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1. Introduction

Cli�ord analysis has a long history and many applications as the book
[2] by Brackx, Delanghe and Sommen testi�es. It was introduced into
the study of the L2 boundedness of singular integrals on Lipschitz
surfaces in the PhD thesis of Murray [23], written under the supervision
of Raphy Coifman. She showed how Cli�ord analysis could be used to
prove the L2 boundedness of the double layer potential operator on sur-
faces with small Lipschitz constant, a method extended to all Lipschitz
constants by McIntosh [15]. More direct proofs and related results were
then developed in his joint papers with Li, Qian and Semmes [14], [13]
and survey paper [16], as well as in work by Gilbert and Murray [9],
David, Journ�e and Semmes [6], Gaudry, Long and Qian [8], Auscher
and Tchamitchian [1], Tao [25] and others. Mitrea has made extensive
contributions to this theory, and given a good presentation of the �eld
in his book [20].

The L2 boundedness of the double layer potential operator was in
fact proved earlier by Calder�on for small Lipschitz constants [3], and by
Coifman, McIntosh and Meyer [5] for all Lipschitz constants. However,
as shown in some of the papers mentioned above, the use of Cli�ord
analysis and Dirac operators gives an increased understanding of the
topic. This is particularly true when we turn to other related equations
such as Maxwell's equation.

There is a long tradition in applying singular integrals to the study
of elliptic and parabolic boundary value problems. As well as proving
the L2 boundedness of singular integrals, one needs to show when they
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are invertible or at least Fredholm. Classically, invertibility is proved
using Fredholm theory, but on Lipschitz domains other techniques are
needed. Such tools were developed originally by Rellich, Ne�cas and
others, and were speci�cally used to invert the L2 double layer potential
operator on the boundary of a Lipschitz domain by Verchota [26]. There
is much related work on this topic by Dahlberg, Fabes, Jerison, Kenig,
Pipher and others.

Rellich inequalities were adapted to the study of Maxwell's equa-
tions by Mitrea, Torres and Welland in [22], [21]. Cli�ord versions were
presented by McIntosh, Mitrea and Mitrea [17], [18].

In this paper we develop a new way of applying Rellich inequalities
to invert boundary operators. This method makes essential use of the
full Cli�ord structure.

We also present an outline of the theory of the L2 boundedness of the
singular Cauchy operator on Lipschitz surfaces and of related singular
integral operators. In surveying this material we will in general not
make speci�c references to the papers mentioned above.

We have not attempted to survey research on Cli�ord analysis and
Cauchy integrals on domains satisfying stronger smoothness conditions.
See the Introduction by Ryan to [24], and the books of G�urlebeck and
Spr�ossig [10] and [11] for more information and further references.

Acknowledgements.We thank Marius Mitrea for sharing with us
his insight and knowledge of this topic.

Much of this material was developed while Hogan and McIntosh
were at Macquarie University Sydney and Grognard was an Honorary
Associate there. While there we received support from the Australian
Government through the ARC.

2. Cli�ord Algebra

The functions we consider in this paper are de�ned on a subset of Rm,
and take their values in the complex Cli�ord algebraA = C(m+1) gener-
ated by the basis vectors e0; e1; e2; : : : ; em subject to the identi�cation
rule

eiej + ejei = �2�ij ; 0 � i; j � m :

We expand u 2 A as u =
P
uSeS where uS 2 C and S � f0; 1; : : : ; mg.

The Euclidean basis element eS = ej1ej2 : : :ejs if S = fj1; j2; : : : ; jsg
with 0 � j1 < j2 < � � �< js � m. In particular, e; = 1 and efjg = ej .

There is a natural decomposition

A = ^0 � ^1 � ^2 � � � � � ^m+1
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into linear subspaces ^p = f
P

#S=p uSeSg of elements of degree p. We

decompose u into its components of degree p as u =
Pm+1

p=0 u
(p).

