Our main contribution is a method, based on Talagrand’s “generic chain-
ing,” [28] that allows us to avoid the problems arising in the unbounded
quadratic case, under some mild assumptions.

Traditionally, in the study of empirical minimization, one separates the
risk P`β̂(X,Y ) into two quantities:

P`β̂(X,Y ) =

(
P`β̂(X,Y ) − inf

β∈bBd
1

P`β(X,Y )

)
+ inf
β∈bBd

1

P`β(X,Y ) (1.2)

where we use the abbreviation `β(X,Y ) = (
〈
X,β

〉
− Y )2. The first of these
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quantities is called the sample error and it measures the success of empirical
minimization relative to the best function in our hypothesis class, bBd

1 ; the
second quantity is called the approximation error and it describes the per-
formance of bBd

1 without regard to the sample (X1, Y1), . . . , (Xn, Yn) that
powered our empirical minimization. There is a well-known conflict between
these two errors: we can reduce the approximation error by enlarging our
function class (that is, by increasing b or d), but doing so will increase the
sample error. For a fixed b and d, the sample error shrinks as the sample
size increases but the approximation error remains constant. If one wishes
to minimize the total error, therefore, one should not consider a fixed ra-
dius b and dimension d but rather increasing sequences (bn) and (dn), each
element of which is chosen to minimize the error (1.2) for that particular
sample size.

Here, we will establish almost sharp estimates (up to the exact power of
a log factor) on the error of the empirical minimizer in {x ∈ Rd : ‖x‖`d1 ≤ b}
as a function on the radius b, the dimension d and the sample size n, under
mild assumptions on (X,Y ). For example, we will show that if µ is an
isotropic (that is, its covariance structure coincides with the Euclidean one),
log-concave measure on Rd and Y ∈ L2, then up to poly-logarithmic factors
in b, d and n, the error of the empirical minimizer is bounded by

min
{
b2

n
+
d

n
,
b√
n

(
1 +

b√
n

)}
.

An outcome of these estimates is a solution to the question of persis-
tence, posed by Greenshtein and Ritov [12], which is defined as follows. Let
(dn)∞n=1 be an increasing sequence, consider a sequence of measures (µn)∞n=1

on Rdn × R and suppose that for every n, one is given n independent sam-
ples (X1, Y1), . . . , (Xn, Yn) drawn according to µn. For β ∈ Rd, denote the
squared loss of β by `β(x, y) = (

〈
x, β

〉
− y)2. Fix some increasing sequence

bn and consider, for every n, the empirical minimizer in bnBdn
1 :

β̂n = argmin‖β‖
`
dn
1

≤bn

n∑
i=1

`β(Xi, Yi).

The sequence β̂n is called persistent if

P(X,Y )∼µn
`β̂n

(X,Y ) − inf
βn∈Rdn

P(X,Y )∼µn
`βn(X,Y ) → 0,

in probability.
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Empirical minimization gives a persistent sequence (β̂n) provided that
the sequences (bn) and (dn) do not increase too rapidly. Greenshtein and
Ritov asked for the most quickly increasing sequence (bn) such that empir-
ical minimization is persistent. Under the assumption that dn is at most
polynomial in n (and under some conditions on µn), they showed that one
can take bn = o((n/ log(n))1/4). They also, however, proved persistence for
bn = o((n/ log(n))1/2) in the case of Gaussian measures µn and showed that
this was the best possible rate in the Gaussian case. They asked whether
it was possible to improve the persistence result in the non-Gaussian case
under the condition (on the sequence µn) that ‖X‖

`dn∞
be bounded almost

surely. We answer this question in the affirmative (up to the exact power
of the logarithm) under even milder assumptions on µn. We should point
out that not only do we improve the persistence rates, we also remove the
restriction that dn be polynomial in n; in fact, our result is non-trivial for
sequences almost as large as dn ∼ exp(

√
n).

To formulate the result we will need the following assumption.

Assumption 1.1 For every µn on Rdn set X(n) = (X(n)
1 , ..., X

(n)
dn

) to be a
vector distributed according to µn. Assume that there is an absolute constant
c such that for every integer n, every 1 ≤ i ≤ dn and every t ≥ 1,

Pr
(
|X(n)

i | ≥ t
)
≤ 2 exp(−ct).

In other words, Assumption 1.1 states that all the coordinates of each X(n)

(explanatory variable) are subexponential with uniform constant c.

Theorem 1.1 Suppose that (dn) is an increasing sequence and that (µn)
satisfy Assumption 1.1. Then empirical minimization is persistent provided
that

bn = o

( √
n

log3/2 n · log3/2(ndn)

)
.

Alternatively, suppose |X(n)
i | ≤ C almost surely for every n ∈ N and

every 1 ≤ i ≤ dn. Then empirical minimization is persistent provided that

bn = o

( √
n

log3/2 n · log1/2(ndn)

)
.

We have made no particular effort to optimize the powers of the log-
arithms in Theorem 1.1 and that we do not believe them to be best pos-
sible. Also, observe that this estimate implies an almost optimal bound
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for a slightly different question: the case where the constraint set consists
of sparse vectors in Rdn . In this case, instead of performing the empiri-
cal minimization in the set of vectors of `d1 norm at most b, one performs
minimization in the set Tk,d, which is the convex hull of vectors in Rd of
Euclidean norm at most 1 that are supported on at most k coordinates. If
we denote the Euclidean unit ball by Bd

2 and the unit ball in `d1 by Bd
1 , then

clearly Tk,d ⊂
√
kBd

1 ∩Bd
2 . Thus, according to Theorem 1.1, one may allow

for the number kn of non-zero coordinates to grow as quickly as kn = b2n
and have the analog of the persistence property for the empirical minimizer
in Tkn,d.

Theorem 1.1 provides an answer to the question posed by Greenshtein
and Ritov, but it does not directly address our original question. Recall-
ing the tradeoff between sample and approximation error, our mission was
to choose a sequence (bn) that exploits this tradeoff to minimize the error.
Persistence does not give the best sequence (bn); it gives a rate of increase
which is not too fast, but it does not provide information on which of the
slower sequences are the best. In other words, the fact that one can se-
lect bn �

√
n yields no information on whether bn = n1/4 is better than

bn = n1/3. What’s more, choosing the right sequence (bn) requires some
knowledge of the behavior of the approximation error as the radius our the
`d1 ball increases.

One way of addressing this problem is to consider a modified minimiza-
tion problem. Redefine β̂ using the `1 regularization

β̂ = argminβ∈Rd

(
1
n

n∑
i=1

`β(Xi, Yi) + λn‖β‖`d1

)
. (1.3)

This sort of regularization is well-known [29] and has been extensively stud-
ied in the past. A fact we shall require is that if the regularization param-
eter λn is chosen carefully then the solution to (1.3) is almost as good as
the solution to (1.1) for the best choice of b [1]. Furthermore, it is possi-
ble to choose such a λn without knowing how the approximation error be-
haves. Intuitively, this is not so surprising. The heart of the matter is that
inf{‖β‖1≤b}

1
n

∑
i `β(Xi, Yi) is likely to be close to the approximation error in

bBd
1 . Thus, if the approximation error decreases quickly as b increases the

regularized `1 problem is likely to choose β̂ with a relatively large `d1 norm.
On the other hand, if the approximation error decreases slowly, (1.3) will
select β̂ of a small `d1 norm. Thus (1.3) is somehow equivalent to choosing
the radius in (1.1) to depend on the approximation error.

The method of analysis that we use for this problem requires, unfor-
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tunately, a uniform concentration phenomenon (though it is likely that it
could be avoided using a deviation argument by using uniform tail esti-
mates rather than a concentration argument). Therefore, one has to make
stronger assumptions on the measures µn, namely that both |Y | and ‖X‖`d∞
are bounded almost surely by a constant independent of n.

Theorem 1.2 There exist absolute constants c and c′ for which the follow-
ing holds. Let (dn)n≥1 be any increasing sequence with log dn = o(n) and
let (µn)n≥1 be a family of measures on Rdn. For n ≥ 1, suppose that X is
distributed according to µn, that ‖X‖

`dn∞
≤M almost surely and that Y is a

real-valued random variable with |Y | ≤M almost surely. If we define

λn = cM2 log3/2 n · log1/2(dnn)√
n

then for all sufficiently large n (depending on dn and M), with probability
at least 1 − exp(− log3 n · log(dnn)), for any

β̂ ∈ argminβ∈Rdn (P`β + λn‖β‖`d1),

we have
P`β̂ ≤ inf

β∈Rdn
(P`β + c′λn(1 + ‖β‖`d1)).

2 Preliminaries

In this section we will present the basic definitions and results that we
require. Throughout, all absolute constants (that is, positive numbers that
are independent of the other parameters of the problem) are denoted by
C,C1, ..., c, c1 etc. Their value may change from line to line.

We will consider a Euclidean structure on Rd; |x| is the Euclidean norm of
x. We shall abuse notation and denote the absolute value and the cardinality
of a set by | · | as well.

