COMPUTING AURIFEUILLIAN FACTORS

RICHARD P. BRENT

Abstract

For odd square-free $n>1$, the cyclotomic polynomial $\Phi_{n}(x)$ satisfies an identity $$
\Phi_{n}(x)=C_{n}(x)^{2} \pm n x D_{n}(x)^{2}
$$ of Aurifeuille, Le Lasseur and Lucas. Here $C_{n}(x)$ and $D_{n}(x)$ are monic polynomials with integer coefficients. These coefficients can be computed by simple algorithms which require $O\left(n^{2}\right)$ arithmetic operations over the integers. Also, there are explicit formulas and generating functions for $C_{n}(x)$ and $D_{n}(x)$. This paper is a preliminary report which states the results for the case $n=1 \bmod 4$, and gives some numerical examples. The proofs, generalisations to other square-free n, and similar results for the identities of Gauss and Dirichlet, will appear in [2].

Comments

Only the Abstract is given here. The full paper will appear as [1]. For a more comprehensive (but more difficult) paper, see [2].

References

[1] R. P. Brent, "Computing Aurifeuillian factors" Proceedings of a Conference on Computational Algebra and Number Theory, held at Sydney University, November 1992 (edited by W. Bosma and A. van der Poorten), to appear. rpb127.
[2] R. P. Brent, "On computing factors of cyclotomic polynomials", Mathematics of Computation (D. H. Lehmer memorial issue), 1993, to appear. rpb135.

Computer Sciences Laboratory, Australian National University, Canberra
E-mail address: rpb@cslab.anu.edu.au

[^0]rpb127a typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

[^0]: 1991 Mathematics Subject Classification. Primary 12E10; Secondary 05A15, 11-04, 11T06, 11T22, 11T24, 11Y16, 12-04, 12 Y 05 .

 Key words and phrases. Aurifeuillian factorization, class number, cyclotomic field, cyclotomic polynomial, exact computation, generating functions, integer factorization, Newton's identities.

 Copyright © 1992, R. P. Brent.

