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Introduction. Brent’s work in Computer Science and Mathematics is
well-known and widely cited [192]. This document outlines his contri-
butions to parallel algorithms, analysis of algorithms, pseudo-random
number generation, number-theoretic and high-precision computations,
optimisation, zero-finding, combinatorics, etc. Brent’s work has been
influential in the development of several of these fields.

Early Papers. Brent’s first paper [1] is on software for automatic
contouring, and dates from the period in 1968 when he was working
as a programmer in the Monash University Computer Centre before
starting his studies at Stanford [193].

Brent’s second publication [2] is a report on a project done at Stan-
ford in 1969–70. It considers the (then new) algorithm for matrix mul-
tiplication by Strassen [178], and similar algorithms. Although never
submitted to a journal, it is still quoted as it contains the first floating-
point error analysis of such algorithms. The error analysis of Strassen’s
algorithm shows that, although it is not as stable componentwise as the
normal algorithm, it is sufficiently stable to be usable in implementa-
tions of Level 3 Basic Linear Algebra Subroutines (BLAS) [194]. The
conjecture [2, pg. 42] that 3×3 matrix multiplication can be performed
with 23 multiplications was later proved by Laderman [148]. Stability
results for an algorithm of Winograd [190] were published in Brent’s
fourth paper [4].

Brent’s third paper [3] resulted from an assignment at Stanford [195].
In it, an upper bound is derived for the time required to add n-bit
numbers modulo 2n, using circuit elements with a limited fan-in and
unit delay, and assuming that all numbers have the usual binary en-
coding. The upper bound is within a factor 1 + o(1) of Winograd’s
lower bound [188] (which holds for all encodings) as n→∞, and only
O(n log n) circuit elements are required. It was discovered later that
this result had been proved independently by Ofman [167].

While at Stanford (1968–1971), Brent considered the distribution
of gaps between primes, but this work was not published until later.
His Ph.D. thesis was on a quite different topic: optimisation and zero-
finding algorithms. Brent’s book Algorithms for Minimization without
Derivatives [6] was a revision of his thesis, the main change being that
the programs were translated from Algol into Fortran.
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Parallel Algorithms. Parallel computation is one of the most active
areas of Computer Science. Brent is a pioneer in the development and
analysis of parallel algorithms.

Brent’s results [12, 15] on parallel evaluation of arithmetic expres-
sions show that arithmetic expressions in n distinct variables can be
evaluated in O(log n) parallel steps using O(n/ log n) processors. The
result is the best possible, up to small constant factors. It should be
compared with the well-known result of Valiant et al [184] that any
multivariate polynomial of degree d that can be evaluated sequentially
in n steps can also be evaluated inO((log d)(log nd)) parallel steps using
O(n3d6) processors [196]. Valiant’s result is more general, but weaker,
because of the log d terms in the time bound and the much larger num-
ber of processors. Both results apply to Boolean expressions, so they
have implications for the design of circuits with small depth, i.e. small
delay. Brent’s result improved on earlier joint work with Kuck and
Maruyama [9, 197] and various results for restricted classes of expres-
sions, for example [161]. It inspired further work by Winograd [191],
Muller and Preparata [160], Preparata, Muller and Barak [170], Miller
and Reif [155], Miller, Ramachandran and Kaltofen [156], Miller and
Teng [157], and others.

The systolic array [198, 199] is a particularly simple form of parallel
computer. In joint work with H. T. Kung and Franklin T. Luk, Brent
obtained several important results for computations on systolic arrays.
In [41, 42], he showed how integer and polynomial greatest common
divisor (GCD) problems could be evaluated in linear time on a linear
systolic array. The polynomial GCD problem has applications to de-
coding of Reed-Solomon and other error-detecting codes [121, 171]. The
integer GCD problem is of interest because it is not known whether it is
in the class NC [200]. In fact, the fastest known parallel algorithm for
the integer GCD problem is only slightly faster than the Brent-Kung
algorithm, although it uses many more processors [122].

