
Programming R. Morris
Techniques Editor

Reducing the
Retrieval Time of
Scatter Storage
Techniques
Richard P. Brent,
IBM Thomas J. Watson Research Center

A new method for entering and retrieving
information in a hash table is described. The method is
intended to be efficient if most entries are looked up several
times. The expected number of probes to look up an entry,
predicted theoretically and verified by Monte Carlo
experiments, is considerably less than for other comparable
methods if the table is nearly full. An example of a possible
Fortran implementation is given.

Key Words and Phrases: address calculation, content
addressing, file searching, hash addressing, hash code,
linear probing, linear quotient method, scatter storage,
searching, symbol table

CR Categories: 3.7, 3.73, 3.74, 4.1, 4.9

1. Introduction

Scatter storage (hash coding) techniques are used to
minimize the time required to enter and retrieve infor-
mation in tables. 'Rather similar techniques can be used
for internal tables, such as the symbol tables of com-
pilers and assemblers, and large files which are stored
on random-access devices such as disks or drums.
Some of these techniques are described in an excellent
survey paper [5] and more recently in [1, 2, and 6].

Our aim is to describe a method for entering infor-
Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author's present address: Computer Centre. Australian Na-
tional University, P.O. Box 4, Canberra, ACT 2600, Australia.

105

mation so that subsequent retrievals are very efficient.
Suppose that each item consists of an identifying name
or key, which may be regarded as an integer, and an
associated value. I f m keys kx, - . - , k m are stored at
addresses a(kl), . . . , a(km) in a table T of length
n _> m (i.e. T(a(ki)) = kl for i = 1, . . . , m) and a
key k is given, the problem is to determine efficiently
whether k is in T, and if so, to find a(k). In order to
compare the efficiency of different algorithms, we count
the number of fetches of elements of T, i.e. probes, that
they require.

In practical applications it usually happens that most
entries in the table are looked up several times. Bell and
K a m a n [2] found that their hashing routine was en-
tered 10,988 times, but with only 735 different keys,
when a typical COBOL program was compiled. As a
more extreme example, a table of opcode mnemonics
or reserved words may be built up once and thereafter
used purely for retrieval [1]. Thus it is very important to
minimize the number of probes required to look up keys
which are already in the table. The number of probes
required to look up (and perhaps insert) keys which are
not already there is not so important .

The idea of our method, which is described in de-
tail in Section 2, is to take more care than usual when
keys are inserted, in an at tempt to reduce the number of
probes required for subsequent lookups. Although we
present the method as a modification of the " l inear
quotient" method of [2], the same idea could be used to
modify some other methods, e.g. the "quadra t ic quo-
t ient" method of [1].

In Section 3 we consider the number of probes re-
quired to insert and look up entries with our method,
and compare our method with other methods. The re-
suits of Monte Carlo experiments are described in
Section 4. Some theoretical results are derived in Sec-
tion 5, which could be skipped by the casual reader. In

Communications February 1973
of Volume 16
the ACM Number 2

Section 6 we draw some conclusions and mention a few
practical considerations. Finally, an example of a possi-
ble FORTRAN implementation is given in the Appendix.

2. The Method

Let n > 3 be a prime number, and let T be a table
(i.e. an array) of length n containing rn nonzero keys
k l , " ' " , k m . We shall describe how keys are looked
up and inserted in T. In the fORTRAN subroutine given
in the Appendix, subscripts run f rom 1 to n, but here
it is simpler to assume that they run f rom 0 to n -- 1.
Note that whenever keys are added to T, the values
associated with the keys must also be added to another
table of length n, and if keys are moved in T, the asso-
ciated values must be moved appropriately.

Let k be a nonzero integer key (k = 0 is not allowed
because 0 is reserved to denote an empty space in T).
As in the linear quotient method [2], integers r = R(k)
a n d q = Q(k), sat isfying0 < r < n a n d 0 < q < n,
are computed. Any pseudorandom functions R and Q
may be used: a good choice on a machine with reason-
ably fast division is

R(k) = k mod n (1)

and

2. i + j < s: Insert k by setting T(hl,i) ~ T(h~) and
T(hO ~-- k, i.e. the key at hi is moved to hl.j to make
room for k at h i .