The algebra A naturally supports a Cli�ord conjugation, acting as
a complex linear anti-automorphism by

u :=
m+1X
p=0

(�1)p(p+1)=2u(p) ;

and a complex conjugation uc which just acts on each component of u
in the basis generated by the Euclidean basis vectors by ordinary com-
plex conjugation. Furthermore we have the sesquilinear scalar product
(u; v) = (uvc); =

P
uSv

c
S , which is used to de�ne the left and right

interior product, y and x, by

(u y x; y) := (x; uc ^ y) ; (x x u; y) := (x; y ^ uc) :

When a 2 ^1 and v 2 A, the Cli�ord product av can be decomposed

av = �a y v + a ^ v :

Though the Cli�ord algebra is not commutative, we have the identity
(uv); =

P
uSvSeS

2 = (vu);. Another important identity is

(uv; w) = (v; ucw) = (u; wvc) :

3. Cli�ord Analysis of Dk

With the Cli�ord algebra comes the Dirac operator D =
Pm

j=1 ej@j .
Since our task is to study elliptic boundary value problems arising
as time harmonic solutions f(x) exp(�i!t) to the hyperbolic Dirac
operator �~e0@0 +D, ~e0 := �ie0 being the forward time direction, we
introduce the k-Dirac operator

Dk = D + ke0 :

We assume that the complex parameter k satis�es Im k � 0. The
Dirac operator does not preserve homogeneity of degree like the ex-
terior derivative d = D^ and the interior derivative � = �Dy, but it
maps functions taking values in the even subalgebra Aeven := �^2p to
functions taking values in Aodd := �^2p+1 and vice versa.

The relation between the k-Dirac and the Helmholtz operator is

� + k2 = �(D+ ke0)
2 :
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The elliptic operator D has fundamental solution E(x) := � x
�m�1jxjm

.

Near x = 0, the fundamental solution Fk to Dk (acting either from left
or right) behaves like E. When Im k > 0, Fk has exponential decay at
1 while when k 2 R n f0g it satis�es the decay condition

Fk(x)e
�ikjxj = cm;k jxj

�m�1
2

�
~e0 +

x

jxj

�
+ o

�
jxj�

m�1
2

�
as jxj ! 1

with cm;k 6= 0. Note that the leading term is directed along the null
cone in hyperbolic space. The amplitude of the gradient has decay

o
�
jxj�

m�1
2

�
. See [17].

An explicit expression for Fk is obtained by applying �Dk to the
fundamental solution of the Helmholtz operator, the Bessel potential

Bk(x). When m = 3, we have Bk(x) = �
eikjxj

4�jxj and readily obtain

Fk(x) =
�
�

x

jxj2
+ ik(~e0 +

x

jxj
)
� eikjxj
4�jxj

:

InRm we will consider 
+, being either a bounded domain with strongly
Lipschitz boundary �, or the region above a Lipschitz graph

� = f(x0; xm) ; xm = �(x0)g :

Let 
� := Rm n (
+ [ �). Recall that � : Rm�1 ! R being Lipschitz
means j�(x0)��(y0)j=jx0�y0j is uniformly bounded, while for a bounded
domain, strongly Lipschitz means that for each y 2 � there exists a
neighbourhood Uy and a Lipschitz graph �y dividing R

m into 
�y (with
respect to some Euclidean coordinate system) such that � \ Uy =
�y \ Uy and 
�y \ Uy = 
� \ Uy .

Concerning integral manipulations, the following version of Stokes'
theorem, referred to as the boundary theorem should be noted.

An integral over �, where the integrand contains the outward point-

ing normal n linearly, equals the integral over 
+ with n replaced

by D.

In Cli�ord analysis the most frequently used integrand is gnf , where
the boundary theorem tells us thatZ

�
g(x)n(x)f(x) d�(x) =

Z

+

�
(gD)(x)f(x) + g(x)(Df)(x)

�
dx :

Now, consider a k-monogenic function f in 
+, i.e. a solution toDkf(x) =
0 there. Applying the identity above with g(x) = Ek(x) := �Fk(�x)
(since we need Ek(D� ke0) = �0), we obtain the reproducing formula

f(x) =
Z
�
Ek(y � x)n(y)f(y) d�(y) ; x 2 
+: (1)

For this to work, we need f to be su�ciently nice up to the boundary.
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DEFINITION 3.1. The Cauchy extension of f 2 L2(�) is

Cf(x) :=
Z
�
Ek(y � x)n(y)f(y) d�(y) ; x 2 
+ [ 
� :

Let C�f := Cf j
� and in the graph case write C�f(y) := Cf(y+�em),
� 2 R n f0g. The Hardy projections P+f and P�f are the boundary

values of C+f and of �C�f respectively in the L2(�) sense. The ranges
of the projections are called Hardy spaces and will be denoted P�L2.
The principal value Cauchy integral is

C�f(x) = 2 p.v.
Z
�
Ek(y � x)n(y)f(y) d�(y) ; x 2 � :

We spend the rest of this and the next section investigating the prop-
erties of C, outlining the proof that P� are well de�ned and bounded
complementary projections. Assume here that � is a graph and k = 0.
The case of a bounded domain can be obtained from this, as can the
case of a general k since Ck

� is a compact perturbation of C�.