A subset of a vector space is called symmetric if the fact that x is in the
set implies that −x is also in the set. It is a well known fact that if K ∈ Rd

is convex and symmetric and has a nonempty interior then it defines a norm
on Rd by ‖x‖K = inf{t : t−1x ∈ K}. For every 1 ≤ p ≤ ∞ and integer d,
Bd
p is the unit ball in `dp, that is, Bd

p = {x :
∑d

i=1 |xi|p ≤ 1}.
A significant part of our work will be devoted to the study of the supre-

mum of a collection of random variables, where each one of them is naturally
associated with a point in Rd. This is an example of a rather general idea:
to study the supremum of a family of random variables indexed by a metric
space using the metric structure of the set.
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Definition 2.1 A process {Zt : t ∈ T} indexed by a metric space (T, d) is
called subgaussian with respect to the metric d if for every x, y ∈ T and every
t ≥ 1

Pr (|Zx − Zy| ≥ td(x, y)) ≤ 2 exp(−t2/2).

Two examples of subgaussian process are the following. Let T ⊂ Rd and
for every x ∈ T consider the two random variables

Gx =
d∑
i=1

gixi, and Zx =
d∑
i=1

εixi,

where (gi)di=1 are independent standard Gaussian random variables and
(εi)di=1 are independent, symmetric-{−1, 1} valued random variables. It is
standard to verify that both {Gx : x ∈ T} and {Zx : x ∈ T} are subgaussian
processes with respect to the Euclidean metric on Rd. For the Gaussian pro-
cess this is evident because Gx is distributed as g1|x|. For the Rademacher
process {Zx : x ∈ T}, it is simply a reformulation of Höffding’s inequality,
that for every x ∈ Rd and every t > 0,

Pr

(∣∣∣∣∣
d∑
i=1

εixi

∣∣∣∣∣ ≥ t|x|

)
≤ 2 exp(−t2/2).

When a random process {Zt : t ∈ T} is subgaussian with respect to a
metric d, one can use the generic chaining mechanism to control the random
variable supt∈T |Zt| using the so-called γ-functionals.

Definition 2.2 [28] For a metric space (T, d), an admissible sequence of
T is a collection of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1,
|Ts| = 22s

and |T0| = 1. Define the γ2 functional by

γ2(T, d) = inf sup
t∈T

∞∑
s=0

2s/2d(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .

The following theorem is a corollary of the chaining mechanism. For
results of an almost identical flavor and a comprehensive survey on generic
chaining and its applications we refer the reader to [28].
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Theorem 2.3 There exist absolute constants c1 and c2 for which the fol-
lowing holds. Let {Zt : t ∈ T} be a subgaussian process with respect to the
metric d. Then, for every u ≥ 1 and any t0 ∈ T ,

Pr

(
sup
t∈Z

|Zt − Zt0 | ≥ c1uγ2(T, d)
)

≤ 2 exp(−u2/2).

In particular,
E sup
t∈T

|Zt − Zt0 | ≤ c2γ2(T, d).

A straightforward way (though it often leads to suboptimal results) to
construct an admissible sequence is using covers of the metric space (T, d).
Let N(ε, T, d) be the smallest number of open balls (with respect to the
metric d) needed to cover T . The corresponding set of centers is called an
ε-cover of T . For every integer s, let εs = inf{ε : N(ε, T, d) ≤ 22s}, and let
Ts be a minimal εs cover of T . Then using this admissible sequence one can
show (see, for example, [28]), that there is an absolute constant c such that

γ2(T, d) ≤ c

∫ diam(T,d)

0

√
logN(ε, T, d)dε,

that is, the γ2 functional may be bounded using an appropriate entropy
integral.

In our analysis we will be interested in empirical processes. Let F be a
class of functions on a probability space (Ω, µ) and let X1, ..., Xn be dis-
tributed according to µ. Consider the process indexed by F , given by
Zf = n−1

∑n
i=1 f(Xi) − Ef and denote

‖Pn − P‖F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi) − Ef

∣∣∣∣∣
and

E‖Pn − P‖F = E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi) − Ef

∣∣∣∣∣ .
Unfortunately, under typical assumptions on the class F and the measure µ
an empirical process is not subgaussian. Indeed, by Bernstein’s inequality
(e.g. [31]) which is sharp is many cases, a typical tail behavior of the random
variable n−1

∑n
i=1 f(Xi)−Ef is a mixture of subgaussian and subexponential

tails. One of the possible ways around this problem is to use symmetrization
arguments, due to Giné and Zinn [10]; the resulting metric is a random one.
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Theorem 2.4 Let F be a class of functionals on (Ω, µ). Then,

E‖Pn − P‖F ≤ 2
n

EXEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣ ,
where (εi)ni=1 are independent, symmetric {−1, 1}-valued random variables.

Theorem 2.4 implies that estimating the expectation of the supremum of
the empirical process indexed by F is reduced to bounding the expectation
of the supremum of the Rademacher process (which is subgaussian with
respect to | · |) of a typical coordinate projection of F ,

PσF = {(f(Xi))
n
i=1 : f ∈ F} .

The best understood situations in Learning Theory are when the given
function class is bounded in L∞ (see, for example [3]). Such problems are
much simpler than the general, unbounded one for two reasons. The first
is that the random variable ‖Pn − P‖F is concentrated around its mean
E‖Pn − P‖F in the uniformly bounded case. This concentration result was
established by Talagrand [27].

The second reason why the unbounded case is much harder is because it
often rules out the use of contraction inequalities, which are standard tools
in empirical process theory. Contraction inequalities are used in the context
of learning as a way of relating the complexity of the loss class (in our case,
{`β =

〈
β, ·
〉2 : β ∈ T}) to that of the base class {

〈
β, ·
〉

: β ∈ T}. Since
contraction inequalities are not valid without a Lipschitz bound, one has to
find other ways of controlling the complexity of an unbounded loss class,
which will be the main topic of the next section.

3 Error rates for linear functionals on Rd

The situation we study here is when the class of functions consists of linear
functionals {

〈
t, ·
〉

: t ∈ T}, where T ⊂ Rd is a convex symmetric set. In this
section, we will develop an estimate on the error of the empirical minimizer
in T , via an “isomorphic” bound, as will be explained below. This bound,
applied to the set T = bBd

1 = {β ∈ Rd : ‖x‖`d1 ≤ b} will yield a sharp
estimate (up to logarithmic factors in b, d and n) on the performance of the
empirical minimization algorithm in bBd

1 .
Let us introduce the following notation. Let µ be a probability measure

on Rd and consider an unknown (real-valued) random variable Y . Let T ⊂
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Rd be a compact, convex, symmetric set and to each β ∈ T associate the
function fβ =

〈
β, ·
〉

: Rd → R. Recall that our goal is to estimate the
random variable Y by an element in T (i.e. by a function fβ where β ∈ T )
with respect to the squared loss, using empirical data, which is a random
sample (Xi, Yi)ni=1 according to the joint distribution of µ and Y .

Set F = {
〈
β, ·
〉

: β ∈ T}, let `(x, y) = (x − y)2 and for every f ∈ F ,
define `f = `(f(X), Y ) to be the squared loss associated with f and Y .

Note that if E‖X‖`d2 < ∞ then F ⊂ L2 is compact and since T is
convex, F is a convex class of functions. One can show that in such a case,
E`(f(X), Y ) has a unique minimizer in F , and we will denote it by f∗ = fβ∗ ,
where β∗ ∈ T (note that β∗ is not unique if the measure µ is supported on
a subspace of Rd; our analysis, however, only requires the uniqueness of
fβ∗). Thus, we can define the excess loss function associated with f by
Lf = `f − `f∗ and the excess loss class

LF = {`f − `f∗ : f ∈ F}.

For the sake of simplicity, we shall sometimes abuse notation and write Lβ
and `β for Lfβ

and `fβ
, respectively.

It is clear that our problem is how to obtain an estimate on the condi-
tional expectation

R̂ = E
(
Lf̂ |(Xi, Yi)ni=1

)
,

as a function of the sample size n that holds with high probability.
The function class LF has certain properties that will be used in our

analysis. First of all, for every f ∈ F , ELf ≥ 0 and equality holds only for
f∗. The second property we require is more delicate. To formulate it, define
for any λ ≥ 0,

LF,λ = {Lf : ELf ≤ λ}.

Lemma 3.1 Let F ⊂ L2 be a compact, convex set of functions and Let LF
be the squared loss class. Then, for any λ > 0

LF,λ ⊂ {Lf : E|f − f∗|2 ≤ λ}.

Lemma 3.1 ensures that if ELf is “small” then f must be relatively close to
the true minimizer f∗ with respect to the L2(µ) norm.