Note that, once s is known, no more than ½s(s -- 1)
probes (at locations h0,1, . . . , h0,,-1, h~.l, . . . ,
hi,a_2, . . . , ha-2.a) are needed to determine how to
insert k. Two examples, showing the relevant entries in
T, are illustrated in Figure 1.

We shall describe the reason for moving the entry at
hl to hl.j in case 2 above. Let

m

c = ~_, p (k i) (6)

be the total number of probes required to look up all
of the keys k l , . . . , k m in T. I f each entry has the
same probabil i ty of being looked up, then c should be
kept as low as possible, because c /m is just the expected
number of probes to look up an entry in T. Thus we
should add a new key k so that the resultant increase,
A, in c is minimized. In case 1 above, p(k) becomes
s + 1, so A = s + 1. In case 2, p(k) becomes i + 1 and
p(T(h~)) increases by j , so A = i + j + 1. Thus, to
keep A as low as possible, we should move the entry at
h i i f i + j < s.

3. Comparison with Other Methods

Q(k) = (k mod(n - 2)) + 1 . (2)

(We divide by.n - 2 rather than by n - 1 because n is
odd, and as noted in [4], the parity of k mod(n -- I) is
the same as the parity of k.)

The algorithm for looking up k in T is the same as
for the linear quotient method: if

h~ = (r + sq) m o d n (3)

for s > 0, then T(ho), T(hl), . . . are inspected until
for some s, either (a) T(h,) = k, so k is found (after
p(k) = s + 1 probes); or (b) T(h,) = 0 (o r s > 0 a n d
h, = h0), so k is not in T. (I f s > 0 and h, = h0, then
because n is prime and 0 < q < n, the whole table
has been searched.)

Suppose that T is not full, k is not in T, and we
wish to insert k. On looking up k, the above algorithm
terminates with s >__ 0 such that T(ho) ~ O, . . . ,
T(h,_l) ~ 0, and T(h,) = O.

Define

qi = Q(T(h~)) for i > 0, (4)

and

h i , j = (hi + jqi) mod n for j > 1. (5)

Among all i a n d j such that T(hl, j) = 0, choose i a n d j
to minimize i + j , and in case of a tie, to minimize i.
There are two possibilities:
1. i + j >_ s: Insert k by setting T(h,) <---- k (as in the
linear quotient method).

Several scatter storage methods have been proposed;
see [5]. Among the best are the linear quotient method
[2] and the quadratic quotient method [1]. Since the
linear and quadratic quotient methods per form simi-
larly, we shall compare our method with the linear
quotient method.

I f a table of length n contains m entries, then the
load factor a is defined by o~ = m / (n + 1). I f terms of
order 1/n are neglected, then for the methods under
consideration, the expected number of probes to make
an entry or perform a lookup is a function of a alone.
We assume that the functions Q and R are " g o o d , " i.e.
that all possible pairs (q, r) occur independently and
with equal probability. We are interested in A(a), the
expected number of probes to look up an entry which
is in the table, and to a lesser extent in B(a), the ex-
pected number of probes to look up a nonentry.

For the linear quotient method [1, 3, 5],

B(a) = 1/(1 -- a) (7)

and

A (a) = (l / a) f B(/3)d¢~ (8)

= (l / a) l o g (l / (1 -- a)) .

For our method, B(a) = 1/(1 -- a) is the same as for
the linear quotient method. It is more difficult to derive

106 Communications February 1973
of Volume 16
the ACM Number 2

2.5

2.0

1.5

1.0
0

Fig. 1. Two possible cases.

C A S E 1. (s = 3)

T(ho) # 0 ~ T(ho,t) # 0 ~ T(ho.2) # 0

T(hl) # 0 ~ T(hLa) # 0

T(h2) # 0
$

T(h~) = 0

C A S E 2. (s = 3, i = 0, j = 2)

T(ho) # 0 ~ T(h0,m) # 0 ~ T(h0,2) = 0

T(hl) # 0

T(h~) # 0

T(hs) = 0

Fig. 2. The expected n u m b e r o f probes to look up an entry.

1.5

CHAINING

Fig. 3. The expected number of probes as a function of e =
1 - ~)i.

107

an expression for A(a). I f a key is inserted when the
load factor is 3, then the increase A in c will satisfy

A > d (9)

provided that

T(ho) # O, T(h0.l) # 0, . . . , T(ho.d_l) # O,
T(hl) # 0, . . . , T(hl,d_2) # O, . . . , T(ha_l) # O.