PROPOSITION 3.2. For any f 2 L2(�)

f = lim
�!0+

(C�f � C��f)

both in L2 and pointwise a.e. Indeed, the di�erence kernel K�(x; y) :=
(E(y� (x+ �em))�E(y � (x� �em)))n(y) is an approximate unit.

Proof. Use the estimate jK�(x; y)j. �=jy�(x+�em)jm and the fact
that

R
�K�(x; y) d�(y) = 1 by the boundary theorem.

COROLLARY 3.3. For any f 2 L2(�) and t > 0, we have

C�(Ctf) = 0

C+(Ctf)(y + �em) = (C+f)(y + (� + t)em) ; � > 0; y 2 � :

Similar statements holds for t < 0.

Proof. Having the estimate

jE(y� (x+ (t+ �)em))� E(y � (x+ tem))j .
�

jy � (x+ tem)jm
;

it follows that Ctf = lim�!0+ C�(Ctf). From the proposition we get
lim�!0� C�(Ctf) = 0. But C�(Ctf) being monogenic and zero on a
hypersurface implies C�(Ctf) = 0 in all 
�.

For the second identity, observe that the two sides are equal when
� = 0, which implies equality for all � > 0 as above.
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4. L2 Boundedness of Hardy Projections

The di�cult thing with the Hardy projections is to show that L2 =
P+L2 � P�L2. By Proposition 3.2 it is enough to show that we have
convergence in L2 for C�f as � ! 0+. For this we need uniform L2

bounds on C�f . For � = Rm�1, this follows easily from Fourier theory,
since Ê 2 L1. For a general Lipschitz surface � one can proceed as
in [14], where the two dimensional case in [5] is generalised to Rm

following [4]. Below we outline very briey the main steps of the proof
in [14] of the needed uniform L2 estimates. The key ingredient is the
following square function estimate, where

kGk2+ :=

Z

+
jG(x)j2dist(x;�) dx :

PROPOSITION 4.1. If G is monogenic in 
+ and continuous up to �
with boundary trace g and satis�es estimates jG(x)j � CG=(1+ jxj)

m�1

and jrG(x)j � CG=(1+ jxj)
m, x 2 
+ (e.g. if g = C�f and f 2 L2(�)

has compact support), then

kgkL2(�) . krGk+ ;

independently of the constant CG.

With the analogous theorem for right monogenic functions in 
�,
together with Schur estimates, we prove the following lemma.

LEMMA 4.2. Let H 2 C10 (
+;A) and

S�;jH(y) :=

Z

+

H(x)@jE(y � (x+ �em))dist(x;�) dx; y 2 � :

Then kS�;jHkL2(�) . kHk+, with constant independent of � > 0.

Now, combining the proposition and the lemma, using duality and
Fubini's theorem, we obtain the desired estimate

kC�fkL2(�) . krC(C�f)k+

.
mX
j=1

sup
kHjk+�1

Z

+

� @F
@xj

(x+ �em); Hj(x)
�
dist(x;�) dx

.
mX
j=1

sup
kHjk+�1

Z
�

�
S�;jHj(y); f(y)n(y)

�
d�(y)

. kfkL2(�) (2)

for all compactly supported f 2 L2(�), with a constant independent
of f and � . By Fatou's lemma this can be extended to all f 2 L2(�).

prague.tex; 19/10/2001; 16:26; p.6



Harmonic Analysis of Dirac Operators on Lipschitz Domains 7

Recall that the non-tangential maximal function of F : 
+ ! A is

NF (y) := sup
x2y+�

jF (x)j ; y 2 � ;

where � is an open in�nite cone with apex at 0 and axis along em. The
angle of the cone is chosen small enough that y+� � 
+ for all y 2 �.

PROPOSITION 4.3. The estimate kNC�fkL2(�) . kfkL2(�) holds for

all f 2 L2(�).