This lemma appeared implicitly in several places (see, for example [21],
Cor. 3.4 and [2], Lemma 14) and in more general situations (for example,
loss functions that are uniformly convex rather than the squared loss). We
present the proof of Lemma 3.1 for the sake of completeness.
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Proof. Let ELf ≤ λ. Then,

λ ≥ E (f(X) − f∗(X)) · (f(X) + f∗(X) − 2Y )
=
〈
f(X) − f∗(X), f(X) + f∗(X) − 2Y

〉
,

where the inner product here is in L2 with respect to the joint probability
distribution of X and Y , which is denoted by ν. Since f∗ is the best approx-
imation to Y in F with respect to the L2(ν) and since F is convex, then by
the characterization of the nearest point in a compact, convex subset in an
inner product space,

〈
f∗ − Y, f − f∗

〉
≥ 0. Hence,〈

f(X) − f∗(X), f(X) + f∗(X) − 2Y
〉

= ‖f − f∗‖2
L2(ν) +

〈
f∗ − Y, f − f∗

〉
≥ ‖f − f∗‖2

L2(ν) = EX |f − f∗|2.

It is well known [16] that one way of obtaining an estimate on the error
of the empirical minimizer is by finding a small λ (that depends on n) such
that with high probability, for every f ∈ F with ELf ≥ λ,

(1 − ε)ELf ≤ 1
n

n∑
i=1

Lf (Xi, Yi) ≤ (1 + ε)ELf .

Hence, for functions with large error, the empirical error and the actual one
are ε-equivalent, and this fact implies that the random and deterministic
structures are “almost isometric” (or for a fixed ε, isomorphic). In particular,
the empirical minimizer cannot be a function of large error: if it were then
this “almost isometric” structure would apply and we could conclude from∑n

i=1 Lf̂ (Xi, Yi) ≤ 0 that ELf̂ ≤ 0.
If one wishes to find a small λ for which one can find an isomorphic

condition with, for example, ε = 1/2, this can be achieved by controlling
E‖Pn − P‖Gλ

where

Gλ = {θLf : f ∈ F, 0 ≤ θ ≤ 1, P (θLf ) = λ}.

Observe that Gλ is the localization at level λ of the star-shaped hull of LF .
The fact that if E‖Pn − P‖Gλ

≤ αλ for some 0 < α < 1 then with
high probability, the risk of the empirical minimization algorithm is at most
c(α)λ was first noted in [3] for cases in which one has a strong concentration
phenomenon for ‖Pn−P‖Gλ

around its expectation. In fact, one can obtain
the same result without the strong concentration if one is willing to have
confidence that is less than exponential.
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Theorem 3.2 Let {Lf : f ∈ F} be an excess loss class with respect to some
loss function ` and set

Gλ = {θLf : 0 ≤ θ ≤ 1, P (θLf ) = λ} .

If E‖Pn − P‖Gλ
≤ δλ then with probability at least 1 − 2δ, the conditional

expectation E(Lf̂ |X1, Y1, . . . , Xn, Yn) ≤ λ.

Proof. By rewriting Gλ as

Gλ = {θLf : 0 ≤ θ ≤ 1, P (θLf ) = λ} =
{
λLf
ELf

: ELf ≥ λ

}
, (3.1)

it is evident that

sup
{Lf :ELf≥λ}

∣∣∣∣n−1
∑n

i=1 Lf (Xi, Yi) − ELf
ELf

∣∣∣∣ = ‖Pn − P‖Gλ

λ
.

By Markov’s inequality, with probability at least 1 − 2δ,

‖Pn − P‖Gλ

λ
≤ 1

2δλ
E‖Pn − P‖Gλ

≤ 1
2
.

This gives an isomorphic condition on {Lf : ELf ≥ λ}: by (3.1), with
probability at least 1 − 2δ, for all Lf with ELf ≥ λ,

1
2

ELf ≤ 1
n

n∑
i=1

Lf (Xi, Yi) ≤
3
2

ELf .

Since the loss function of the empirical minimizer, Lf̂ , does not satisfy this
inequality (because

∑n
i=1 Lf̂ (Xi, Yi) ≤ 0), then ELf̂ ≤ λ, as claimed.

Given a class of functions F and a sample σ = (Xi, Yi)ni=1, recall that
PσF is the coordinate projection of F onto σ, that is,

PσF = {(f(Xi, Yi))
n
i=1 : f ∈ F} ⊂ Rn.

A key part of our analysis is to bound the Rademacher process indexed by
coordinate projections of LF,λ which, by symmetrization, leads to the desired
bound on E‖Pn−P‖Gλ

. Recall that by Höffding’s inequality [15], if A ⊂ Rn

then the Rademacher process indexed by A, given by x →
∑n

i=1 εixi = Zx
is subgaussian with respect to the Euclidean metric.
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Consider the L2 metric endowed on the parameter space Rd by the co-
variance structure ‖β‖2

L2
= E|

〈
X,β

〉
|2 and denote its unit ball by D. Thus,

D = {x ∈ Rd : E|
〈
X,x

〉
|2 ≤ 1}.

The following lemma allows one to control the Rademacher process in-
dexed by PσLF,λ using the distances between the indexing parameters in
Rd. This enables one to overcome the difficulty arising from the fact that
Lfβ

is a shift of
〈
β, ·
〉2, which leads to a process that is very different and

considerably more difficult to handle than the one indexed by the linear
functionals

〈
β, ·
〉
.

Lemma 3.3 For every σ = (Xi, Yi)ni=1 the Rademacher process indexed by
PσLF,λ is subgaussian with respect to a metric on T , defined by

d(β1, β2) = 4‖β1 − β2‖∞,n

(
sup

v∈
√
λD∩2T

n∑
i=1

〈
Xi, v

〉2 +
n∑
i=1

`f∗(Xi, Yi)

)1/2

(3.2)
where ‖β1 − β2‖∞,n = max1≤i≤n |

〈
Xi, β1 − β2

〉
|.

In other words, d(β1, β2) is the random `∞ distance, multiplied by what
is essentially the empirical `2 diameter of the localized set

√
λD ∩ 2T .

Proof. Denote ‖g‖2
`n2

=
∑n

i=1 g
2(Xi, Yi) and observe that for every v, u ∈

Rd,

‖Lfu − Lfv‖2
`n2

= ‖`fu − `fv‖2
`n2

=
n∑
i=1

〈
Xi, u− v

〉2 (〈
Xi, u+ v

〉
− 2Yi

)2
.

Recall that β∗ ∈ T is the element for which infβ∈T E`fβ
is attained. Then

by Lemma 3.1,

{v ∈ T : Lfv ∈ LF,λ} ⊂ {v ∈ T : ‖v − β∗‖L2 ≤
√
λ} = T ∩ (β∗ +

√
λD)

⊂ β∗ + (2T ∩
√
λD),

where the last inequality follows from the convexity and symmetry of T and
using the notation a+B = {a+ b : b ∈ B}.

In particular, if u, v ∈ T and ‖v − β∗‖L2 , ‖u− β∗‖L2 ≤
√
λ then

(u+ v)/2 − β∗ ∈ 2T ∩
√
λD.

13



Thus, for every Lu,Lv ∈ LF,λ,

‖Lu − Lv‖2
`n2

=
n∑
i=1

〈
Xi, u− v

〉2 (〈
Xi, u+ v

〉
− 2Yi

)2 (3.3)

≤ max
1≤i≤n

|
〈
Xi, u− v

〉
|2 · 4

n∑
i=1

(〈
Xi,

u+ v

2
− β∗

〉
+
(〈
Xi, β

∗〉− Yi
))2

≤ 8‖u− v‖2
∞,n

(
sup

t∈2T∩
√
λD

n∑
i=1

〈
Xi, t

〉2 +
n∑
i=1

`β∗(Xi, Yi)

)
,

where the last inequality follows from ‖a + b‖2 ≤ ‖a + b‖2 + ‖a − b‖2.
Hoeffding’s inequality implies the result.

The next step is to bound the random diameter(
sup

t∈2T∩
√
λD

n∑
i=1

〈
Xi, t

〉2)1/2

from above using the random `∞ metric. To simplify notation, set for a
given sample (X1, ..., Xn) the random metric

d∞,n(f, g) = max
1≤i≤n

|f(Xi) − g(Xi)|,

and for a class of functions F let

Un(F ) = (Eγ2
2(F, d∞,n))1/2 and σF = (sup

f∈F
Ef2(X))1/2.

The following is a result from [14].

Theorem 3.4 There exists an absolute constant c for which the following
holds. Let F be a class of functions on (Ω, µ), let X be distributed according
to µ and set X1, . . . , Xn to be independent copies of X. Then,

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f2(Xi) − Ef2(X))

∣∣∣∣∣ ≤ cmax
(√
nσFUn(F ), U2

n(F )
)
. (3.4)

In particular,

E sup
t∈2T∩

√
λD

n∑
i=1

〈
t,Xi

〉2 ≤ nλ+ cmax
(√

nλUn(F ), U2
n(F )

)
. (3.5)

14



Thus, the dominating term in the expectation of the worst deviation of
n−1

∑n
i=1 f

2(Xi) from the mean Ef2 can be upper bounded in terms of the
L2 norm of γ2(F, d∞,n).

The following theorem is the key technical result. In using the notation
Un(K) for a set K ⊆ Rd, we identify K with the class of functions {

〈
x, ·
〉

:
x ∈ K}.