Jointly with Luk, Brent pioneered the use of Jacobi-like algorithms
for the singular value decomposition (SVD) and symmetric eigenvalue
problem on systolic arrays [4, 201]. These algorithms are competitive
with more traditional algorithms [202] on local-memory computers, and
have good numerical properties [135]. Brent and Luk [43, 44] also gave
practical linear-time algorithms for the solution of Toeplitz systems
on linear systolic arrays. The results of Brent and Luk have many
applications in digital signal processing [137].

Brent’s work on parallel algorithms includes the development of prac-
tical algorithms for linear algebra [73] and sorting [80] on distributed-
memory MIMD computers.

In the 1990s, Brent was joint leader (with Robin B. Stanton) of
the ANU-Fujitsu CAP Project [203], a collaborative R&D project to
develop systems and applications software for MIMD computers such
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as the Fujitsu AP1000/AP3000. Some highlights of this project were
the implementation of parallel Linux, parallel file systems, and parallel
sorting algorithms. At that time, Brent was also joint leader (with
Michael R. Osborne) of a project [204] to develop scientific subroutine
libraries on parallel/vector computers such as the Fujitsu VPP300.

VLSI Design and Area-Time Bounds. Early results [205] on the
complexity of computational circuits counted gates and gate delays but
ignored wires and propagation delays. With the introduction of “very
large scale integration” (VLSI), a more realistic model which took wires
into account was required. Brent and Kung introduced such a model in
an influential paper [33] which established a lower bound AT = Ω(n3/2)
on the product of the area A and time T required for the fundamen-
tal problem of n-bit binary multiplication [206]. The technique was
extended to decision problems in [39]. The results give nontrivial ex-
amples of a common phenomenon: there is usually a tradeoff between
the area A and time T required for a computation on a VLSI chip [183].

Binary trees are fundamental data structures. Brent and Kung [34]
used geometric arguments to obtain a lower bound on the area of binary
tree layouts, with significant practical implications for VLSI design.

Parallel prefix computation is a fundamental technique in parallel
processing [141, 149]. Brent and Kung [37] showed how to apply it
to the design of VLSI carry-lookahead adders. At the time the use of
carry-lookahead in VLSI designs was unpopular [154], but the Brent-
Kung design technique has been applied widely in VLSI implementa-
tions of adders [139, 182, 187].

Computational Complexity and Analysis of Algorithms. “Hash
coding” (aka “scatter storage”) is an important programming tech-
nique, described for example by Knuth [146, Ch. 6]. In [7], Brent
describes and analyses an algorithm that reduces the retrieval time at
the expense of increasing the cost of insertion. This is worthwhile in
many applications where items are, on average, retrieved several times.

In an early and significant paper on the analytic [207] computa-
tional complexity of approximating zeros of functions of one variable,
Brent, Winograd and Wolfe [10] showed that locally convergent itera-
tions which use only evaluations of f, f ′, . . . , f [d] have order bounded
above by d+ 2. This result is best possible [208] and attainable.

Symbolic computation often involves the manipulation of formal
power series in one or more variables. Brent and Kung [28] established
the best known upper bounds on the complexity of composition and re-
version of power series in one variable, and showed the equivalence of
the composition and reversion problems, up to constant factors [209].
For power series satisfying first and second-order ordinary differential
equations, which includes most power series of interest in computation,
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O(n log n) algorithms were given. The results were later extended to
dense multivariate power series [24] and to generalised composition [31].

The Euclidean algorithm for finding greatest common divisors is one
of the first and best-analysed of algorithms. An interesting variant
is the binary Euclidean algorithm, which has potential advantages on
a binary computer because the only divisions required are by powers
of two. Brent was the first to give a realistic model for the binary
Euclidean algorithm, in his 1976 paper [23]. This paper made some as-
sumptions and conjectures that have taken almost forty years to resolve
satisfactorily, see [210].

Floating-Point Arithmetic and High-Precision Computations.
Brent’s interest in arithmetic covers a broad range, from computer
hardware to software for high-precision computations. Results on bi-
nary addition [3, 37] are discussed above. A non-trivial bound on the
error in floating-point complex multiplication is given in [93], improving
on well-known bounds [140, 168].