Since the probability that any T(hi.s) # 0 is 3, we might
conclude that (9) holds with probability 3 a(d+l)/2. Then
the expected value of A would be ~,a~=0 3 d(d+l)/2, giving

= ~ ae(a+l)/2/(1 + d(d + 1) /2) (10)
d=0

= 1 + ~x/2 + a3/4 + a6/7 +

However, the approximation (10) to A(a) is not quite
correct because the probabilities P(T(h~,j) # O) are
not independent. The lack of independence is caused by
our rule for inserting keys in case 2 above. In Section 5
we show that

A(a) = 1 + a /2 + a3/4 + a ' /15 (11)
- - a5/18 + 2a6/15 + --- ,

and computation shows that the approximation (10)
may underestimate A(a) by up to 5 percent.

Figure 2 shows A(a) for our method, the linear
quotient method, and the direct chaining method
[3, 5]. It is clear that the different methods are ap-
proximately equally efficient if a is small, but our
method is appreciably more efficient than the linear
quotient method if a is close to one. Direct chaining
has different areas of application and is not really
comparable to the other two methods. With direct
chaining some space is taken up by links, but no links
are required for our method. The space gained by not
needing links may be used to increase the table size,
reducing a and A(~). Thus, in applications where
either method may be used, our method will be more
efficient than direct chaining if there is only a small
amount of information associated with each key.

Our method is certainly preferable to the linear
quotient method if the table is nearly full; then A(a)
is of order log n for the linear quotient method, whereas
for our method (see Section 5),

A(~x) < 2.5. (12)

4. S o m e M o n t e Car lo E x p e r i m e n t s

To test the theoretical results, we filled a table of
length n = 4,999, using pseudorandom keys. As the
table was being filled, we kept track of the total number
of probes made, so the average number required to make
an entry was easily computed. We also kept track of the
total number of probes which would be required to

Communica t i ons February 1973
o f Volume 16
the A C M N u m b e r 2

look up each entry once, so the average number needed
to look up an entry could be found.

The experiment was repeated 1,000 times, and the
results are summarized in Table I. A (a) is the expected
number of probes to look up an entry for our method
(as predicted in Section 5); A(a) is the observed mean
number of probes to look up an entry; X(a) = (I / a)
log (1/(1 - a)) is the expected number of probes to
look up an entry for the linear quotient method; /~(a)
is the observed mean number of probes to make an
entry for our method; and

;(a) = (/~(a) - X(a))/(X(a) -- A(a)) (13)

is the minimal number of lookups per entry required to
make our method preferable to the linear quotient
method (considering the expected number of probes
required to insert na keys and then make ~na lookups).

It is clear f rom the table t h a t / / (a) agrees very well
with A (a). F rom the last column of the table, we see
that our method should be more efficient than the linear
quotient method if an entry is looked up three or more
times on the average, and this is true in most practical
applications. Monte Carlo experiments with n = 257
and n = 997 gave similar results. (,,l(a) was slightly
less than A(a) for the smaller values of n.)

5 . T h e o r e t i c a l R e s u l t s

In Section 3 we derived the approximation (I0) for
A(a) . Here we briefly describe how a much better
approximation may be found. Suppose that n is large,
so terms of order 1/n may be neglected. In the notation
of Section 2, let k be a key at position he in the table,
and let p~(a) be the probabili ty that T(h~+l) # O, . . . ,
T(h,+v) # 0 for v >__ 0. To derive (10) we assumed that
po(a) = a ~, but this is not quite correct for v >__ 1.
I f 6 is small and 6n new keys are inserted in the table
according to the algorithm described in Section 2, then