Theorem 3.5 There exists an absolute constant c for which the following
holds. For every convex and symmetric T ⊂ Rd and every λ > 0,

E‖Pn − P‖LF,λ
≤ c

Un(K)√
n

·
(
λ+ P`β∗ +

√
λ
Un(K)√

n
+
U2
n(K)
n

)1/2

,

where K = 2T ∩
√
λD.

Proof. By the Giné-Zinn symmetrization theorem, Lemma 3.1 and the
definition of the L2 metric on Rd endowed by X,

E‖Pn − P‖LF,λ
≤ EEε sup

β∈W

2
n

∣∣∣∣∣
n∑
i=1

εiLfβ
(Xi, Yi)

∣∣∣∣∣ = (∗),

where
W = {β ∈ T : ‖β − β∗‖L2 ≤

√
λ} ⊂ β∗ + (2T ∩

√
λD)

and D = {x ∈ Rd : E|
〈
x,X

〉
|2 ≤ 1}.

By Lemma 3.3, for every fixed sample (Xi, Yi)ni=1, this Rademacher pro-
cess is subgaussian with respect to the metric d defined in that lemma. Thus,
by the generic chaining mechanism, setting K = 2T ∩

√
λD,

(∗) ≤ c1
n

E

γ2(β∗ +K, d∞,n)

(
sup
t∈K

n∑
i=1

〈
t,Xi

〉2 +
n∑
i=1

`β∗(Xi, Yi)

)1/2


=
c1
n

E

γ2(K, d∞,n)

(
sup
t∈K

n∑
i=1

〈
t,Xi

〉2 +
n∑
i=1

`β∗(Xi, Yi)

)1/2
 ,

≤ c1√
n

(
Eγ2

2(K, d∞,n)
)1/2 ·(E sup

t∈K

1
n

n∑
i=1

〈
Xi, t

〉2 + E`β∗

)1/2

,

where the first equality is evident because the metric d∞,n is translation
invariant, and thus γ2(β∗+K, d∞,n) = γ2(K, d∞,n), and the last inequality is
the Cauchy-Schwarz inequality. The claim now follows from Equation (3.5).
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Note that the bound that we have established thus far is for P‖Pn −
P‖LF,λ

where LF,λ = {Lf : ELf ≤ λ} for any λ > 0. To control E‖Pn−P‖Gλ

we require an additional “peeling” argument, following the same path as in
[22].

To simplify notation, define

φn(x) =
Un(Kx)√

n
·
(
x+ P`β∗ +

√
x
Un(Kx)√

n
+
U2
n(Kx)
n

)1/2

,

where Kx = 2T ∩
√
xD.

Theorem 3.6 There exist absolute constants c1, c2 and c3 for which the
following holds. For every λ > 0,

E‖Pn − P‖Gλ
≤ c1

∞∑
i=0

2−iφn(2i+1λ).

In particular, for every λ > 0

E‖Pn − P‖Gλ
≤ c2

Un(T )√
n

·
(
λ+ E`β∗ +

√
λ
Un(T )√

n
+
U2
n(T )
n

)1/2

,

and thus E‖Pn − P‖Gλ
≤ δλ provided that

λ ≥ c3
δ2

max
{
Un(T )√

n

√
E`β∗ ,

U2
n(T )
n

}
.

Proof. Observe that for every λ > 0,

Gλ =
{
λLf
ELf

: PLf ≥ λ

}
=

∞∪
i=0

{
λLf
ELf

: 2iλ ≤ ELf ≤ 2i+1λ

}
.

Hence, setting Hi =
{
λLf

ELf
: 2iλ ≤ ELf ≤ 2i+1λ

}
, then

E‖Pn − P‖Gλ
≤

∞∑
i=0

E‖Pn − P‖Hi

≤
∞∑
i=0

2−iE sup
{Lf :2iλ≤ELf≤2i+1λ}

∣∣∣∣∣ 1n
n∑
i=1

Lf (Xi, Yi) − ELf

∣∣∣∣∣
≤

∞∑
i=0

2−iE‖Pn − P‖LF,2i+1λ

≤ c1

∞∑
i=0

2−iφn(2i+1λ),
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where the last inequality is evident from Theorem 3.5.
The second and third claims follow using the fact that

2T ∩
√

2i+1λD ⊂ 2T

and a straightforward computation.

Combining Theorem 3.2 and Theorem 3.6 with the trivial bound E`β∗ ≤
‖Y ‖2

L2
, one obtains the following.

Corollary 3.7 There exists an absolute constant c for which the following
holds. Let T ⊂ Rd be as above and set β̂ ∈ T the parameter selected by
the empirical minimization algorithm. Then, for all 0 < δ ≤ 1/2, with
probability at least 1 − 2δ,

P
(
Lβ̂ |(Xi, Yi)ni=1

)
≤ c

δ2
max

{
Un(T )√

n
‖Y ‖L2 ,

U2
n(T )
n

}
.

Thus, to obtain an estimate on the risk of the empirical minimization
algorithm, all that one has to do is to bound Un(T ), which, in the case we are
interested in, is Un(bBd

1). Observe that an estimate on Un(bBd
1) would suffice

to handle the two cases considered in [12]; for the first, the indexing set is
T = bnB

dn
1 , and for the second, T is the convex hull of vectors of Euclidean

norm at most a that are supported on at most k coordinates. Indeed, the
second case follows from the first one: if |t| ≤ a is supported on at most k
coordinates then by the Cauchy-Schwarz inequality, ‖t‖`d1 ≤

√
k|t| ≤ a

√
k.

Hence, if T is the convex hull of the set of such vectors then T ⊂ a
√
kBd

1 .

Remark 3.8 Corollary 3.7 and the second and third parts of Theorem 3.6
follow from the trivial estimate that Kx ⊂ 2T , which is rather loose unless T
is very small. The fact that the complexity of the indexing set is governed by
the intersections 2T ∩

√
xD is one of the benefits gained by the localization

argument and becomes more significant the larger T is. For the case that
interests us, when T = bBd

1 , it turns out that for a wide range of choices of
d = d(n) and b = b(n) one may safely replace bBd

1 ∩
√
λD with bBd

1 , and
bounding Un(bBd

1) is enough to obtain a sharp estimate (up to logarithmic
factors) in the problem addressed in [12]. However, when d� n, bBd

1∩
√
λD

is better approximated by
√
λD, as will be explained in Section 4.1.

4 Empirical minimization is persistent

Based on the results of the previous section, it is evident that if one wishes
to prove that empirical minimization is persistent, it suffices to control
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γ2(bBd
1 , d∞,n) for every X1, ..., Xn. To that end, we shall use a covering

estimate and upper bound γ2 using an entropy integral.
The idea behind the following result appeared in [14] but we will present

a detailed proof for the sake of completeness.

Lemma 4.1 There exists an absolute constant c for which the following
holds. For every b > 0,

γ2(bBd
1 , d∞,n) ≤ cbQh(n, d),

where Q = max1≤i≤n ‖Xi‖`d∞ and h(d, n) = log3/2 nmax{log1/2 d, log1/2 n}.

Proof. First, assume that d ≥ n. Fix X1, ..., Xn ∈ Rd, define

Hn = {u : max
1≤i≤n

|
〈
u,Xi

〉
| ≤ 1}

and let ‖ ‖Hn be the quasi-norm on Rd whose unit ball is Hn.
Consider the operator A : `n1 → Rd defined by Aei = Xi and observe that

the number of translates of εHn needed to cover Bd
1 , denoted byN(Bd

1 , εHn),
satisfies

N(Bd
1 , εHn) = N(A∗Bd

1 , εB
n
∞).

Indeed, this is the case because u ∈ Hn if and only if A∗u ∈ Bn
∞.

Recall that for an operator A : X → Y between the normed spaces X
and Y , the `-entropy number of A is given by

e`(A) = inf{ε > 0 : N(ABX , εBY ) ≤ 2`},

where BX and BY are the unit balls in X and Y respectively. By a well
known result of Carl [5], if A : `n1 → `d∞ then for ` ≤ n ≤ d,

e`(A∗) ≤ c1‖A∗‖`d1→`n∞

(
log(1 + n/`) · log(1 + d/`)

`

)1/2

,

and clearly, ‖A∗‖ = ‖A‖ = max1≤i≤n ‖Xi‖`d∞ ≡ Q.
Therefore, since n ≤ d, then for every

ε > c2Qb

√
log d
n

≡ ε0,

logN(bBd
1 , εHn) ≤ c3

b2Q2 log d · log n
ε2

.
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Using a standard volumetric estimate (see, for example, [26] Chapter 5), for
every ε ≤ ε0

logN(bBd
1 , εHn) ≤ logN(bBd

1 , ε0Hn) + logN(ε0Hn, εHn)

≤ c3
b2Q2

ε20
log d · log n+ n log

(
1 +

ε0
ε

)
≤ c4n

(
log
(
1 +

ε0
ε

)
+ log n

)
.

Also,

sup
v∈bBd

1

‖v‖Hn = b max
1≤j≤d

max
1≤i≤n

|
〈
ej , Xi

〉
| = b max

1≤i≤n
‖Xi‖`d∞ = bQ.

