Hodge decompositions on weakly Lipschitz domains

Andreas Axelsson, Alan MCIntosh

Abstract

We survey the L_{2} theory of boundary value problems for exterior and interior derivative operators $d_{k_{1}}=d+k_{1} e_{0} \wedge$ and $\left.\delta_{k_{2}}=\delta+k_{2} e_{0}\right\lrcorner$ on a bounded, weakly Lipschitz domain $\Omega \subset \mathbf{R}^{n}$, for $k_{1}, k_{2} \in \mathbf{C}$. The boundary conditions are that the field be either normal or tangential at the boundary. The well-posedness of these problems is related to a Hodge decomposition of the space $L_{2}(\Omega)$ corresponding to the operators d and δ. In developing this relationship, we derive a theory of nilpotent operators in Hilbert space.

1. Introduction

The aim of this paper is to survey and further develop the Hilbert space theory of boundary value problems (BVP's) for the exterior (d) and interior derivative (δ) operators in a bounded domain $\Omega \subset \mathbf{R}^{n}$ with a boundary $\Sigma=\partial \Omega$ of minimal regularity. The BVP we have in mind is the following. Given a $(j-1)$-vector field $G \in L_{2}\left(\Omega ; \wedge^{j-1}\right)$ which is k_{2}-divergence free, i.e. $\delta_{k_{2}} G=0$, find a j-vector field $F \in L_{2}\left(\Omega ; \wedge^{j}\right)$ such that

$$
\begin{cases}d_{k_{1}} F=0 & \text { in } \Omega \tag{1}\\ \delta_{k_{2}} F=G & \text { in } \Omega \\ \nu \wedge f=0 & \text { on } \Sigma\end{cases}
$$

Here $f:=\left.F\right|_{\Sigma}$ and ν denotes the outward pointing unit vector field on Σ. Thus the boundary condition $\nu \wedge f=0$ means that F is normal on the boundary. The differential operators are the zero order perturbations $d_{k_{1}}=d+k_{1} e_{0} \wedge$ and $\left.\delta_{k_{2}}=\delta+k_{2} e_{0}\right\lrcorner$ of the operators d and δ defined in Section 2, where $k_{i} \in \mathbf{C}$ are the wave numbers and $e_{0} \in \Lambda^{1}$ is the time-like vector. An important property of these operators is that they are nilpotent, i.e. $d_{k_{1}}^{2}=\delta_{k_{2}}^{2}=0$.

[^0]Example 1.1. When $j=1$ and $k_{1}=k_{2}=k$, the BVP (1) is essentially the Dirichlet BVP for the Helmholtz equation $\left(\Delta+k^{2}\right) U=G$, where $U: \Omega \rightarrow \wedge^{0}=\mathbf{C}$. To see this, let $F=d_{k} U=\nabla U+k e_{0} U$ so that

$$
\delta_{k} F=\delta_{k} d_{k} U=\left(\Delta+k^{2}\right) U=G .
$$

Since $u=\left.U\right|_{\Sigma}=0$ implies that f is normal, i.e. $\nu \wedge f=0$ on Σ, we see that the two BVP's are equivalent. Note that since G in this case is a scalar function, the condition $\delta_{k_{2}} G=0$ is automatically satisfied.

Similarly, the Neumann problem corresponds to (1) with tangential boundary conditions, i.e. $\nu\lrcorner f=0$.