Brent [11] was one of the first papers to show clearly the advantages
of binary rounded arithmetic over other systems (e.g. base 16) which
were popular at the time for floating-point arithmetic [211].

Brent [22] established the best known upper bounds on the complex-
ity of high precision evaluation of elementary functions. Essentially, an
n-bit result can be obtained with O(log n) multiplications of O(n)-bit
numbers. Special cases include the evaluation of constants such as π.
The idea is to use quadratically convergent iterations such as Gauss’s
arithmetic-geometric mean or Landen transformations. The elegant
quadratically convergent algorithm for π (discovered independently by
Brent [19, 22] and Salamin [174]) motivated the Borwein brothers’ book
Pi and the AGM [123].

No quadratically convergent algorithm is known for the computation
of Euler’s constant γ. A fast algorithm [212] was given by Brent and
McMillan [30, 142, 213]. It has never been proved that γ is irrational,
but [30] shows that, if γ = p/q is rational, then |q| > 1015000.

The paper [32] described the principal approaches possible for un-
restricted numerical algorithms for the computation of elementary and
special functions. Here unrestricted means that no a priori bounds are
placed on the precision required [214]. The algorithms of [32] are gen-
erally more practical and cover a wider class of functions than those
of [22].

Algorithms intended for digital computers are of little practical use
without reliable software implementations. Brent’s MP package [26, 27]
for multiple-precision floating-point arithmetic implemented the algo-
rithms of [32] (and some of [21]). The algorithms used in MP have been
adopted in several other software packages [215]. MP has been used,
for example, in work by Briggs [124] on the Feigenbaum constants,
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Odlyzko and te Riele [166] in their disproof of the Mertens conjecture,
Odlyzko [163, 165] on the zeros of the Riemann zeta function, and
Csordas et al [133, 164] on the computation of the de Bruijn-Newman
constant.

In high-precision computations, Bernoulli numbers are often required
because of their appearance in the Euler-Maclaurin formula. Brent and
Harvey [102] gave asymptotically fast algorithms for the computation
of the first n Bernoulli, Tangent, and Secant numbers.

Collaboration with Paul Zimmermann. Since about 1998, Brent
collaborated extensively with Paul Zimmermann (Nancy) on topics re-
lated to multiple-precision arithmetic (e.g. in the specification and anal-
ysis of algorithms used in the MPFR package [216]). One outcome of
this collaboration was the book Modern Computer Arithmetic, pub-
lished by Cambridge University Press [95]. This was an attempt to
present concisely all important state-of-the-art algorithms for multi-
ple precision arithmetic. Thus, it provides an update to the parts of
Knuth [145, Ch. 4] that deal with this topic. Several new algorithms
were discovered while the book was being written, e.g. an asymptot-
ically fast algorithm for computing the Jacobi symbol [99], and fast
in-place algorithms for computing Tangent and Secant numbers [95,
§4.7.2].

Another part of the collaboration with Zimmermann was the compu-
tation of primitive trinomials of high (Mersenne exponent) degree over
GF(2). This started with a paper [88] on trinomiais of degree 3021377,
which were tested using a “classical” O(n2) algorithm. Fortunately,
faster algorithms were soon found, allowing the search for primitive
trinomials to keep up with the Mersenne exponents being found by the
GIMPS project [217]. For a summary, see the AMS Notices paper [98],
and for a more recent update, see [115]. Perhaps more significant than
the computation of specific primitive trinomials was the development
of algorithms and software for efficient computation in the polynomial
ring GF(2)[x], see for example [96, 97]. Also important was the em-
phasis on verifiability of the computational results – for example by
publishing “certificates” that could easily be verified by an indepen-
dent computation. Brent was aware of the need for verifiability since
his contribution to the discovery of the “Pentium bug” by Nicely [218].