By an entropy integral argument, it is evident that

γ2(bBd
1 , d∞,n) ≤ c5

∫ ∞

0

√
logN(bBd

1 , εHn)dε = c5

∫ bQ

0

√
logN(bBd

1 , εHn)dε

≤ c6

(∫ ε0

0

√
n log

(
1 +

ε0
ε

)
+
∫ bQ

ε0

bQ
√

log d · log n
ε

dε

)
≤ c7

(√
n log nε0 + bQ

√
log d · log n log

(
bQ

ε0

))
≤ c8bQ

√
log d · (log n)3/2.

as claimed.
If n ≥ d then Bd

1 ⊂ Bn
1 , and one can extend each Xi ∈ Rd to Xi⊕0 ∈ Rn.

Now the bound is as before, but with d replaced by n.

Let us mention that we have made no effort to optimize the dependency
of γ2 on n and d, since our estimates yield a poly-logarithmic dependency in
those parameters. Using a much more delicate approach—a construction of
an appropriate admissible sequence of T rather than by an entropy integral
argument, as was done in [13]—the power of the logarithms can be reduced
(though not completely eliminated).

We will consider two families of measures on Rd. The first is when the
random variable ‖X‖`d∞ is bounded in L∞, and the second is when X is
selected according to a measure satisfying that for every 1 ≤ i ≤ d, the
tail of |

〈
X, ei

〉
| decays quickly. A natural example of such vectors are those

distributed according to log-concave measures.
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Definition 4.2 A measure µ on Rd is called log-concave if for all nonempty
and measurable sets A,B ⊂ Rd and every 0 ≤ λ ≤ 1,

µ(λA+ (1 − λ)B) ≥ µλ(A)µ1−λ(B).

A measure µ on Rd is called isotropic if for every θ ∈ Sd−1,

E
〈
X, θ

〉2 = 1,

where X is distributed according to µ.

There are many natural examples of log-concave measures, and their
study is a central part of modern asymptotic geometric analysis. Among the
examples are measures that have a log-concave density, the volume measure
on a convex body, and many others.

A central part of our analysis will be based on decay properties of random
variables. A useful way of quantifying these properties is using Orlicz norms.

Definition 4.3 Let Y be a random variable. For α ≥ 1 define the α-Orlicz
norm of Y by

‖Y ‖ψα = inf
{
C > 0 : E exp

(
|Y |α

Cα

)
≤ 2
}
.

For basic facts regarding Orlicz norms we refer the reader to [7, 31]. It
is standard to verify that if Y has a bounded ψα norm then for every t ≥ 1,

Pr (|Y | ≥ t) ≤ 2 exp(−tα/‖Y ‖αψα
).

The reverse direction is also true: if Y has a tail bounded by exp(−tα/Kα)
then ‖Y ‖ψα ≤ c1K. Also, if Y has a bounded ψα norm (denoted Y ∈ Lψα)
then for every p > 1, ‖Y ‖Lp ≤ cp1/α‖Y ‖ψα .

A well known fact that follows from Borell’s inequality (see, e.g. [23],
Appendix III) is that if µ is log-concave and if X is distributed according
to µ, then for every x ∈ Rd,

‖
〈
X,x

〉
‖ψ1 ≤ c‖

〈
X,x

〉
‖L1 , (4.1)

where c is an absolute constant. In particular, the moments of linear func-
tionals satisfy

‖
〈
X,x

〉
‖Lp ≤ cp‖

〈
X,x

〉
‖L1 .
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Lemma 4.4 There exists an absolute constant c for which the following
holds. Let µ be a measure on Rd and suppose that X1, ..., Xn are independent
and distributed according to µ. Then(

E max
1≤i≤n

‖Xi‖2
`d∞

)1/2

≤ c log(nd) · max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 .

Therefore, if µ is log-concave then(
E max

1≤i≤n
‖Xi‖2

`d∞

)1/2

≤ c log(nd) · max
1≤j≤d

‖
〈
X, ej

〉
‖L2 ,

and if µ is log-concave and isotropic then(
E max

1≤i≤n
‖Xi‖2

`d∞

)1/2

≤ c log(nd).

Proof. Recall the well-known observation due to Pisier (see, e.g. [31]) that
if Z1, ..., Zm are random variables then

‖ max
1≤i≤m

Zi‖ψ1 ≤ c1 max
1≤i≤m

‖Zi‖ψ1 logm,

where c1 is an absolute constant.
Since Q = max1≤i≤n ‖Xi‖`d∞ = maxi,j |

〈
Xi, ej

〉
| then

‖Q‖L2 ≤ c2‖Q‖ψ1 ≤ c3 log(nd) max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 .

If µ is log-concave,

max
1≤j≤d

‖
〈
X, ej

〉
‖ψ1 ≤ c4 max

1≤j≤d
‖
〈
X, ej

〉
‖L1 ≤ c4 max

1≤j≤d
‖
〈
X, ej

〉
‖L2 ,

by (4.1) and Jensen’s inequality. If, in addition, µ is isotropic, then

max
1≤j≤d

‖
〈
X, ej

〉
‖L2 = max

1≤j≤d
‖ej‖ = 1.

We are now ready to formulate the first error rate estimate for T = bBd
1 ,

which follows directly from Lemmas 4.1 and 4.4.
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Theorem 4.5 There exists an absolute constant c for which the following
holds. Set h(n, d) = log3/2 n · log3/2(nd) and ρ = max1≤j≤d ‖

〈
X, ej

〉
‖ψ1.

If T = bBd
1 then with probability at least 1−2δ, any empirical minimizer

β̂ satisfies

ELβ̂ ≤ c

δ2
max

{
bhρ√
n
·
√

E`β∗ ,
b2h2ρ2

n

}
. (4.2)

If ‖X‖`d∞ is bounded almost surely by U then (4.2) holds with ρ = cU

and h(n, d) = log3/2 n · log1/2(nd). If X is distributed according to a log-
concave measure then (4.2) holds with ρ = max1≤j≤d ‖

〈
X, ej

〉
‖L2, and if µ

is distributed according to a measure that is both log-concave and isotropic
then (4.2) holds with ρ = 1.

As an example, let µn be a family of isotropic, log-concave measures on
Rdn and assume that dn ∼ nα for some α > 1. Observe that E`β∗ ≤ EY 2,
which is dimension independent. Then, as long as

b2n log6 n

n
→ 0,

the empirical minimizer is persistent.
More generally, let us formulate an estimate on the optimal choice of the

parameters bn and kn as promised in Theorem 1.1. Recall that Tk,d is the
convex hull of vectors in Rd of Euclidean norm at most 1 that are supported
on at most k coordinates, and therefore Tk,d ⊂

√
kBd

1 .

Corollary 4.6 Let Tn be either bnBdn
1 or Tb2n,dn

.

1. Set bn and dn to satisfy

lim
n→∞

bn√
n

log3/2 n · log3/2(ndn) = 0

and let (µn) be a sequence of measures on Rdn. If µn is isotropic and
log-concave for every n, then for every random variable Y ∈ L2 the
empirical minimization algorithm on Tn is persistent. More generally,
if each coordinate of X(n) ∼ µn is sub-exponential with a constant not
depending on n, then for every random variable Y ∈ L2 the empirical
minimization algorithm on Tn is persistent.

2. Alternatively, if ‖X‖`d∞ is bounded almost surely and Y ∈ L2, then
the empirical minimization algorithm on Tn is persistent for bn and
dn satisfying

lim
n→∞

bn√
n

log3/2 n · log1/2(ndn) = 0.
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4.1 Error rates for empirical minimization

Theorem 1.1 gives the optimal bound (up to logarithmic factors) on the
rate at which one may “expand” the dimension d and the radius of Bd

1 and
still obtain a persistent algorithm. However, if one expands d and b at that
rate, the resulting error rate is arbitrarily slow. Of course, Theorem 4.5, is
stronger in the sense that it yields an estimate on the error rate for each
choice of triplet (b, d, n), but a careful look at the estimate established there
shows that it is suboptimal for certain triplets. For example, for fixed values
of b and d that do not grow with n, one would expect an error rate that is
roughly of the order of 1/n rather than 1/

√
n. The reason for that looseness

in Theorem 4.5 is that it was implicitly assumed in the proof that bBd
1∩

√
λD

is essentially equivalent to 2bBd
1 , enabling us to replace one with the other.

However, if b and d are constant with respect to n, then in the isotropic case
(D = Bd

2), bBd
1 ∩

√
λBd

2 =
√
λBd

2 as long as λ ≤ b2/d. Hence, if there is any
hope that the error rate λn → 0 then one should approximate bBd

1 ∩
√
λBd

2

by
√
λBd

2 rather than by bBd
1 .

Let us mention that in certain cases (e.g. if X is an isotropic, Gaussian
vector) one can prove sharp bounds for the “complexity” of the interpolation
body given by (Eγ2

2(bBd
1 ∩

√
λD, d∞,n))1/2 for all values of n, b, d and λ (see

[11]). This analysis shows that the gap between the exact estimates and
the bound given by considering the two “extreme” cases of bBd

1 and
√
λD is

logarithmic in the parameters b, d and n. Since the analysis of the complexity
of the interpolation body even in the Gaussian case is technically involved
and its gains are rather minimal we shall not present it here. Instead, we will
now consider the other extreme case, in which one replaces bBd

1 ∩
√
λD by√

λD. Our starting point is a modified version of Theorem 3.6. To formulate
it, recall that if T ⊂ Rd and β ∈ T then Lfβ

is the excess loss associated
with the parameter β, and Gλ = {λLf/ELf : ELf ≥ λ}.

