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Abstract

Corollary 2, Entry 9, Chapter 4 of Ramanujan’s first notebook claims that

∞∑
k=1

(−1)k−1

nk

(
xk

k!

)n

∼ ln x + γ

as x →∞. This is known to be correct for the case n = 1, but incorrect for n ≥ 3. We show
that the result is correct for n = 2. We also consider the order of the error term, and discuss
a different, correct generalisation of the case n = 1.
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1 Introduction

Much of Ramanujan’s work was not published during his lifetime, but was summarised in his
Notebooks. These were printed in facsimile in 1957 [14], and edited editions have been published
by Berndt [2, 3, 4].

Many of Ramanujan’s results were obtained in a formal manner, and he did not state suffi-
cient conditions for their validity. For example, Example 3, Entry 9, Chapter 4 (page 97 of [2])
is ∞∑

k=1

(−1)k−1(ϕ(k)− ϕ(−k))
k

= ϕ′(0) (1)

but clearly some conditions on the function ϕ(z) are required. Berndt has given sufficient
conditions, but they do not always hold for Ramanujan’s applications of (1). In fact, Ramanujan
does not claim exact equality in (1), but writes that the left side is “nearly” equal to the right
side. Thus, some sort of approximation or asymptotic equality is intended.

To illustrate the use of (1), take ϕ(z) = xz/Γ(z+1), where x > 0 is real. Proceeding formally,
we obtain ∞∑

k=1

(−1)k−1

k

xk

k!
= lnx + γ , (2)

where γ = −Γ′(1) is Euler’s constant.
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If equality in (2) is interpreted as asymptotic equality (usually denoted by “ ∼ ”) as x →∞,
then the result is correct. In fact, a classical result (also given on page 167 of [3]) is

∞∑
k=1

(−1)k−1

k

xk

k!
− lnx− γ =

∫ ∞
x

e−t

t
dt = O(e−x/x) . (3)

Ramanujan’s Corollary 2, Entry 9, Chapter 4 (page 98 of [2]) is that, for positive integer n,

∞∑
k=1

(−1)k−1

k

(
xk

k!

)n

∼ n
∞∑

k=1

(−1)k−1

k

xk

k!
.

In view of (3), this is equivalent to

∞∑
k=1

(−1)k−1

nk

(
xk

k!

)n

∼ lnx + γ (4)

It is plausible that Ramanujan derived this result from (1) in the same formal manner that we
derived (2) above, but taking ϕ(z) = (xz/Γ(z + 1))n.

Berndt [2] shows that (4) is false for n ≥ 3; in fact, the function defined by the left side of (4)
changes sign infinitely often, and grows exponentially large as x →∞. However, Berndt leaves
the case n = 2 open.

The aim of this paper is to show that (4) is true in the case n = 2. Theorem 1 in Section 3
gives an exact expression for the error in (4) as an integral involving the Bessel function J0(x),
and Corollary 1 deduces an asymptotic expansion. The most significant term is O(x−3/2) as
x →∞.

Theorem 1 is a special case1 of a formula given on page 48 of Luke [9]. However, the
connection with Ramanujan does not seem to have been noticed before.

In Corollary 2, Entry 2, Chapter 3 of his first Notebook, Ramanujan shows that the function
on the left side of (2) can be written as

e−x
∞∑

k=0

Hk
xk

k!
,

where Hk =
∑k

j=1 1/j is a harmonic number (H0 = 0). Thus

∞∑
k=0

Hk
xk

k!

/ ∞∑
k=0

xk

k!
∼ lnx + γ . (5)

In Section 4 we indicate how Ramanujan might have generalised (5) in much the same way
that he attempted to generalise (2).

2 Notation and Preliminary Results

In this section we give some preliminary results on integrals involving J0. These results may be
found in the literature, but for completeness we sketch their proofs.