Pseudo-Random Number Generators. The fundamental results
on linear recurrences of integers mod m were obtained many years
ago [186]. Brent [70] obtained a surprising new result on the period
of three-term linear recurrences mod 2w. The result has applications
to the popular class of “generalised Fibonacci” pseudo-random number
generators, which are one application of his work with Zimmermann on
the computation of primitive trinomials, mentioned above. Brent has
made significant contributions to the development of uniform [69, 92,
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94, 100] and normal [16, 75, 83, 90] random number generators. He has
also considered efficient algorithms for random number generation on
different computer architectures, e.g. vector and parallel computers [69,
86] and GPUs [101].

Number Theory. The Riemann Hypothesis (RH) is a famous open
problem with many consequences in analytic number theory. If false, it
could (in principle) be disproved by numerical computations with rigor-
ous error bounds. Using an improvement of a method due to Lehmer,
Turing and Littlewood, Brent [29] showed that the first 75, 000, 000
zeros σ + it of the Riemann zeta function ζ(s) in the upper half-plane
are simple and lie on the critical line σ = 1

2
. This is as expected if RH

is true. Various interesting empirical results on the distribution of the
zeros were obtained in the course of the computation. Using essentially
the same method, the result was extended to the first 200,000,000 zeros
in [40, 46]. It has been extended even further by later authors.

Brent’s papers related to the theory of ζ(s) include [105, 106], which
consider the sign of <(ζ(s)) in the region to the right of the critical line,
and [116], which gives error bounds on asymptotic approximations to
the Riemann-Siegel theta function.

Several of Brent’s papers considered the empirical distribution of
(rational) primes. For example, in [17] he showed that primes and twin
primes behave in a very different manner (at least up to 1011), and
obtained an estimate for Brun’s constant [218]. Related papers are [14]
on a consequence of the conjecture of Hardy and Littlewood [138] on
the distribution of small gaps between primes, and [13, 35] on large
gaps between consecutive primes.

Brent has made significant contributions to the theory and imple-
mentation of integer factorisation algorithms, a topical subject given
the ubiquity of “public key” cryptosystems whose security depends
on the (assumed) difficulty of integer factorisation [66, 173]. The pa-
pers [61, 63] announced the complete factorisation of the Fermat num-

ber F11 = 2211
+ 1 by Brent’s variant [54, 57] of Lenstra’s elliptic curve

method (ECM) [151]. This was a surprise, since Brent and Pollard [38]
had factored F8 (by a different method), but F9 and F10 had not been
completely factored [219]. The factorisation of F10 was completed by
Brent in October 1995: see [81].

The factorisation of F10 and F11 used Brent’s improvement of the
elliptic curve method. Brent has also contributed to the development
of the number field sieve (NFS). In fact, two of Brent’s students (Brian
Murphy and Shi Bai) wrote their Ph.D. theses on polynomial selection
in NFS. See, for example, the joint papers [84, 108].

The existence of odd perfect numbers is an old open problem [220].
Brent, Cohen and te Riele [55, 64] extended the lower bound on an odd
perfect number (if one exists) from 1050 to 10300. This required both
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new mathematical results [221] and good implementations of modern
integer factorisation algorithms [222].

The factorisations required for [64] formed the basis for a significant
extension, by Brent, Montgomery and te Riele [71, 89], of the “Cun-
ningham” tables [125] of factors of integers of the form an ± 1.

The cyclotomic polynomials Φn(z) satisfy well-known identities of
Gauss, Aurifeuille and Lucas [172, 176]. Brent [68, 72] gave efficient
algorithms for computing the polynomials occurring in these identities.
He also gave explicit generating functions for these polynomials, and
closed-form expressions for the corresponding Aurifeuillian factors of
certain integers of the form an ± 1. The generating functions display
an interesting connection with Dirichlet L-functions and the theory of
quadratic fields.