Proof. Use Corollary 3.3 to obtain

kN (C+(Ctf � C�tf))k = kN (C+(Ctf))k

. kM(Ctf)k . kCtfk . kfk :

The bound of the non-tangential maximal function N by the Hardy{
Littlewood maximal function M comes from the fact that we can
estimate K� in Proposition 3.2 by �=jy � (x+ �em)jm.

To pass to the limit with t, observe that N (C+(Ctf � C�tf)) is
increasing as t! 0+ and apply the monotone convergence theorem.

Note that this proposition not only gives control of Cf near � but also
shows that C�f ! 0 in L2 as � ! �1.

THEOREM 4.4. For any f 2 L2(�), boundary values to C�f ex-

ist both in L2(�) and pointwise non-tangentially a.e., so fP�g are

complementary projections in L2(�), i.e. bounded operators satisfying

(P�)2 = P� ; P+P� = 0 = P�P+ and P+ + P� = I :

Thus we have a topological splitting L2(�) = P+L2 � P�L2. We also

have P+ � P� = C� and the Plemelj{Sokhotski jump formulae P� =
1
2(I � C�).

Proof. Let ft = Ctf � C�tf and observe that for C�ft we have
boundary values both in L2 and non-tangentially a.e. Write

kC�f � C�fk � kC�(f � ft)k+ kC�(ft)� C�(ft)k+ kC�(ft � f)k :

Choosing t small and using (2) we can make the �rst and last term
small, and then choosing � and � small gives the middle term small.
Using the non-tangential maximal function one can similarly prove that
pointwise non-tangential boundary values exist a.e.

Finally a remark on the ranges of C�. We have seen that C+f is a
monogenic function in 
+ with NC+f 2 L2(�). The converse is also
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8 Axelsson, Grognard, Hogan and McIntosh

true, as can be proved with a limiting argument from the reproducing
formula (1). A similar result holds in the case of a bounded domain if
we use truncated cones for the boundary behaviour and an appropriate
radiation condition at in�nity depending on k. See [17].

5. Duality

A bilinear pairing hK;Hi between two Hilbert spaces is called a duality
if the estimates

jhk; hij. kkkkhk ; khk . sup
kkk=1

jhk; hij and kkk . sup
khk=1

jhk; hij

hold. Denote the adjoint operator of T : H ! H relative to this duality
by T 0 : K ! K.

The relevant duality here is not the L2(�) scalar product but rather
the weighted duality

hg; fi :=
Z
�
(g(y)n(y)f(y));d�(y) :

Here g 2
 �
L 2(�) = K and f 2

�!
L 2(�) = H, the two spaces being

just two identical copies of L2(�). Up to now we have made use of
Dk = D+ke0 acting from the left with Cauchy extensions C, using Ek

in the kernel, and Hardy projections P�. All this takes place in
�!
L 2. To

emphasise this we sometimes overline these operators, e.g. Dk =
�!
D k.

We may equally well do the same thing in
 �
L 2. Here we have a Dirac

operator
 �
Dk = D+k(�e0) acting from the right with Cauchy extension

 �
C f(x) =

Z
�
f(y)n(y)

 �
E k(y � x) d�(y) ; x 2 
+ [ 
� ;

using
 �
E k(x) := Fk(x) = �

�!
E k(�x), The boundary values I �

 �
C �

de�ne Hardy projections f
 �
P �g. All the theory in Sections 3 and 4

goes through for these operators in
 �
L 2, mutatis mutandis.

LEMMA 5.1. The dualities (
�!
P �)0 =

 �
P � hold.

Proof. Since P� = 1
2(I � C�) it is enough to prove (

�!
C �)0 = �

 �
C �.

Formally this follows from the calculation

hg;
�!
C �fi =

Z
�

�
g(x)n(x)

Z
�

�!
E k(y � x)n(y)f(y) d�(y)

�
;
d�(x)

=
Z
�

� Z
�
g(x)n(x)(�

 �
E k(x� y))d�(x) n(y)f(y)

�
;
d�(y)

= h�
 �
C �g; fi :
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6. Splittings of L2(�) and Rellich estimates

We now discuss the elliptic boundary value problem for Dk which
was hinted at before. For an elliptic operator of order d one should
impose d=2 boundary conditions to get a well-posed problem. For Dk

this means half a boundary condition should do.

DEFINITION 6.1. Let Q� : L2(�)! L2(�) be the projections

Q�f := 1
2(f � nfn) :

We denote the range of Q� by Q�L2 and set
 �
Q� =

�!
Q� := Q�.