(a+6) po(a--b~)--ap.(a)
V--1

= 6a ~ + (~/(1--a)) ~ . , a ~-~ (p~(a)--p~+x (a)) (14)
i ~ O

v

+ E P,,;(a) +
i = 0 j = l

where

" ~'~+J~'~+J-~ (15)
• " "p i+ l (p i - l - p j)p i -2 "'" po

is the probabili ty that an entry is made after moving
the key at h~ to h;.j. (see Section 2, case 2). Dividing
both sides of (14) by 6, and taking the limit as 6 ~ 0,
we have

v - - 1

(d/da)(ap,,) = (a~--ap~) / (1--a) + ~_, a"- 'p,
i=6 (16)

v

7"=1 i = 0

Table I. Results of Monte Carlo Experiments

0.20 1.1021 1.1021 1.1157 1.1548 2.85
0.40 1.2178 1.2175 1.2771 1.4337 2.62
o. 60 1.3672 I. 3668 1.5272 1.9248 2.48
0.80 1.5994 1.5991 2.0118 2.9713 2.32
0.90 1.8023 1.8020 2.5584 4.2740 2.26
0.95 1.9724 1.9725 3.1534 5.8382 2.26
o. 99 2.2421 2.2422 4.6517 10.3922 2.36

for v = 1, 2, With the initial conditions p~(0) = 0
for v = 1, 2, . . . , this infinite system of differential
equations defines the functions p~(a) (except for
p0(a) = 1). I f the sum involving P~.s is omitted, then
the system of equations has the solution p~(a) = a ~,
which is correct for the linear quotient method.

We want to find

A(o~) = (I / a) F(/~) d/3, (17)

where

F(a) = 1 + a + a'px + a3plp2 .d[_ . . . (18)

is the expected increase A in c when a new key is inserted.
I f the system of differential equations (16) is solved

by numerical integration, then it is convenient to write
(1 7) as

(a /aa)A(a) = (F(a) - A (a)) / a (19)

and append (19) to the system of differential equations
(with the initial condition A (0) = 1).

The system of differential equations (16) and (19)
may be solved by a formal power series expansion,
which gives

A(a) = 1 + a / 2 + a3/4 + aV15 -- a5/18

+ 2a6/15 + 9a7/80 -- 293a8/5670 (20)

- - 319a9/5600 +

This gives a satisfactory approximat ion to A(a) unless
a is close to 1. I f a is close to 1, a large number of terms
must be taken in (20), so it appears better to integrate
the system numerically. It is worthwhile to make the
change of variable

a = 1 - - e2 (2 1)

to avoid numerical difficulties because of the vertical
tangent of A(a) at a = 1. The function A,(1 -- d) is
quite well behaved for ~ E [0, 1]; see Figure 3. By
numerical extrapolation to ~ = 0 we find that

lim A(a) ~ 2.4941, (22)

so the inequality (12) certainly holds for all a.

6 . C o n c l u s i o n

We have shown that our method compares favorably
with the linear quotient method, and the difference is

108 Communications February 1973
of Volume 16
the ACM Number 2

considerable if the hash table is nearly full, provided
that most entries are l o o k e d up several t imes.

So far we have not ment ioned h o w entries may be
deleted, and the theoretical results derived above are
not valid if they are. Care must be taken when deleting
an entry in order to ensure that other entries are still
accessible. The s implest solution is to reserve a special
key to denote a deleted entry, although checking for this
special key increases the cost per probe. The number of
probes required will also increase if the table contains
many deleted entries.

Finally, we note that the a lgori thm described above
is suitable for use with a table stored in a computer 's
high-speed, random-access m e m o r y . If the table is
stored on a device such as a disk or drum, s o m e modifi-
cat ions may be desirable. For example , suppose that
several keys and their associated values can be stored
on one disk track. After a probe has been made on a
certain track, another probe on that track may be
cheaper than a probe on a different track. Thus if a
col l is ion occurs when we are attempting to make a
new entry on s o m e track, it may be worthwhi le to try
to make the entry somewhere on that track before
making a probe on s o m e other track. Such a strategy
would increase the expected number of probes but
would decrease the number expected on different
tracks. Similar considerat ions apply if a computer with
a paged m e m o r y is used.