Most of Brent’s number-theoretic work has had a computational
flavour, but recently he collaborated with Michael Coons and Wadim
Zudilin to give a new method for algebraic independence results in
the context of Mahler’s method [112, 152]. It should be noted that
Kurt Mahler provided some motivation for the development of the MP
package (described above) by asking computational questions that were
too difficult for his calculator to solve. Mahler was interested in the
accurate computation of eπ

√
r for certain rational r. One example is

eπ
√

163 ≈ 262537412640768743.99999999999925, which is known to be
a transcendental number, but is very close to an integer. This can be
explained by the theory of modular forms [127].

Solution of Structured Linear Systems. Brent has made several
significant contributions to algorithms for the solution of Toeplitz [223]
systems of linear equations and Toeplitz least squares problems. Linear-
time algorithms for systolic arrays are mentioned above.

By classical results of Kolmogorov, Wiener and Levinson [224], n by
n Toeplitz linear systems can be solved in O(n2) operations. Brent,
Gustavson and Yun [36] showed that O(n(log n)2) algorithms exist.
The algorithms depend on the close connection between computation
of the Padé table, or the continued fraction expansion, of a power series,
and the solution of a Toeplitz system. The result motivated the de-
velopment of several other O(n(log n)2) algorithms [58, 118, 120, 134].
The algorithms just mentioned are generally numerically unstable un-
less special conditions (e.g. positive definiteness) are imposed. There
is much interest in the stable solution of unsymmetric or indefinite n
by n Toeplitz systems Ax = b in o(n3) operations. Bojanczyk, Brent
and de Hoog [52] showed how the orthogonal factorisation A = QR
of the Toeplitz matrix A could be computed in O(n2) steps on a se-
quential computer, and in O(n) steps on a parallel computer with O(n)
processors [225]. The algorithm is a significant improvement over an
earlier (unstable and inherently sequential) algorithm of Sweet [180],
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and gives a weakly stable [226] algorithm for the solution of Toeplitz
linear systems and linear least squares problems [59]. Later work on the
stability of fast algorithms for Toeplitz and related matrix problems,
in collaboration with Bojanczyk, de Hoog and Sweet, may be found
in [76, 77, 79]. For example, in [77] the stability of the Bareiss (Schur)
algorithm was shown to be similar to that of Gaussian elimination [227].

Optimisation and Solution of Nonlinear Algebraic Systems.
The monograph Algorithms for Minimization without Derivatives [6]
considers algorithms for zero-finding and optimisation under the con-
straint that only function (not derivative) evaluations are permitted.
It improves on Dekker’s algorithm for the problem of finding a zero of
a function of one variable, and gives an analogous algorithm for min-
imisation of a function of one variable. Implementations of these algo-
rithms are still in wide use. Other problems considered in [6] include
the global optimisation of a function of a small number of variables,
given bounds on derivatives; and the unconstrained optimisation of a
function of several variables. Some modifications to Powell’s (1964)
algorithm [169] are suggested.

In [8] Brent considered efficient methods for approximating the solu-
tion of a system of nonlinear equations, using only function evaluations.
He improved on the method of Brown and Conte [126] by using (numer-
ically stable) orthogonal transformations and optimising the Ostrowski
efficiency. Brent’s method is still widely used and recommended [158].

Other papers on zero-finding algorithms include [5, 18, 19].

Training Neural Networks. In [65], Brent described a fast training
algorithm for multi-layer feed-forward neural nets [132]. The algorithm
is much faster than the popular but inefficient “back propagation” al-
gorithm. It also demonstrates a close connection between neural nets
and older classification and data retrieval methods in common use by
statisticians and computer scientists.

Combinatorics. Brent and McKay [56] is an early work with a combi-
natorial flavour. It considers the distribution of ranks of random n×n
symmetric matrices in the ring Zm.

Since 2008, Brent has collaborated with Judy-anne Osborn, Will Or-
rick, Warren Smith and Paul Zimmermann on the Hadamard maximal
determinant problem, which asks for bounds on the maximal deter-
minant of a square {±1}-matrix [228]. Results of this collaboration
were the determination of the “maxdet” matrices of orders 19 and 37
in [103], the development of randomised switching algorithms to search
large spaces [104], and the proof of new bounds on the maxdet prob-
lem by both deterministic [107] and probabilistic [110, 113] methods.
In general, the probabilistic method gives sharper results.
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The work on probabilistic lower bounds has had some surprising
spinoffs, including new bounds on determinants of perturbations of the
identity matrix [111], and the discovery of a family of discrete analogues
of Macdonald-Mehta integrals [114] that can be expressed as products
of Gamma functions.
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[135] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM
J. Sci. Stat. Computing 11, 1992, 1204–1246.