In case f 2 Aodd, then Q+f is the tangential part of f while Q�f is the
normal part of f , the situation being reversed when f 2 Aeven. Note
that (

�!
Q�)0 =

 �
Q�.

The two pairs of complementary projections fP�g and fQ�g induce
the two splittings

L2(�) = P+L2 � P�L2 = Q+L2 � Q�L2 :

It is interesting to investigate the geometric relation between them.

DEFINITION 6.2. Assume fA�g is a pair of complementary projec-

tions on a Hilbert space H. We say that a bounded projection B is

transversal to fA�g if A+ : B(H)! A+(H) and A� : B(H) ! A�(H)
are both isomorphisms.

If the restricted projections are Fredholm with index zero rather than

isomorphisms, we say that B is 0-transversal to fA�g.

If B is transversal to fA�g, then in particular

kA+xk � kxk � kA�xk ; x 2 B(H) :

The case that we have in mind is the following fact concerning the
comparability of the normal and tangential part of a k-monogenic
function.

THEOREM 6.3. Let 
+ be a bounded open subset of Rm with strongly

Lipschitz boundary. Then there exists a discrete set S � R such that

P� is transversal to fQ�g for k =2 S, and is 0-transversal to fQ�g
when k 2 S.

In case of a Lipschitz graph � and k = 0, P� is transversal to fQ�g.
All these statements also hold when the P 's and Q's switch roles.
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10 Axelsson, Grognard, Hogan and McIntosh

This is a way of stating the well-posedness of the boundary value
problem consisting in �nding a function F in 
+ with boundary trace
f 2 L2(�) such that�

DkF = 0 in 
+

Q+f = g 2 Q+L2 on � :
(3)

By Theorem 6.3, if k =2 S, there exists a unique solution f 2 P+L2

such that Q+f = g and thus a unique solution F to (3). If k 2 S the
result still holds modulo �nite dimensions.

Note that the null space of Q+jP+L2 is P
+L2 \ Q�L2, it being f0g

when k = 0 and � is a graph since 
+ then has trivial topology. When
k = 0 and 
+ is bounded, the dimension of this intersection depends on
the topology of the domain. See [19] for the classical boundary integral
operators.

We begin to sketch the proof of Theorem 6.3 by presenting three
abstract lemmata to make the logic more transparent. First we recall
the following well{known result relating a priori estimates with the
semi{Fredholm property, i.e. having �nite dimensional nullspace and
closed range.

LEMMA 6.4. Let X , Y and Z be Banach spaces, T : X ! Y be

bounded, and K : X ! Z be compact. Assume the a priori estimate

kxkX . kTxkY + kKxkZ ; x 2 X :

Then T is a semi-Fredholm operator.

LEMMA 6.5. Assume a Hilbert space H splits as

H = A+(H) �A�(H) = B+(H)� B�(H)

with respect to two pairs of complementary projections fA�g and fB�g.
Then a priori estimates for the four restricted projections A�jB�(H)

imply estimates for the other four B� jA�(H). If the �rst four estimates

are strict, i.e. the compact terms are zero, then so are the other four.

Proof. Assume we have a priori estimates

kuk . kA�uk+ kK�uk ; u 2 B+(H)

kuk . kA�uk+ kL�uk ; u 2 B�(H)

whereK� and L� are compact operators. Then by decomposing A+(H) 3
u = B+u+B�u and observing that A�B+u+ A�B�u = 0 we get

kuk � kB+uk+ kB�uk . kB+uk+ kA�B�uk+ kL�B�uk

= kB+uk+ kA�B+uk+ kL�B�uk . kB+uk+ kL�B�uk:
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Harmonic Analysis of Dirac Operators on Lipschitz Domains 11

Last we give a duality lemma for pairs of projections. Here we suppose
that there is a duality hK;Hi between H and another Hilbert space K.

LEMMA 6.6. Assume H splits in two ways as in the previous lemma.

Then K = (A+)0(K)� (A�)0(K) = (B+)0(K)� (B�)0(K). If

A+ : B+(H) �! A+(H)

(A�)0 : (B�)0(K) �! (A�)0(K)

both satisfy a priori estimates, then they are Fredholm operators.

If the estimates are strict, then they are both isomorphisms.

More generally, if there exists an isomorphism j : A�(H)\B+(H)!
(A+)0(K)\ (B�)0(K), then A+ and (A�)0 both have index 0.