Recall that

J0(x) =
∞∑

k=0

(−1)k(x/2)2k

k!k!
. (6)

J0(z) is an entire function, but we are only concerned with its behaviour on the positive real
axis. For small positive x, J0(x) = 1 + O(x2). For large positive x, Hankel’s asymptotic

1Also given in formula 11.1.20, Chapter 11 of Abramowitz and Stegun [1] (the chapter was written by Luke).
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expansion [11, 15] gives J0(x) = O(x−1/2). These observations are sufficient to show that the
integral occurring in Lemma 2 below is absolutely convergent.

In the proof of the following Lemma, (a)k = a(a + 1) · · · (a + k − 1) = Γ(a + k)/Γ(a), and

F (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!

is a hypergeometric function.

Lemma 1 For 0 < µ < 3
2 , ∫ ∞

0
tµ−1J0(t)dt =

2µ−1Γ(µ/2)
Γ(1− µ/2)

.

Proof. The integral2 is known as Weber’s infinite integral [16]. We sketch a proof in the case
µ < 1

2 , which is all that is needed below.
Let α be a complex variable. We first evaluate

I(α) =
∫ ∞
0

e−αttµ−1J0(t)dt

for R(α) > 1. Integrating term by term, the power series (6) gives

I(α) = α−µΓ(µ)F
(

µ

2
,
µ + 1

2
; 1;−α−2

)
. (7)

By analytic continuation, the result (7) holds3 in the right half-plane R(α) > 0. Using a well-
known hypergeometric function identity4, we deduce that

I(α) =
Γ(µ)

Γ(1− µ
2 )

(
Γ(1

2)F (µ
2 , µ

2 ; 1
2 ;−α2)

Γ(µ+1
2 )

+
αΓ(−1

2)F (µ+1
2 , µ+1

2 ; 3
2 ;−α2)

Γ(µ
2 )

)
.

Since J0(t) = O(t−1/2) as t →∞, our assumption that µ < 1
2 makes it is easy to justify changing

the order of integration and taking the limit as α → 0+. Thus∫ ∞
0

tµ−1J0(t)dt = lim
α→0+

I(α) =
Γ(µ)Γ(1

2)
Γ(1− µ

2 )Γ(µ+1
2 )

.

The Lemma now follows from the duplication formula for the Gamma function. 2

Lemma 2 ∫ ∞
0

(
e−t/2 − J0(t)

t

)
dt = 0 . (8)

Proof. A slightly more general result is given in equation 6.622.1 of Gradshteyn and Ryzhik [7],
and attributed to Nielsen [10]. We show that (8) follows easily from Lemma 1.

Let µ be a small positive parameter. From Lemma 1,∫ ∞
0

(e−t/2 − J0(t))tµ−1dt = 2µΓ(µ)− 2µ−1Γ(µ/2)
Γ(1− µ/2)

. (9)

Since Γ(1) = 1, Γ′(1) = −γ, and µΓ(µ) = Γ(1 + µ), the right side of (9) is

2µ

µ

(
(1− γµ)−

(
1− γµ/2
1 + γµ/2

)
+ O(µ2)

)
= O(µ) .

The result follows on letting µ → 0+. 2

2More precisely, the generalisation with J0(t) replaced by Jν(t): see Sec. 13.24 of Watson [15].
3A generalisation of (7) is given in Sec. 13.2 of Watson [15], and is attributed to Hankel [8] and Gegenbauer [6].
4See equation (10.16), Chapter 5 of Olver [11].
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3 Ramanujan’s Corollary for n = 2

Our main result is the following Theorem, which proves that (4) is valid for n = 2.

Theorem 1 Let

e(x) =
∞∑

k=1

(−1)k−1

2k

(
xk

k!

)2

− lnx− γ .

Then, for real positive x,

e(x) =
∫ ∞
2x

J0(t)
t

dt .