Example 1.2. When $n=3$ and $j=2$, the BVP (1) coincides with the electromagnetic BVP for time-harmonic $\left(\frac{\partial}{\partial t}=-i \omega\right)$ Maxwell's equations with frequency $\omega \in \mathbf{C}$ and $\Omega^{-}=\mathbf{R}^{3} \backslash \bar{\Omega}$ being a perfect conductor. Assuming that Ω is composed of a linear, homogeneous, isotropic, possibly conducting material with permittivity $\epsilon>0$, permeability $\mu>0$ and conductivity $\sigma \geq 0$, we consider the electromagnetic field

$$
\begin{aligned}
& F=\sqrt{\epsilon_{*}}\left(-i e_{0}\right) \wedge\left(E_{1} e_{1}+E_{2} e_{2}+E_{3} e_{3}\right) \\
&+\frac{1}{\sqrt{\mu}}\left(B_{1} e_{2} \wedge e_{3}+B_{2} e_{3} \wedge e_{1}+B_{3} e_{1} \wedge e_{2}\right): \Omega \longrightarrow \wedge^{2} \mathbf{R}^{4}
\end{aligned}
$$

where E and B are the electric and magnetic fields and $\epsilon_{*}:=\epsilon+i \sigma / \omega$. If we let $k_{1}=k_{2}=k=\omega \sqrt{\epsilon_{*} \mu}$, then Faraday's induction law and the magnetic Gauss' law combine to $d_{k} F=0$ whereas Maxwell's-Ampère's law and Gauss' law combine to $\delta_{k} F=G$, where the four-current $G=\frac{i}{\sqrt{\epsilon_{*}}} \rho e_{0}-\sqrt{\mu} J$ satisfies the continuity equation $\delta_{k} G=0$.

In this paper we investigate BVP's from the point of view of splittings of function spaces following our earlier work Axelsson-Grognard-Hogan-MCIntosh [4], Axelsson [2] and [1]. The splittings relevant to this paper are Hodge type decompositions of the Hilbert space $L_{2}(\Omega ; \wedge)$. For simplicity, assume $k_{2}=-k_{1}{ }^{\mathrm{c}}$. Then the operators $d_{k_{1}, \bar{\Omega}}$ and $\delta_{k_{2}, \Omega}$ are adjoint, where $d_{k_{1}, \bar{\Omega}}$ denotes $d_{k_{1}}$ with normal boundary conditions and $\delta_{k_{2}, \Omega}$ denotes $\delta_{k_{2}}$ without boundary conditions in Ω, as in Definition 4.1. Consider the following diagram.

$$
\begin{aligned}
& L_{2}(\Omega ; \wedge)=\mathrm{R}\left(\delta_{k_{2}, \Omega}\right) \ldots \mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right) \oplus \oplus \\
& \mathrm{P}\left(d_{k_{1}, \bar{\Omega}}\right) \\
& L_{2}(\Omega ; \wedge)=\mathrm{R}\left(\delta_{k_{2}, \Omega}\right) \stackrel{\delta_{k_{2}, \Omega}}{\oplus} \mathrm{~N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right) \stackrel{d_{k_{1}, \bar{\Omega}}}{\oplus} \mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)
\end{aligned}
$$

What is needed here is to prove a Hodge decomposition, i.e. that the space $\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right)$ of "harmonic forms" is finite dimensional and that the ranges $\mathrm{R}\left(\delta_{k_{2}, \Omega}\right)$ and $\mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)$ are closed, or equivalently that $\mathrm{R}(\Gamma)$ is a closed subset of finite codimension in the null space $\mathrm{N}(\Gamma)$ for both choices $\delta_{k_{2}, \Omega}$ and $d_{k_{1}, \bar{\Omega}}$ for Γ.

Note that Fredholm well-posedness of the BVP (1), put into operator theoretic language means that

$$
\delta_{k_{2}, \Omega}: \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right) \longrightarrow \mathrm{N}\left(\delta_{k_{2}, \Omega}\right)
$$

is a Fredholm map. Clearly this holds if we have a Hodge decomposition as above. The Hodge decomposition in the case $k_{1}=k_{2}=0$ for a general weakly Lipschitz domain is due to Picard [21], and the extension to the case $k_{2}=-k_{1}{ }^{\mathrm{c}}$ is straightforward. Although the Hodge decomposition is not valid for general $k_{1}, k_{2} \in \mathbf{C}$, nevertheless the BVP (1) is well-posed in the Fredholm sense. Indeed the following result will be proved in Section 4.