Proof. Observe that hK;Hi restricts to a (non-degenerate) duality

h(A+)0(K)\ (B�)0(K); A+(H)	A+B+(H)i :

This shows that the dimension of the cokernel of A+jB+(H) equals that

of the kernel of (A�)0j(B�)0(K). An isomorphism j shows that the latter

dimension equals the dimension of the kernel of A+jB+(H). Thus it has

index zero. Similarly for (A�)0j(B�)0(K).

The application we have in mind is A� = Q� and B� = P� and
the duality is h

 �
L 2;
�!
L 2i as above with j(f) = fe0. Note that j maps

�!
P �L2 to

 �
P �L2 and

�!
Q�L2 to

 �
Q�L2 and thus satis�es the condition

of Lemma 6.6.
We can now apply the three lemmata if we prove the Rellich-type a

priori estimates for Q�jP�L2 .

PROPOSITION 6.7. Let 
+ be bounded. If f 2 P+L2, then

kfk . kQ�fk+ (jkj+ 1)kCfkL2(U\
+) ;

where U denotes a neighbourhood of � with compact closure. The op-

erator C is compact from L2(�) to L2(U \ 
+).
The same estimate holds if f 2 P�L2 and U \
� replaces U \
+.

Proof. Following [17] and [18], the proof uses the commutation prop-
erties of A and the boundary theorem. Take � 2 C1

0(U ;^
1
R
) with the

property that (n; �) � c > 0 on �. We get for f 2 P�L2

jf j2(n; �) = 1
2(f; f(n� + �n)) = �1

2

�
(f�; fn) + (fn; f�)

�

= �Re (fn; f�) = �Re (2(Q�f)n; f�)� Re (nf; f�) :
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12 Axelsson, Grognard, Hogan and McIntosh

Integrating over �, using the boundary theorem on the expression
(nf; f�) in the second term and writing F = Cf , we obtain

kfk2 . kQ�fkkfk

+

����
Z

�

�
(�ke0F; F�) � (F;�ke0F�) � (F;DF _�)

�
dx

���� ;
where the dot indicates that D only acts there. Using the inequality
ab � 1

2�a
2+ �

2b
2 on the �rst term with suitable � we obtain the estimate.

That the perturbation term is compact can be shown by using
Schur's test with suitable exponents.

Proof of Theorem 6.3:

Bounded �, Im k � 0: Applying Proposition 6.7, Lemmata 6.5 and
6.6 gives that P� is 0-transversal to fQ�g and vice versa.

Bounded �, Im k > 0: Here we can use the boundary theorem on
(nf; e0f) to eliminate the compact term. Calculating, we get

Z
�
(nf; e0f) =

Z

+

�
(�ke0F; e0F )� (F; (�e0)(�ke0F )

�

= (�2i)Imk

Z

+
jF j2

and (nf; e0f) = 2iIm (Q�f; e0nf). After some algebra this yields
the strict a priori estimate

kfk .
jkj+ 1

Im k
kQ�fk ;

which shows that P� is transversal to fQ�g and vice versa via
Lemmata 6.5 and 6.6.

Bounded �, discreteness of S: This follows from analytic Fredholm
theory applied to Q�P� : Q� ! Q�.

Graph �, k = 0: The proof of Proposition 6.7 here works with � =
em and gives a strict a priori estimate directly. This implies the
transversality as above.

7. Harmonic functions

Rellich's original estimate was formulated as the comparable size in
L2(�) of the normal and tangential derivatives of a harmonic function
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u : 
+ ! R. This result follows from the integral identity arising in
the proof of Proposition 6.7 by regarding u as a map into ^0, letting

F = Du : 
+ ! ^1 ;

and noting that F is monogenic, that Q+f is the tangential derivative
of u, and that Q�f is the normal derivative of u.

Many integral identities under the name of Rellich in the literature
can be derived from the results of Section 6 in a similar way. Applica-
tions also include the known estimates [26] for the acoustic double-layer
potential operator

K��(x) := 2 p.v.

Z
�
(Ek(y � x); n(y))�(y) d�(y) = (C��);(x) ; x 2 � ;

where � 2 L2(�;C).

PROPOSITION 7.1. The operators I�K� are bounded Fredholm maps

on L2(�;C) with index 0. When Im k > 0 they are isomorphisms.