Theorem 4.7 There exists an absolute constant c for which the following
holds. If

λ ≥ c

δ2
max

{
U2
n(T )
n

,
U2
n(D)
n

E`β∗

}
then E‖Pn − P‖Gλ

≤ δλ. In particular,

P
(
Lβ̂ |(Xi, Yi)ni=1

)
≤ c

δ2
max

{
U2
n(T )
n

,
U2
n(D)
n

E`β∗

}
with probability at least 1 − 2δ.
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Proof. Recall that

φn(x) =
Un(Kx)√

n
·
(
x+ E`β∗ +

√
x
Un(Kx)√

n
+
U2
n(Kx)
n

)1/2

,

where Kx = 2T ∩
√
xD, and that by Theorem 3.6,

E‖Pn − P‖Gλ
≤ c1

∞∑
i=0

2−iφn(2i+1λ).

Set Ai = Un(K2i+1λ)/
√
n and thus,

2−iφn(2i+1λ) ≤ c2

(
2−i/2

(
Aiλ

1/2 +A
3/2
i λ1/4 +A2

i

)
+ 2−iAi (E`β∗)1/2

)
≤ c2

(
2−i/2

(
Un(T )√

n
λ1/2 +

(
Un(T )√

n

)3/2

λ1/4 +
(
Un(T )√

n

)2
)

+ 2−i
Un(D)√

n

(
2i+1λE`β∗

)1/2)
,

where we used K2i+1λ ⊂ 2(i+1)/2
√
λD for the last term and K2i+1λ ⊂ T for

all the others.
Summing over i, it is evident that

∑∞
i=0 2−iφn(2i+1λ) is at most

c3

(
Un(T )√

n
λ1/2 +

Un(D)√
n

(λE`β∗)1/2 +
(
Un(T )√

n

)3/2

λ1/4 +
(
Un(T )√

n

)2
)
.

Therefore, by a straightforward computation, E‖Pn − P‖Gλ
is smaller than

δλ provided that

λ ≥ c3
δ2

max
{
U2
n(T )
n

,
U2
n(D)
n

E`β∗

}
.

The second part of the claim is a direct application of Theorem 3.2.

Since we have already bounded Un(T ) for the sets T we are interested
in, it remains to bound Un(D).

4.1.1 The complexity of D

Note that D = {x ∈ Rd : E
〈
X,x

〉2 ≤ 1} is an ellipsoid in Rd, as the unit
ball of an inner product on Rd defined by [x, y] = E

〈
X,x

〉〈
X, y

〉
. Thus,

D = ABd
2 for a certain linear operator A. Moreover, if X is a random vector

distributed according to µ then A∗X is an isotropic random vector on Rd.
Indeed, for every θ ∈ Sd−1, Aθ is on the surface of inD, and thus

E
〈
θ,A∗X

〉2 = E
〈
Aθ,X

〉2 = 1.
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Lemma 4.8 There is an absolute constant c for which the following holds.
Let X1, ..., Xn ∈ Rd and set M = max ‖A∗Xi‖`d2 . Then,

γ2(D, d∞,n) ≤ cM
√

logn log d.

In particular,
Un(D) ≤ c(EM2)1/2

√
log n log d.

Proof. Define

Hn = {x ∈ Rd : max
1≤i≤n

|
〈
x,Xi

〉
| ≤ 1},

H ′
n = {x ∈ Rd : max

1≤i≤n
|
〈
x,A∗Xi

〉
| ≤ 1},

‖x‖Hn = max
1≤i≤n

|
〈
x,Xi

〉
|,

‖x‖H′
n

= max
1≤i≤n

|
〈
x,A∗Xi

〉
|.

Again, and at the price of a logarithmic looseness, the proof will be
based on a covering numbers argument. Observe that for every ε > 0,
N(D, εHn) = N(Bd

2 , εH
′
n). Indeed, if x, y ∈ D = ABd

2 , then x = Au,
y = Av, for some u, v ∈ Bd

2 and

‖x− y‖Hn = max
1≤i≤n

|
〈
x− y,Xi

〉
| = max

1≤i≤n
|
〈
Au−Av,Xi

〉
|

= max
1≤i≤n

|
〈
u− v,A∗Xi

〉
| = ‖u− v‖H′

n
,

and thusA : (Rd, H ′
n) → (Rd,Hn) is an isometry, implying thatN(D, εHn) =

N(Bd
2 , εH

′
n).

Let G = (g1, ..., gd) ∈ Rd be a Gaussian vector on Rd. By the dual
Sudakov inequality [24],

log1/2N(Bd
2 , εH

′
n) ≤ c1

E‖G‖H′
n

ε
,

and observe that

E‖G‖H′
n

= E max
1≤i≤n

|
〈
G,A∗Xi

〉
| ≤ c2

√
log nmax ‖A∗Xi‖`d2 .

Fix ε0 > 0 to be named later. Applying a volumetric argument, for ε < ε0

logN(Bd
2 , εH

′
n) ≤ logN(Bd

2 , ε0H
′
n) + logN(ε0H ′

n, εH
′
n)

≤ c3

(√
log nmax1≤i≤n ‖A∗Xi‖`d2

ε0

)2

+ d log
(
1 +

ε0
ε

)
≤ (c3 + 1)d log

(
1 +

ε0
ε

)
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for the choice of ε0 =
√

log nmax ‖A∗Xi‖`d2/
√
d. Also supv∈Bd

2
‖v‖H′

n
≤

max1≤i≤n ‖A∗Xi‖`d2 ≡ M . Using an entropy integral argument it is evident
that

γ2(D, d∞,n) ≤ c4

(√
d

∫ ε0

0

√
log
(
1 +

ε0
ε

)
dε+M

√
log n

∫ M

ε0

dε

ε

)
≤ c5

(√
dε0 +M

√
log n log

(
M

ε0

))
≤ c6M

√
log n log d.

Combining the two error bounds, the first obtained by using bBd
1 ∩√

λD ⊆ bBd
1 and the second obtained by using bBd

1 ∩
√
λD ⊆

√
λD, the

following error bound is evident.

Corollary 4.9 There is an absolute constant c for which the following holds.
Let h1(n, d) = max{

√
log n,

√
log d} and h2(n, d) = log n log2 d. Set

λ1 =
c

δ2
max

{
b√
n

(
‖Q‖L2h1(log3/2 n)

√
E`β∗

)
,
b2

n

(
h2

1‖Q‖2
L2

log3 n
)}

,

λ2 =
c

δ2
max

{
b2

n

(
‖Q‖2

L2
h2

1 log3 n
)
,
‖M‖2

L2

n
(h2E`β∗)

}
,

where M = max1≤i≤n ‖A∗Xi‖`d2 , Q = max1≤i≤n ‖Xi‖`d∞ , and A is the linear
operator satisfying D = ABd

2 . Then

E
(
Lβ̂ |(Xi, Yi)ni=1

)
≤ min{λ1, λ2}.

with probability at least 1 − 2δ.

Let us return to the two families of measures we considered above and
for the sake of simplicity assume in both cases that µ is isotropic, that is,
D = Bd

2 .
First, if ‖X‖`d∞ is bounded in L∞ by U then Q ≤ U and M ≤ U

√
d.

Hence,

λ1 = cmax
{(

U · h1(log3/2 n)P`β∗

) b√
n
,
(
U2 · h2

1 log3 n
)
· b

2

n

}
,

λ2 = cmax
{(
U2 · h2

1 log3 n
) b2
n
, (h2E`β∗) · d

n

}
,
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Therefore, up to a poly-logarithmic factor in n and d, the error rate is

min
{
b2

n
+
d

n
,
b√
n

(
1 +

b√
n

)}
,

as was promised in the introduction.
For the second example, assume that µ is an isotropic, log-concave mea-

sure on Rd. As we showed above, in this case ‖Q‖L2 ≤ c log nd ≤ ch2
1. To

bound M , we need the following deep result of Paouris [25]:

Theorem 4.10 There are absolute constants c1 and c2 for which the follow-
ing holds. Let X be distributed according to an isotropic log-concave measure
on Rd. If d ≤ n ≤ exp(c1

√
d) and X1, ..., Xn are independent copies of X

then (
E max

1≤i≤n
‖Xi‖2

`d2

)1/2

≤ c2
√
d.

Thus, one obtains the following estimate on λ1 and λ2.

λ1 = cmax
{

b√
n

(
h3

1(log3/2 n)
√

E`β∗

)
,
b2

n

(
h6

1 · log3 n
)}

,

λ2 = cmax
{
b2

n

(
h6

1 · log3 n
)
,
d

n
(h2E`β∗)

}
,

Again, up to a poly-logarithmic factor in n and d, the error rate is

min
{
b2

n
+
d

n
,
b√
n

(
1 +

b√
n

)}
.