Theorem 1.3. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded weakly Lipschitz domain, as in Definition 2.1, and let $k_{1}, k_{2} \in \mathbf{C}$. Then $R\left(\delta_{k_{2}, \Omega}\right)$ and $R\left(d_{k_{1}, \bar{\Omega}}\right)$ are closed subspaces of finite codimension in $N\left(\delta_{k_{2}, \Omega}\right)$ and $N\left(d_{k_{1}, \bar{\Omega}}\right)$ respectively. The maps

$$
\begin{align*}
& \delta_{k_{2}, \Omega}: N\left(d_{k_{1}, \bar{\Omega}}\right) \longrightarrow N\left(\delta_{k_{2}, \Omega}\right) \tag{2}\\
& d_{k_{1}, \bar{\Omega}}: N\left(\delta_{k_{2}, \Omega}\right) \longrightarrow N\left(d_{k_{1}, \bar{\Omega}}\right) \tag{3}
\end{align*}
$$

are Fredholm maps with compact Fredholm inverses.
For the Hodge decomposition with tangential boundary conditions, i.e. with $\delta_{k_{2}, \Omega}$ and $d_{k_{1}, \bar{\Omega}}$ replaced by $\delta_{k_{2}, \bar{\Omega}}$ and $d_{k_{1}, \Omega}$ as in Definition 4.1, the corresponding result holds.
W.V.D. Hodge's pioneering work on harmonic integrals on Riemannian manifolds during the 1930's was published in his book [12]. The splitting of a differential form into its exact, coexact and harmonic parts, now referred to as the Hodge decomposition, was in this book proved using Fredholm's theory of linear integral equations. The connection between splittings of function spaces such as the Hodge decomposition and boundary value problems in potential theory was early recognised by Weyl [27]. Here it was shown how the classical Dirichlet minimum principle could be replaced by the construction of orthogonal projections in Hilbert space.

In the present paper, we treat Hodge decompositions from a purely first order, operator theoretic point of view. By first order we mean that the focus is on nilpotent operators (see Definition 3.1 below) such as the exterior derivative d and not on the Hodge-Laplace operator $\Delta=d \delta+\delta d$. An early investigation along these lines is Friedrichs [8], where the operators d and δ were introduced as closed unbounded operators. Other references we would like to mention are Kodaira [14], where the weak Hodge decomposition (14) appears, and Gaffney [9] and [10] which introduced the a priori estimate

$$
\begin{equation*}
\|F\|_{W_{2}^{1}} \lesssim\|d F\|_{L_{2}}+\|\delta F\|_{L_{2}}+\|F\|_{L_{2}} . \tag{4}
\end{equation*}
$$

For a domain with boundary, we discuss this inequality in Theorem 4.10. For further early literature on the Hodge decomposition, we refer to Chapter 7 in Morrey [20].

On a domain with non-smooth boundary, the Gaffney-Friedrich inequality (4) is in general not valid. The first proof of the Hodge decomposition on domains with non-smooth boundaries without using (4) is Weck [26]. The extension to general weakly Lipschitz domains is due to Picard [21].

Returning the Example 1.2, we remark that the standard approach to the Maxwell BVP uses the Maxwell operator M acting on a pair of divergence-free vector fields. An investigation of M on domains with non-smooth boundary, from the point of view of the Weyl decomposition (essentially the Hodge decomposition of vector fields) can be found in Birman-Solomyak [5], [6]. They show (in the language of the present paper) how M constitute part of the elliptic Dirac operator $\mathbf{D}_{\Omega^{\perp}}$ from Example 4.6.

For further literature on the connection between Hodge decompositions and BVP's, we refer to Schwarz [23] in the case of smooth domains and to MitreaMitrea [17] in the case of strongly Lipschitz domains.