Proof. Identify C with ^0 � A. Straightforward calculations give

(I �K�
�) = �2nQ�P�(�kc)(n ) ;  2 L2(�;^0) :

Thus Theorem 6.3 gives a priori estimates for I � K�
�. Furthermore,

as in [7], it can be shown that �I � K�
� is also semi-Fredholm for

j�j � 1, � 2 R. It is an isomorphism when j�j > kK�
�k, so by general

perturbation theory the index is 0.

8. Maxwell's Equation

We conclude by briey describing how the above theory can be applied
to Maxwell's equations

D ^B = 0

@0B +D ^E = 0

@0D +D yH = �J

D yD = � ;

where E = ��1D = E1e1+E2e2+E3e3 and B = �H = B1e23+B2e31+
B3e12. From bottom to top these are Gauss' law, Amp�ere{Maxwell's
law, Faraday's law and the magnetic Gauss' law and they take scalar,
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14 Axelsson, Grognard, Hogan and McIntosh

vector, bivector and trivector values respectively. Taking energy as unit,
the physically natural quantity to work with is the electromagnetic �eld

f(t; x) = �1=2~e0E + ��1=2B :

As in [12] we observe that Maxwell's equations can be written entirely
with Cli�ord algebra (with time and space dependent � and �) as

(�1
c ~e0@0 +D)f(t; x) +Rf(t; x) = j ;

where the speed of propagation is c(t; x) := (�(t; x)�(t; x))�1=2. The
zero order term is

Rf := T (f)(�1
c ~e0@0 +D) ln(��1=2) + S(f)(�1

c ~e0@0 +D) ln(�1=2) ;

where T (f) := 1
2(f � ~e0f ~e0) = �1=2~e0E and S(f) := 1

2(f + ~e0f ~e0) =

��1=2B, and the \four-current" is j := ~e0�
�1=2�+ �1=2J .

Here we will just consider the case when the coe�cients are constant
on 
+ or 
� and j = 0 there. Then Maxwell's equation takes the form

(�1
c ~e0@0 +D)f(t; x) = 0 ;

so that time harmonic solutions f(t; x) = e�i!tf(x) are k-monogenic,
where k = !=c is the wave number.

In solving the boundary value problem (3) in R3 for Maxwell's equa-
tion, the Rellich estimates do not completely solve the problem since
we have a constraint on f requiring that it should take values only in
^2. Let us see what necessary conditions on g := Q+f = n(n y f)
we have when f 2 P+L2 and C+f takes values in ^2. Of course
g 2 Q+L2(�;^2), but we also get, after an integration by parts, that

0 = (C+f);(x) =

Z
�
(Ek(y � x)n(y)f(y)); d�(y)

=

Z
�
Bk(y � x)(��@(n y g)(y) + ke0 y (n y g)(y)) d�(y);

where Bk(x) = �
eikjxj

4�jxj . Here we have de�ned the operator �@ in L2(�)

via duality by
Z
�
(�@(n y g);�j�) =

Z
�
(n y g; (d�)j�)

for all C1 functions � in a neighbourhood of �. Note that this operator
only is well-de�ned for tangential functions and as the notation suggests
it is closely related to the usual interior derivative ��. Now, varying x
over 
+, we conclude that �@(n y g) = ke0 y (n y g), at least if Imk > 0.
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THEOREM 8.1. If Im k > 0, g 2 L2(�;^2), n ^ g = 0 and �@(n y g) =
ke0 y (n y g), then the boundary value problem (3) in R3 has a unique

solution

F : 
+ �! ^2 :

Moreover, its boundary trace f satis�es kfkL2(�) . kgkL2(�).
Similar results are true modulo �nite dimensions when k is real.

Proof. If Im k > 0, Theorem 6.3 gives a unique F : 
+ ! A with
normal boundary trace g. To show that F maps into ^2, decompose f =
f (0)+f (1)+f (2)+f (3)+f (4), where f (p) 2 ^p. Since Dk switches Aeven

and Aodd it follows that fodd = f (1) + f (3) 2 P+L2. Since Q+fodd = 0
we get f (1) = f (3) = 0.

By the di�erentiability condition on g, 1
2(I + K�)f (0) = f (0) �

(P+g); = f (0), and thus an application of Proposition 7.1 gives f (0) =
0. Furthermore f (4) = 0 simply because Q+ is injective on L2(�;^4).
Thus f = f (2) 2 P+L2, and this implies that F : 
+ �! ^2.
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