5 An oracle inequality for error rates

We remarked in the previous section that persistence is not the end of the
story. As we increase the radius bn towards

√
n, the rate of decay of the

error of the empirical minimizer P (Lf̂ |(Xi, Yi)) becomes arbitrarily slow.
On the other hand, if we slow the increase of bn then the approximation
error, infβ∈bnBd

1
E`β , does not decay as a function of the radius b. Without

knowing this approximation error in advance, the previous results do not
allow us to optimize our choice of bn. In this section, we show that if µ
happens to be isotropic and ‖Xi‖∞ is bounded almost surely, then we will
show that the “lasso” estimator

β̂ = argminβ∈Rd

(
n∑
i=1

(
〈
β,Xi

〉
− Yi)2 + ρn‖β‖1

)

27



performs almost as well as the empirical minimizer for the best value of bn.
For convenience, let us denote the approximation error by

Ad(b) = inf
β∈bBd

1

E`β .

Clearly, this is a decreasing function of b. In general, we would expect it
to be bounded below, but in very nice cases (for example, if there is some
“true” noiseless parameter) it might tend to zero as b→ ∞.

Our analysis of this problem will rely on two additional ingredients:
a model-selection inequality and an “almost-isomorphic” result that holds
with exponential confidence. The second component will be based on the
estimates we have already established for E‖Pn − P‖Gλ

.
The “almost-isometric” result we need is very similar to one which first

appeared in [3] and has appeared several times since then.

Theorem 5.1 [20] There exists an absolute constant c for which the fol-
lowing holds. Let LF be a squared loss class associated with a convex class
F and a random variable Y . Set Gλ to be the localization at level λ of the
star-shaped hull of F (that is, Gλ = {θLf : 0 ≤ θ ≤ 1 and PLf ≤ λ}). If
R = max{supf∈F ‖f‖∞, ‖Y ‖∞} and E‖Pn − P‖Gλ

≤ λ/8, then with proba-
bility at least 1 − exp(−u), for every f ∈ F

1
2
PnLf −

λ

2
− c(1 +R2)

u

n
≤ ELf ≤ 2PnLf +

λ

2
+ c(1 +R2)

u

n
.

To apply this theorem in our case, suppose that ‖X‖`d∞ ≤ M and
|Y | ≤ M almost surely. If F = {fβ : β ∈ bBd

1} then supf∈F ‖f‖∞ ≤ bM .
In particular, max{supf∈F ‖f‖∞, ‖Y ‖∞} ≤ max{1, b}M and we obtain the
following corollary of Theorem 5.1, Theorem 3.6 and Lemma 4.1:

Corollary 5.2 Suppose that X is distributed such that max{‖X‖`d∞ , |Y |} ≤
M almost surely. Then with probability at least 1−exp(u), for every β ∈ bBd

1 ,

1
2
PnLf −

λ

2
− c(1 + b2)

M2u

n
≤ ELf ≤ 2PnLf +

λ

2
+ c(1 + b2)

M2u

n

where

λ = c′M max

{
b
log3/2 n log1/2(dn)

√
Adn(b)√

n
, b2M

log3 n log(dn)
n

}
,

and c, c′ are absolute constants.
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For the model selection result that we require, we will first need a few
definitions:

Definition 5.3 Let F be a class of functions and let {Fr; r ≥ 1} be a collec-
tion of subsets of F . We say that {Fr; r ≥ 1} is an ordered, parameterized
hierarchy of F if the following conditions hold:

1. {Fr : r ≥ 1} is monotone (that is, whenever r ≤ s, Fr ⊆ Fs);

2. for every r ≥ 1, there exists a unique element f∗r ∈ Fr such that
E`f∗r = inff∈Fr P`f ;

3. the map r 7→ E`f∗r is continuous;

4. for every r0 ≥ 1,
∩
r>r0

Fr = Fr0; and

5.
∪
r≥1 Fr = F .

Define, for f ∈ F ,

r(f) = inf{r ≥ 1; f ∈ Fr}.

Note that from the semi-continuity property of an ordered, parameterized
hierarchy (property 4), it follows that f ∈ Fr(f) for all f ∈ F . Also, the
second property of an ordered, parameterized hierarchy allows us to define,
for r ≥ 1 and f ∈ Fr, the excess loss function Lr,f = (f − Y )2 − (f∗r − Y )2.
That is, Lr,f is the excess loss function with respect to the class Fr.

One can easily check that Fr = {fβ : ‖β‖1 ≤ r − 1} defines an ordered
parameterized hierarchy of F = {fβ : β ∈ Rd} with r(f) = ‖β‖1 + 1; the
only condition that is not completely trivial to check is the third condition.
A proof of this fact is given in [20] when Fr is the unit ball of a reproducing
kernel Hilbert space, but the same argument works in our case and so we
omit it.

The model selection result we require has been established in [1]:

Theorem 5.4 Let {Fr : r ≥ 1} be an ordered, parameterized hierarchy and
define, for convenience, Lf = Lr(f),f . Suppose that ρn(r) is a positive,
increasing, continuous function. If for every f ∈ F ,

1
2
PnLf − ρn(r(f)) ≤ ELf ≤ 2PnLf + ρn(r(f))

then a regularized minimizer

f̂ ∈ argminf∈F (Pn`f + cρn(r(f)))
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satisfies
E`f̂ ≤ inf

f∈F

(
E`f + c′ρn(r(f))

)
,

where c and c′ are absolute constants.

Note that the hypothesis in Theorem 5.4 is one that we are prepared
to handle: it is an “almost-isomorphic” condition of the sort that we ob-
tain from Theorem 5.1. However, Theorem 5.1 only gives us an almost-
isomorphic condition for each Fr with high probability, while Theorem 5.4
requires an isomorphic condition for each Fr. Fortunately, the exponential
confidence in Theorem 5.1 allows us to apply a union bound to Theorem 5.4,
bringing us to the following result:

Theorem 5.5 Let {Fr : r ≥ 1} be an ordered, parameterized hierarchy and
suppose that ρn(r, x) is a positive, continuous function that is increasing
in both r and x. Suppose that for every r ≥ 1, with probability at least
1 − exp(−x), for every f ∈ Fr,

1
2
PnLf − ρn(r, x) ≤ ELf ≤ 2PnLf + ρn(r, x).

Then for every x > 0, with probability at least 1−exp(−x), every regularized
minimizer

f̂ ∈ argminf∈F (Pn`f + c1ρn(2r(f), θ(r(f), x)))

satisfies
E`f̂ ≤ inf

f∈F
(E`f + c2ρn(2r(f), θ(r(f), x)))

where

θ(r, x) = x+ c3 + c4 log
(

1 +
E`f∗1

ρn(1, x+ c3)
+ log r

)
and c1 through c4 are absolute constants.

Proof. Let (ri)∞i=1 be an increasing sequence (to be determined later) such
that r1 = 1 and ri → ∞ as i → ∞. Fix u > 0 and define, for each i ≥ 1,
ui = u+ ln(π2/6) + 2 ln i. Then

∞∑
i=0

e−ui = e−u
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and so, by the union bound, with probability at least 1 − e−u, for every
i ≥ 1,

1
2
PnLri,f − ρn(ri, ui) ≤ ELri,f ≤ 2PnLri,f + ρn(ri, ui).

If we only cared about a sequence of ri, this would be enough for our
result. However, we need an almost-isomorphic condition for all r ≥ 1 and
so the next step must be to find an almost-isomorphic condition for Fr when
r ∈ [rj−1, rj ]. In one direction, we have

ELr,f = ELrj ,f − ELrj ,f∗r
≤ 2PnLrj ,f + ρn(rj , uj) − ELrj ,f∗r
= 2PnLr,f + 2PnLrj ,f∗r + ρn(rj , uj) − ELrj ,f∗r
≤ 2PnLr,f + 5ρn(rj , uj) + 3ELrj ,f∗r
≤ 2PnLr,f + 5ρn(rj , uj) + 3ELrj ,f∗rj−1

(5.1)

while in the other direction, we get

2ELr,f = 2ELrj ,f − 2ELrj ,f∗r
≥ PnLrj ,f − 2ρn(rj , uj) − 2ELrj ,f∗r
= PnLr,f + PnLrj ,f∗r − 2ρn(rj , uj) − 2ELrj ,f∗r

≥ PnLr,f −
5
2
ρn(rj , uj) −

3
2

ELrj ,f∗r

≥ PnLr,f −
5
2
ρn(rj , uj) −

3
2

ELrj ,f∗rj−1
(5.2)

Now we can choose our sequence ri: recall that r1 = 1 and set ri, for all
i ≥ 2, to be the largest number satisfying both

ri ≤ 2ri−1

ELri,f∗ri−1
≤ ρn(ri, ui). (5.3)

Note that choosing the largest number is not a problem because both ρn(r, u)
and ELr,f∗rj−1

are continuous functions of r; that is, the supremum of the
set of r satisfying (5.3) is attained.