The key idea in this paper is that not only do we treat Hodge decompositions from a pure first order point of view, but we show that by investigating the "half-elliptic" operators d and δ separately, one can easily prove the Hodge decomposition on a domain with weakly Lipschitz boundary. Indeed, it is not necessary to use the given adjoint δ operator in proving that $\mathrm{R}\left(d_{\Omega}\right)$ is closed and of finite codimension in $\mathrm{N}\left(d_{\Omega}\right)$. As in Remark 3.12, we may equally well choose to work with the adjoint given by a metric in which Ω has a smooth boundary.

The first step in the proof of Theorem 1.3 uses the duality theorem 3.3 from general operator theory. As we show in Proposition 3.11, this duality result proves that the maps (2) and (3) have the same properties concerning closed range and compact inverse. The second step in the proof of Theorem 1.3 is Lemma 3.13, where we use the basic differential geometric fact that the exterior derivative is independent of the Riemannian metric, here given in the form of Proposition 2.6. These two steps show that the general case of a weakly Lipschitz domain in Theorem 1.3 can be reduced to the case of a smooth domain Ω. This reduction technique has been used by Picard [21]. We also provide some basic density results for the d and δ operators in Proposition 4.3 and construct extension maps in Proposition 4.8. Finally, we survey three different ways to prove Theorem 1.3 under certain additional regularity and topological assumptions on Σ.

- Theorem 4.10: The classical Gaffney-Friedrichs a priori estimate technique, which gives optimal $W_{2}^{1}(\Omega ; \wedge)$ regularity for fields in $\mathrm{D}\left(d_{\bar{\Omega}}\right) \cap \mathrm{D}\left(\delta_{\Omega}\right)$ if the domain has a smooth boundary.
- Theorem 4.13: The boundary integral equation method, which gives optimal regularity $W_{2}^{1 / 2}(\Omega ; \wedge)$ in the class of strongly Lipschitz domains by using Rellich estimates.
- Theorem 4.17: A path integral method for a star shaped domain. This method, which is based on the classical Poincaré lemma, seems new. Although it does not give optimal regularity, it has the advantage of being entirely explicit.

2. Preliminaries

Throughout this paper $\Omega=\Omega^{+} \subset \mathbf{R}^{n}$ denotes a bounded open set, separated from the exterior domain $\Omega^{-}=\mathbf{R}^{n} \backslash \bar{\Omega}^{+}$by a weakly Lipschitz interface $\Sigma=\partial \Omega^{+}=$ $\partial \Omega^{-}$, defined as follows.
Definition 2.1. The interface Σ is weakly Lipschitz if, for all $y \in \Sigma$, there exists a neighbourhood $V_{y} \ni y$ and a global bilipschitz map $\rho_{y}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that

$$
\begin{aligned}
\Omega^{+} \cap V_{y} & =\rho_{y}\left(\mathbf{R}_{+}^{n}\right) \cap V_{y}, \\
\Sigma \cap V_{y} & =\rho_{y}\left(\mathbf{R}^{n-1}\right) \cap V_{y}, \\
\Omega^{-} \cap V_{y} & =\rho_{y}\left(\mathbf{R}_{-}^{n}\right) \cap V_{y} .
\end{aligned}
$$

In this case Ω is called a bounded weakly Lipschitz domain.
If $\rho: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a global bilipschitz map, then $\rho\left(\mathbf{R}^{n-1}\right)$ is called a special weakly Lipschitz surface/interface and $\rho\left(\mathbf{R}_{ \pm}^{n}\right)$ are called special weakly Lipschitz domains.

By Rademacher's theorem, a weakly Lipschitz surface Σ has a tangent plane and an outward (into Ω^{-}) pointing unit normal $\nu(y)$ at almost every $y \in \Sigma$.

