A SYSTOLIC ALGORITHM FOR INTEGER GCD COMPUTATION

R. P. BRENT AND H. T. KUNG

Abstract

It is shown that the greatest common divisor of two n-bit integers (given in the usual binary representation) can be computed in time $O(n)$ on a linear systolic array of $O(n)$ cells.

Comments

Only the Abstract is given here. The full paper appeared as [3]. The method used is a variant of the binary Euclidean algorithms considered earlier in [1]. For the extended integer GCD problem, see [5]. The (easier) polynomial GCD problem is considered in [2, 4].

References

[1] R. P. Brent, "Analysis of the binary Euclidean algorithm," in New Directions and Recent Results in Algorithms and Complexity (edited by J. F. Traub), Academic Press, New York, 1976, 321-355. MR 54\#14417, 55\#11701; Zbl 363.00013, 373.68040. rpb037.
[2] R. P. Brent and H. T. Kung, "Systolic VLSI arrays for polynomial GCD computation", IEEE Trans. on Computers C-33 (1984), 731-736. rpb073.
[3] R. P. Brent and H. T. Kung, "A systolic VLSI array for integer GCD computation", in ARITH-7, Proc. Seventh Symposium on Computer Arithmetic (edited by K. Hwang), IEEE/CS Press, 1985. Also appeared as Report TR-CS-82-11, Department of Computer Science, ANU, December 1982 (revised April 1984); and as Report CMU-CS-84-135, Department of Computer Science, Carnegie-Mellon University, April 1984, 33 pp. rpb077.
[4] R. P. Brent and H. T. Kung, "Systolic VLSI arrays for linear-time GCD computation", in VLSI 83 (edited by F. Anceau and E. J. Aas), North-Holland, Amsterdam, 1983, 145-154. rpb082.
[5] A. W. Bojanczyk and R. P. Brent, "A systolic algorithm for extended GCD computation", Comput. Math. Applic. 14 (1987), 233-238. MR 88m:11110. rpb096.
(Brent) Centre for Mathematical Analysis, Australian National University, Canberra
(Kung) Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 68Q22; Secondary 11A05, 65Y05, 65Y10, 68Q25, 68 Q 35.
 Key words and phrases. Euclidean algorithm, greatest common divisor, GCD, systolic algorithm, parallel algorithm, linear-time algorithm.
 H. T. Kung was sponsored in part by the Office of Naval Research under Contract N00014-80-C-0236, NR 048659.

 Copyright © 1985, IEEE..
 Comments (c) 1993, R. P. Brent. rpb077a typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{IAT}_{\mathrm{EX}}$.