Proof. Proceeding as on page 99 of [2], using the fact5 that

γ =
∫ 1

0

1− e−t

t
dt−

∫ ∞
1

e−t

t
dt ,

we have

e(x) =
∫ x

0

1− J0(2t)
t

dt−
∫ x

1

dt

t
−
∫ 1

0

1− e−t

t
dt +

∫ ∞
1

e−t

t
dt

=
∫ x

0

e−t − J0(2t)
t

dt +
∫ ∞

x

e−t

t
dt .

Now, from Lemma 2 with a change of variable,∫ x

0

e−t − J0(2t)
t

dt =
∫ ∞

x

J0(2t)− e−t

t
dt ,

so

e(x) =
∫ ∞

x

J0(2t)− e−t

t
dt +

∫ ∞
x

e−t

t
dt =

∫ ∞
x

J0(2t)
t

dt ,

and Theorem 1 follows by a change of variable. 2

Corollary 1 Let e(x) be as in Theorem 1. Then, for large positive x, e(x) has an asymptotic
expansion whose leading terms are given by

e(x) =
1

2π1/2x3/2

(
cos

(
2x +

π

4

)
+

13 sin
(
2x + π

4

)
16x

+ O(x−2)

)
.

Proof. Using integration by parts and the fact that xJ ′′0 (x)+J ′0(x)+xJ0(x) = 0 (a special case
of Bessel’s differential equation), it is easy to deduce from Theorem 1 that

e(x) =
J ′0(2x)

2x
+

J0(2x)
2x2

− 4
∫ ∞
2x

J0(t)
t3

dt .

Continuing in the same way, we obtain an asymptotic expansion

e(x) ∼ J ′0(2x)
2x

∞∑
k=0

(−1)k k!k!
x2k

+
J0(2x)

2x2

∞∑
k=0

(−1)k k!(k + 1)!
x2k

.

The Corollary follows from Hankel’s asymptotic expansions for J0(z) and J ′0(z) = −J1(z). 2

5See page 103 of [2].
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4 A Different Generalisation

An obvious generalisation of (5) is

∞∑
k=0

Hk

(
xk

k!

)n/ ∞∑
k=0

(
xk

k!

)n

∼ lnx + γ (10)

as x →∞.
It is easy to show that (10) is valid for all positive integer n. An essential difference be-

tween (4) and (10) is that there is a large amount of cancellation between terms on the left side
of (4), but there is no cancellation in the numerator and denominator on the left side of (10).
The function (xk/k!)n acts as a smoothing kernel with a peak at k ' x− 1/2. Since

Hk = ln k + γ + O(1/k) ,

the result (10) is not surprising. What may be surprising is the speed of convergence. Brent
and McMillan [5] show that6

∞∑
k=0

Hk

(
xk

k!

)n/ ∞∑
k=0

(
xk

k!

)n

= lnx + γ + O(e−cnx) (11)

as x →∞, where

cn =
{

1, if n = 1;
2n sin2(π/n), if n ≥ 2.

In the case n = 2, (11) has error O(e−4x). Brent and McMillan used this case with x ' 17, 400
to compute γ to more than 30,000 decimal places. From Corollary 1, the same value of x in (4)
would give less than 8-decimal place accuracy7.

The case n = 3 of (11) is interesting because max cn = c3 = 4.5. However, no one seems to
have used n > 2 in a serious computation of γ.

Although Ramanujan [3, 13] gave many rapidly-convergent series and other good approxima-
tions for π, he does not seem to have given series which are particularly useful for approximat-
ing γ, except for (3) and (5) above. In his paper [12] on series for γ, he gives several interesting
series, of which the simplest8 is

γ = 1−
∞∑

k=1

ζ(2k + 1)
(k + 1)(2k + 1)

,

but these series all involve the Riemann zeta function or related functions, so they are not very
convenient for computational purposes.

Our analysis has assumed that n in (4) and (11) is a positive integer. It would be interesting
to consider the behaviour of the functions occurring in these equations for positive but non-
integral values of n, especially in the range 1 < n < 2.
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[16] H. Weber, “Über einige bestimmte Integrale (Jan. 1868)”, Journal für Math. 69 (1868),
222-237.

6