Example 2.2. We now give two examples of weakly Lipschitz surfaces which are not strongly Lipschitz, i.e. not locally the graph of a Lipschitz function.
(i) Let $\rho_{0}: S^{n-1} \rightarrow S^{n-1}$ be a bilipschitz homeomorphism of the unit sphere. Consider the conical surface

$$
\Sigma:=\left\{x \in \mathbf{R}^{n} \backslash\{0\} ; x /|x| \in \rho_{0}\left(S^{n-1} \cap \mathbf{R}^{n-1}\right)\right\} \cup\{0\} .
$$

The natural parametrisation here is $\rho(r \omega):=r \rho_{0}(\omega), r \geq 0, \omega \in S^{n-1}$. Using the identity $\left|r \omega-r^{\prime} \omega^{\prime}\right|^{2}=\left|r-r^{\prime}\right|^{2}+r r^{\prime}\left|\omega-\omega^{\prime}\right|^{2}$, it is straightforward to show that $\rho: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a bilipschitz map. Thus Σ is a weakly Lipschitz surface.

An important special case is the "two brick" domain, defined as the interior of

$$
\left\{(x, y, z) \in \mathbf{R}^{3} ; y \leq 0, z \leq 0\right\} \cup\left\{(x, y, z) \in \mathbf{R}^{3} ; x \leq 0, z \geq 0\right\}
$$

Indeed, the intersection with the unit sphere S^{2} is a two dimensional strongly Lipschitz domain. Nevertheless, the boundary of the two brick domain is not locally a graph of a Lipschitz function around 0 .
(ii) Let $a_{i}>0$ and $e^{-2 \pi} a_{2}<a_{1}<a_{2}$ and consider the logarithmic spiral

$$
\Omega:=\left\{r e^{i \theta} ; r>0, \theta \in \mathbf{R}, a_{1} e^{-\theta}<r<a_{2} e^{-\theta}\right\} \subset \mathbf{R}^{2} .
$$

To see that Ω is a special weakly Lipschitz domain, define the maps
$\rho_{s}(x, y):=(x \cos (s \ln r)-y \sin (s \ln r), x \sin (s \ln r)+y \cos (s \ln r))$,
where $r^{2}=x^{2}+y^{2}$, or in complex notation $\rho_{s}: z \mapsto z e^{i s \ln |z|}$. We see that $\rho_{s} \circ \rho_{t}=\rho_{s+t}, s, t \in \mathbf{R}$ and that $\left|\nabla \otimes \rho_{s}\right| \leq C$. In particular $\rho_{-1}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$
is a bilipschitz map. Since

$$
\Omega=\rho_{-1}\left(\left\{z \in \mathbf{C} ; \ln a_{1}<\arg (z)<\ln a_{2}\right\}\right),
$$

this shows that Ω is a special weakly Lipschitz domain. But clearly $\partial \Omega$ is not locally a graph of a Lipschitz function around 0 .

In this paper we make use of the three differential operators d, δ and \mathbf{D} as described below. These operators act on functions $F: \Omega \rightarrow \wedge$ which take values in an exterior algebra \wedge, sometimes referred to as (multivector-)fields. Boundary traces and fields on Σ will be written with small letters, for example f. We here use the complexified exterior algebra

$$
\wedge=\wedge_{\mathbf{C}} \mathbf{R}^{n+1}=\wedge^{0} \oplus \wedge^{1} \oplus \ldots \oplus \wedge^{n+1}
$$

for \mathbf{R}^{n} spacetime. Let $\left\{e_{s} ; s \subset\{0,1, \ldots, n\}\right\}$ be the standard basis for $\wedge_{\mathbf{C}} \mathbf{R}^{n+1}$. Here $e_{0} \in \wedge^{1}$ is interpreted as a (imaginary time-like) vector and the space of j vectors \wedge^{j} is the span of $\left\{e_{s} ;|s|=j\right\}$. Furthermore, let $\langle\cdot, \cdot\rangle$ denote the standard complex bilinear pairing, $u^{\text {c }}$ denote component-wise complex conjugation and u^{\urcorner} denote involution. Concretely, if we expand the multivectors $u, v \in \wedge_{\mathbf{C}} \mathbf{R}^{n+1}$ as $u=\sum_{s} u_{s} e_{s}$ and $v=\sum v_{s} e_{s}$, then