Appendix. A Fortran Subroutine

C
C
C

C
C
C
C
C
C
C
C
C
c
C KAI
C FOUND:
C
C NODE=
C L O O K U P
C
C
C
C L O O K U P

THIS ROUTINE WILL LOOK UP AND INSERT DR DELETE INTEGER KEYS
IN THE TABLE KEYTAB, VALUES ASSOCIATED WITH THE KEYS MAY BE
STORED IN THE TABLE KVTAB. THE ROUTINE IS DESIGNED TO BE
EFFICIENT(EVEN IF THE TABLE IS NEARLY FULL, PROVIDED MOST
ENTRIES ARE LOOKED UP SEVERAL TIMES,
GLOBAL VARIABLES:

KEYTAB: AN ARRAY OF LENGTH LEN FOR THE KEYS. IT MUST BE
INITIALIZED TO ALL ZEROS BEFORE THE FIRST CALL OF
HASH. LEN AND tEN2 = LEN - 2 ARE SET IN A DATA
STATEMENT BELOW, LEN MUST BE AN ODD PRIME,

KVTAB: AN ARRAY OF LENGTH LEN FOR THE VALUES ASSOCIATED WITH
THE KEYS. KEYTAB AND KVTAD ARE IN COMMON /HTABS/,

PARAMETERS=
KEY: AN INTEGER KEY INOT O OR - I t AS THESE VALUES ARE

RESERVED FOR EMPTY SPACES AND DELETED E N T R I E S I .
RETURNED AS THE ADDRESS OF THE KEY IN KEYTABw OR ZERO, C
A FLAG RETURNED TRUE IFF THE KEY WAS ALREADY IN THE
TABLE.
AN INDICATOR:
ONLY (MODE = 1)
IF THE KEY IS IN THE TABLEt THE ADDRESS KA IS
REIURNEO ITHE ASSOCIATED VALUE IS AT KVTAB(KAI),
OTHERWISE KA = 0 IS RETURNED.
AND ENTER IHODE = 2I

C CHECK FOR AN EMPTY SPACEe A DELETED ENTRY, OR A HATCH,
IF (K T , E Q . O t GO TO 30
IF (K T , E Q . - [) GO TO 6 0
IF (KT.EQoKEV) GO TO 60
IC = lC * 1

C COMPUTE ADDRESS OF NEXT PROBE.
KA = KA ÷ I~
IF IKA,GT,LENI KA = KA - LEN

C SEE IF WHOLE TABLE HAS BEEN SEARCHED.
IF (KA.NE,|R) GO TO 20

C THE KEY IS NOT IN THE TABLE.
30 FOUND = ,FALSE.

C RETURN WITH KA = O UNLESS AN ENTRY HAS TO BE MADE.
IF ((M O D E , E O . 2 | . A N D . (I C * L E . L E N Z I . A N D . | K E Y ° N E . O I , A N D . I K E Y . N E . - I I)

GO TO TO
KA = O
RETURN

C A DELETED ENTRY HAS BEEN FOUND.
~0 IA = KA

C COMPUTE ADDRESS OF NEXT PROBE.
50 [A = IA * IQ

IF (IA,GT.LEN) IA = [A - LEN
IS = KEYTABIIA)

C CHECK FOR AN EMPTY SPACE OR A COMPLETE SCAN OF THE TABLE.
IF I I I S , E Q . O I . O R . (I A . E Q . I R)) GO TO 30

C CHECK FOR A MISMATCH OR DELETED ENTRY.
IF I I I S , N E . K E Y) , O R , I I S . E Q . - [) I GO TO 50

C KEY FOUND. MOVE IT AND THE ASSOCIATED VALUE TO SAVE PROBES
C ON THE NEXT SEARCH FOR THE SAME KEY,

KVTABIKA) = KVTAB(IA)
KEYTAB(KA) = IS
KEYTAB(IA I = - 1

C THE KEY IS IN THE TABLE.
60 FOUND = .TRUE.

C D E L E T E IT IF MODE = 3 .
IF (MODE.EQ,3I KEYTABIKAI = - I
RETURN

C LOOK FOR THE BEST WAY TO MAKE AN ENTRY.
70 IF I I C . L E . O I GO TO 120

C SET DEL IF A DELETED ENTRY HAS BEEN FOUND.
DEL = K I . N E . O
IA = KA
I S = O

C COMPUTE THE MAXIMUM LENGTH TO SEARCH ALONG CURRENT CHAIN.
8 0 I X = I C - IS

C COMPUTE INCREMENT JQ FOR CURRENT CHAIN,
JO = M O D I I A B S I K E Y T A B I I R I | t LEN2I • 1
JR = IR

C LOOK ALONG THE CHAIN.
90 JR = JR * JO

IF (J R . G T , L E N) JR = JR - LEN
KT = KEYIABIJR(

C CHECK FOR A HOLE tAN EMPTY SPACE OR A DELETED ENTRYI .
IF (I K T * E Q . O I , O R , I K T , E Q , - I) I GO TO l O O
IX = IX - I
IF (I X . G T . O l GO TO 90
GO TO l i D