[136] J. Dongarra and D. Sorensen, A fully parallel algorithm for the symmetric
eigenvalue problem, SIAM J. Scientific and Statistical Computing 8, 1987,
139–154.

[137] G. H. Golub and P. Van Dooren, Numerical Linear Algebra, Digital Signal
Processing and Parallel Algorithms, Springer-Verlag, 1990, 93–110.

[138] G. H. Hardy and J. E. Littlewood, Some problems of ‘partitio numerorum’;
III: On the expression of a number as a sum of primes, Acta Math. 44, 1923,
1–70.

[139] J. L. Hennessy, D. A. Patterson and D. Goldberg, Computer Architecture:
A Quantitative Approach, second edition, Morgan Kaufmann, San Mateo,
California, 1996, A67-A69.

[140] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.,
SIAM, 2002.

[141] W. D. Hillis and G. Steele, Data parallel algorithms, Comm. ACM 12, 1986,
1170–1183.

[142] J. D. Jackson and W. K. H. Panofsky, Edwin Mattison McMillan 1907–1991,
Biographical Memoirs Nat. Acad. Sci. (USA), 69 (1996), 213–241.

[143] F. Johansson, A fast algorithm for reversion of power series, Mathematics of
Computation 84 (2015), 475–484.

[144] D. E. Knuth, Euler’s constant to 1271 places, Math. Comp. 16, 1962, 275–281.
[145] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical

Algorithms, 3rd ed., Addison-Wesley, 1997.
[146] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Search-

ing, 2nd ed., Addison-Wesley, 1998.
[147] H. T. Kung, Why systolic architectures?, IEEE Computer 15, Jan. 1982,

37–45.
[148] J. D. Laderman, A noncommutative algorithm for multiplying 3× 3 matrices

using 23 multiplications, Bull. Amer. Math. Soc. 82, (1976), 126–128.



THE WORK OF R. P. BRENT 17

[149] R. Ladner and M. Fischer, Parallel prefix computation, J. ACM 27, 1980,
831–838.

[150] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The
factorization of the ninth Fermat number, Mathematics of Computation 61
(1993), 319–349.

[151] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathe-
matics 126 (1987), 649–673.

[152] K. Mahler, On a special functional equation, J. London Math. Soc. 15 (1940),
115–123.

[153] G. Maze, Existence of a limiting distribution for the binary GCD algorithm,
J. Discrete Algorithms 5 (2007), 176–186.

[154] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,
1980, Sec. 5.5.

[155] G. L. Miller and J. H. Reif, Parallel tree contraction, Part I: Fundamentals,
in Randomness and Computation (edited by S. Micali), JAI Press, 1988.

[156] G. L. Miller, V. Ramachandran and E. Kaltofen, Efficient parallel evaluation
of straight-line code and arithmetic circuits, SIAM J. Computing 17, 1988,
687–695.

[157] G. F. Miller and S.-H. Teng, Dynamic parallel complexity of computational
circuits, Proc. 19th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1987, 254–263.
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[198] Closely related to Von Neumann’s cellular automata. See Kung [147] for an

introduction to systolic architectures.
[199] The results for systolic arrays are also applicable to more general models of

parallel computation.
[200] NC is the class of problems which can be solved in poly-log time using a

polynomial number of processors. The basic arithmetic operations are in NC.
See Cook [131] for an introduction.

[201] See [42, 47, 53] for GCDs, and [45, 48, 50] for the symmetric eigenvalue
problem, the SVD and various generalisations.

[202] For example, reduction to tridiagonal or Hessenberg form followed by the
QR algorithm, or the “divide and conquer” algorithm of Dongarra and
Sorensen [136].