Our choice of ri ensures that, for all i ≥ 1,

i ≤
E`f∗r1

ρn(r1, u1)
−

E`f∗ri

ρn(ri, ui)
+ log2(2ri) ≤

E`f∗r1
ρn(r1, u1)

+ log2(2ri). (5.4)

Indeed, for i = 1 this is trivial. For larger i we can proceed by induction: our
definition of ri ensures that either ri = 2ri−1 or E`f∗ri−1

= E`f∗ri
+ ρn(ri, ui).
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In the first case, log2 ri = log2 ri−1 + 1 and the inductive step follows. In
the second case, assuming that

i− 1 ≤
E`f∗r1

ρn(r1, u1)
−

E`f∗ri−1

ρn(ri−1, ui−1)
+ log2 ri−1

then

i ≤
E`f∗r1

ρn(r1, u1)
−

E`f∗ri−1

ρn(ri−1, ui−1)
+ 1 + log2(2ri)

≤
E`f∗r1

ρn(r1, u1)
−

E`f∗ri−1

ρn(ri, ui)
+ 1 + log2(2ri)

=
E`f∗r1

ρn(r1, u1)
−

E`f∗ri

ρn(ri, ui)
+ log2(2ri)

which proves (5.4) by induction. In particular, for any i ≥ 1 and any r ≥ ri,
ui ≤ θ(r, u). Therefore

ρn(ri, ui) ≤ ρn(2r, θ(r, u))

for any r ∈ [ri−1, ri].
Note that (5.4) implies that the sequence ri tends to infinity with i.

Then by (5.1), (5.2) and (5.3), with probability at least 1−e−u, for all r ≥ 1
and all f ∈ Fr,

1
2
PnLr,f − 2ρn(2r, θ(r, u)) ≤ ELr,f ≤ 2PnLr,f + 8ρn(2r, θ(r, u)).

We conclude the proof by applying Theorem 5.4.

Combining this model selection result with our previous estimates on
the complexity of Bd

1 , we obtain the following oracle inequality:

Corollary 5.6 There are absolute constants c and c′ for which the following
holds. Let (dn) be any increasing sequence and let (µn) be a sequence of
measures on Rdn. Assume further that for every n ≥ 1, X is a random
vector in Rdn distributed according to µn and that ‖X‖

`dn∞
≤ M almost

surely. If Y is a real-valued random variable with |Y | ≤ M almost surely,
then for all u > 0, with probability at least 1 − exp(−u), for any integer n
and any

β̂ ∈ argminβ∈Rdn

(
Pn`β + ρn(1 + ‖β‖`d1 , u)

)
,
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we have
E`β̂ ≤ inf

β∈Rdn

(
E`β + ρn(1 + ‖β‖`d1 , u)

)
where ρn(r, u) ≥ τn(r, u) and

τn(r, u) = c(1 +M)

max

{
r
log3/2 n log1/2(dnn)

√
Adn(r)√

n
, r2M

log3 n log(dnn)
n

, r2M
u

n
,
Mr2 log log r

n

}
.

Proof. With Corollary 5.2 in mind, define

ρn(r, u) = c(1+M)max

{
r
log3/2 n log1/2(dnn)

√
Adn(r)√

n
,Mr2

log3 n log(dn)
n

,
Mr2u

n

}
.

By Corollary 5.2, it is evident that ρn satisfies the hypothesis of Theorem 5.5.
To complete the proof, we only need to expand the θ(r, u) function from
Theorem 5.5 and simplify. Indeed, ρn(1, u) ≥ ρn(1, 0) ≥ cM2n−1 and so

E`f∗1
ρ(1, u+ c3)

≤ M2

ρ(1, 0)
≤ cn.

Then θ(r, u) ≤ u+ c(1 + log n+ log log r) and thus,

ρn(r, θ(r, u)) ≤ c(1 +M)max

{
r
log3/2 n log1/2(dnn)

√
Adn(r)√

n
,

r2M
log3 n log(dnn)

n
,
r2Mu

n
,
Mr2 log log r

n

}
=: τn(r, u).

Note that this is not the “lasso”-type regularization that we promised.
Indeed, the regularization parameter contains quadratic terms like ‖β‖2

1 in-
stead of only linear terms like ‖β‖1. Our next and final result will use the
trivial bound Adn(b) ≤ Adn(0) ≤ ‖Y ‖2

L2
to simplify Corollary 5.6 and pro-

vide the promised regularization parameter. First, though, let us briefly
discuss the case in which Adn(b) is, for sufficiently large n and r, zero, which
is the case when there is a true, noiseless parameter for all sufficiently large
n. Then there exists s ∈ R such that for a sufficiently large n,

inf
β∈Rdn

(
E`β + τn(1 + ‖β‖`d1 , u)

)
≤ Adn(s) + τn(s, u)

= cs2(1 +M2)max
{

log3 n log(dnn)
n

,
u

n
,
log log s

n

}
.
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If, for example, dn is at most polynomial in n, then one obtains error rates
that are ∼ 1/n up to logarithmic factors in n.

We conclude with the promised, lasso-type result:

Corollary 5.7 There exist absolute constants c and c′ for which the follow-
ing holds. Let (dn), X, Y and M be as in Corollary 5.6. If log dn = o(n)
then for all sufficiently large n (depending on dn and M), with probability
at least 1 − exp(− log3 n log(dnn)), for any

β̂ ∈ argminβ∈Rdn

(
Pn`β + cM2‖β‖`d1

log3/2 n log1/2(dnn)√
n

)
,

we have

E`β̂ ≤ inf
β∈Rdn

(
E`β + c′M2(1 + ‖β‖`d1)

log3/2 n log1/2(dnn)√
n

)
.

Proof. Define

ρ̃n(r, u) = c(1+M2)max

{
r
log3/2 n log1/2(dnn)√

n
, r2

log3 n log(dnn)
n

, r2
u

n
,
r2 log log r

n

}
and note that (for an appropriate choice of the absolute constant c) ρ̃n ≥ τn.
Therefore Corollary 5.6 holds with ρn = ρ̃n. To complete the proof, one has
to remove the r2 terms from ρ̃n. To this end, fix u = log3 n log(dnn), and
define

σn(r) = c(1 +M2)r
log3/2 n log1/2(dnn)√

n
,

and

Sn(β) = E`β + cρ̃n(1 + ‖β‖`d1 , u)

Ŝn(β) = Pn`β + c′ρ̃n(1 + ‖β‖`d1 , u)

Tn(β) = E`β + cσn(1 + ‖β‖`d1)

T̂n(β) = Pn`β + c′σn(1 + ‖β‖`d1).

We claim that

argminβ∈Rdn Ŝn(β) ⊃ argminβ∈Rdn T̂n(β) (5.5)

and that
inf

β∈Rdn
Sn(β) ≤ inf

β∈Rdn
Tn(β). (5.6)
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Observe that if (5.5) and (5.6) hold, then they, together with Corollary 5.6,
imply the desired result, because argmin(Pn`β+σn(1+‖β‖1)) = argmin(Pn`β+
σn(‖β‖1)), as σn(r) is a linear function of r.

Suppose there is some α such that Sn(α) > Tn(α). Then ρ̃n(1+‖α‖1, u) >
σn(1 + ‖α‖1), which implies (setting r = 1 + ‖α‖1 for ease of notation) that

r
log3/2 n log1/2(dnn)√

n
< max

{
r2

log3 n log(dnn)
n

, r2
u

n
, r2 log log r

1
n

}
.

With our choice of u, the first two terms on the right hand side are the same,
and we infer that either

r
log3/2 n log1/2(dnn)√

n
< r2

log3 n log(dnn)
n

or

r
log3/2 n log1/2(dnn)√

n
<
r2 log log r

n
.

In either case, for sufficiently large n,

r
log3/2 n log1/2(dnn)√

n
> 1

(the first case is immediate; note that the second case implies that
√
n log

√
n ≤

r log r and so r ≥
√
n). In particular, Tn(α) ≥ cσn(1 + ‖α‖1) ≥ c(1 +M2).

On the other hand,

inf
β
Tn(β) ≤ Tn(0) ≤M + cσn(1) ≤M + c̃

(1 +M2) log3/2 n log1/2(dnn)√
n

.

Therefore, if log dn = o(n), then infβ Tn(β) ≤ 2M for sufficiently large
n, and thus, Tn(α) > infβ Tn(β), provided that the c in the definition of Tn
satisfies c > 1. In other words, the only way to come close to the infimum of
Tn(β) is if Sn(β) ≤ Tn(β), which implies that infβ Sn(β) ≤ infβ Tn(β) and
so (5.6) is confirmed.

Suppose we can choose α such that Ŝn(α) > T̂n(α). Then ρ̃n(1 +
‖α‖1, u) > σn(1+‖α‖1), and repeating the previous argument, it follows that
for sufficiently large n (depending only onM and dn), α is not a minimizer of
T̂n. That is, α ∈ argmin T̂n only if T̂n(α) ≥ Ŝn(α). Since T̂n(β) ≤ Ŝn(β) for
every β, then T̂n(α) = Ŝn(α). Hence, α is a minimizer of Ŝn, proving (5.5).
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