C SKiP IF THIS IS AN EMPTY SPACE AND A DELETED ENTRY HAS
C ALREADY BEEN FOUND,

I O O IF (D E L , A N D , I K T . E Q , O)) GO TO l i D
C CHECK FOR A DELETED ENTRY°

IF I K T , N E . O) DEL = ,TRUE.
C SAVE LOCATION OF HOLE,

IA = JR
KA = IR
IC = IC - IX

C MOVE DOWN TO THE NEXT CHAIN.
I10 I S = IS + I

IR = IR + I 0
IF ([R . G T . L E N I IR = IR - keN

C GO BACK IF A BETTER HOLE HIGHT STILL BE FOUND,
IF (IC .GT, IS) GO TO BO

C SKIP IF THERE IS NOTHING TO MOVE.
IF (I A . E Q . K A I GO TO IZO

C MOVE AN OLD ENTRY AND ITS ASSOCIATED VALUE TO HAKE ROOM F U R
C THE NEW ENTRY*

K V T A B I I A) = KVTAB|KAI
KEYTABI IA I = KEYTABIKA|
ENTER THE NEW KEYv BUT NOT I T S ASSOCIATED VALUE,

120 KEYTABIKAI = KEY
RETURN
END

C IF THE KEY IS IN THE TABLEt THE ADDRESS KA IS
C RETURNED, OTHERWISE THE KEY l S ENTERED AT K E Y T A B I K A I , Received November 1971; revised January 1972
C THE CALLING PROGRAM MUST ENTER THE ASSOCIATED VALUE
C AT KVTABIKA~. IF AN ENTRY CAN NOT DE MADE BECAUSE
C THE TABLE IS FULL (OR BECAUSE KEY = O OR - l i p
C KA = 0 IS RETURNED,
C LOOKUP AND DELETE (MODE = 31 References
C IF THE KEY IS IN THE TABLEt IT IS DELETED AND ITS
C FORMER" ADDRESS KA IS RETURNED, IF THE KEY IS NOT
C THERE, KA = 0 IS RETURNED, (THE SUBROUTINE CAN BE
C S I H P L I F I E D CONSIDERABLY IF KEYS ARE NEVER DELETED, I 1. Bell, J . R . The quadratic quotient method: a hash code

SUBROUTINE HASH IKEVt MODEL KA, FOUND(eliminating secondary clustering. Comm. ACM13, 2 (Feb. 1970),
LOGICAL FOUNDw DEL

C THE NEXT 3 CARDS MUST BE CHANGED IF THE TABLE LENGTH IS NOT 4 9 9 9 . 107-109.
COMMON /HTADSZ KEYZAB(49991, KVTAB(69991 2. Bell, J.R., and Kaman, C.H. The linear quotient hash code.
DATA LEN 1~999/
DATA LENa /499Tl Comm. A C M 13, 11 (Nov. 1970), 675-677.
lC = -I 3. Johnson, L.R. An indirect chaining method for addressing on

C COMPUTE ADDRESS OF FIRST PROBE [I R) AND INCREMENT l I D) .
C ANY INDEPENDENT PSEUDO-RANDOM FUNCTIONS OF THE KEY MAY BE USED, secondary keys. Comm. ACM4, 5 (May 1961), 2 1 8 - 2 2 2 .

C PROVIDED O (IO < LEN AND O (IR (- LEN 4 . Maurer, W.D. An improved hash code for scatter storage.
IQ = MODI IABS IKEY I t LEN2t + |
IR = M O D I I A B S I K E Y I e LENt ~" I Co mm. ACMI1, 1 (Jan. 1968), 3 5 - 3 8 .

KA = =R 5. Morris, R. Scatter storage techniques. Comm. A C M 11, I (Jan.
C LOOK IN THE TABLE.

20 KI = KEYTAEIKA] 1968), 3 8 - 4 4 .

6. Radke, C.E. The use of quadratic residue research. Comm. A C M
13, 2 (Feb. 1970), 103-105.

109 Communications February 1973
of Volume 16
the ACM Number 2