[203] R. P. Brent and R. B. Stanton (editors), ANU/Fujitsu CAP Research Pro-
gram Report 1996, Department of Computer Science and Computer Sciences
Laboratory, Australian National University, October 1996.

[204] For historical reasons this project was known as the “Area 4” project. For
software developed during the project, see [78, 87].

[205] See, for example, Brent [3], Ofman [167], Savage [175], and Winograd [189].
[206] A similar result was obtained independently by Abelson and Andreae [117].
[207] As opposed to discrete. See, for example, Traub and Wozniakowski [181].
[208] The order is bounded by d+1 for iteration schemes without memory, e.g. New-

ton’s method.
[209] In 2013, Fredrik Johansson [143] showed how to obtain a small constant fac-

tor improvement over the Brent-Kung algorithm for univariate reversion by
avoiding the reduction to composition and Newton’s iteration.

[210] The probabilistic assumptions of Brent’s paper [23] were justified by Brigitte
Vallée [185] (see also Knuth [145]). The existence and uniqueness of a limiting
distribution (conjectured in [23]) was proved by Gérard Maze [153]. Further
progress has been made recently by Ian Morris [159].

[211] Since the widespread acceptance of the IEEE floating-point standard it has
become the conventional wisdom that base two is preferable to higher bases
for floating-point arithmetic. However, in 1972 the subject was controversial
enough to delay the publication of [11].

[212] Faster than an earlier algorithm of Brent [25], which in turn was faster than
algorithms of Sweeney [179] and Knuth [144]. For an historical perspective,
see [74].

[213] A gap in the error analysis of the most efficient version of the Brent-McMillan
algorithm was filled by Brent and Johansson [109].

[214] The term unrestricted was used in this sense by Clenshaw and Olver [130].
[215] For example: Bailey [119], also in GMP, Magma, MPFR and (probably) in

commercial packages such as Mathematica. (We say “probably” because the
public documentation is incomplete.)

[216] For the GNU MPFR Library, see http://www.mpfr.org/.
[217] GIMPS stands for “Great Internet Mersenne Prime Search”, see http://

www.mersenne.org/.

http://www.mpfr.org/
http://www.mersenne.org/
http://www.mersenne.org/
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[218] Nicely [162] extended Brent’s computation of Brun’s constant. He describes
the computation which uncovered the notorious bug in the Intel Pentium
floating-point divide operation. This was noticed when results of computa-
tions on the Pentium disagreed with the results computed on earlier 32-bit
Intel processors (used by Nicely) and on a 36-bit Univac 1108 computer (used
by Brent).

[219] The factorisation of F9 was completed in 1990 by a world-wide collaboration
(in which Brent was a participant) using the Number Field Sieve algorithm:
see Lenstra et al [150].

[220] A positive integer is perfect if it is equal to the sum of its divisors (other than
itself), e.g. 28 = 1 + 2 + 4 + 7 + 14.

[221] For example, the q5k/2 Theorem of [64].
[222] Specifically, the elliptic curve method (ECM) and the multiple polynomial

quadratic sieve (MPQS).
[223] The algorithms can be generalised to other classes of low displacement-rank

matrices, e.g. Hankel, block Toeplitz, etc.
[224] For historical references, see Bunch [128].
[225] R is upper triangular. For simplicity we assume that the matrix A is square.
[226] The algorithm computes the Cholesky factor R of ATA stably, but the com-

puted Q is not necessarily close to orthogonal, so it is best to solve for x using
RTRx = AT b, followed if necessary by iterative refinement.

[227] For generalisations of this result, see [129, 177].
[228] For rectangular matrices A ∈ Rm×n, m ≥ n > 0, Hadamard’s problem can

be generalised by considering the determinant of the Gram matrix ATA.
[229] A complete list of Brent’s publications, many of which are available online,

is at http://maths-people.anu.edu.au/~brent/pub/pubsall.html.

http://maths-people.anu.edu.au/~brent/pub/pubsall.html
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