$$
\begin{aligned}
\langle u, v\rangle & =\sum u_{s} v_{s}, \\
u^{\mathrm{c}} & =\sum u_{s}^{\mathrm{c}} e_{s}, \\
u^{\urcorner} & =\sum(-1)^{|s|} u_{s} e_{s} .
\end{aligned}
$$

Definition 2.3. Introduce the counting function $\sigma(s, t):=\#\left\{\left(s_{i}, t_{j}\right) ; s_{i}>t_{j}\right\}$, where $s=\left\{s_{i}\right\}, t=\left\{t_{j}\right\} \subset\{0,1, \ldots, n\}$. Basic complex bilinear products on the algebra \wedge are the following.
(i) The exterior product of two basis multivectors e_{s} and e_{t} is

$$
e_{s} \wedge e_{t}=(-1)^{\sigma(s, t)} e_{s \cup t} \quad \text { if } s \cap t=\emptyset \text { and otherwise zero. }
$$

(ii) The left (right) interior product $u\lrcorner v(u\llcorner v)$ is the unique bilinear (nonassociative) product for which $\langle u\lrcorner x, y\rangle=\langle x, u \wedge y\rangle$ and $\langle x\llcorner u, y\rangle=\langle x, y \wedge u\rangle$ respectively for all $u, x, y \in \wedge$. The action on two basis vectors e_{s} and e_{t} is

$$
\left.e_{s}\right\lrcorner e_{t}=(-1)^{\sigma(s, t \backslash s)} e_{t \backslash s}, \quad e_{t}\left\llcorner e_{s}=(-1)^{\sigma(t \backslash s, s)} e_{t \backslash s},\right.
$$

if $s \subset t$ and otherwise zero.
(iv) The Clifford product of two basis multivectors e_{s} and e_{t} is

$$
e_{s} \triangle e_{t}=(-1)^{\sigma(s, t)} e_{s \Delta t}
$$

where Δ denotes the symmetric difference when acting on index sets. When there is no risk of confusion we will use the standard short-hand notation $u v:=u \Delta v$ for the Clifford product.

Proposition 2.4. For a vector $a \in \wedge^{1}$ and for general multivectors u, v and $w \in \wedge$ the following hold.

$$
\begin{align*}
u\lrcorner(v\lrcorner w) & =(v \wedge u)\lrcorner w \tag{5}\\
a \triangle u & =a\lrcorner u+a \wedge u \tag{6}\\
a\lrcorner u & =-u\urcorner\left\llcorner a=\frac{1}{2}(a \triangle u-u\urcorner \triangle a\right) \tag{7}\\
a \wedge u & \left.=u\urcorner \wedge a=\frac{1}{2}(a \Delta u+u\urcorner \triangle a\right) \tag{8}\\
a\lrcorner(u \wedge v) & =(a\lrcorner u) \wedge v+u\urcorner \wedge(a\lrcorner v) \tag{9}
\end{align*}
$$

These basic geometric algebra identities are essentially well known and we omit the proof. Here (5) is the associativity property of the interior product. The formulae (7) and (8), which are inverse to (6), are sometimes referred to as Riesz' formulae. The formula (9) is the derivation property for the interior product. A classical example of (9) is when $a, b=u$ and $c=v$ are vectors in a threedimensional space. Using the Hodge complement $\left.u^{\perp}:=u\right\lrcorner e_{123}$ (usually called the Hodge star $* u$), and the vector product $b \times c=(b \wedge c)^{\perp}$, we get the well known identity

$$
-a \times(b \times c)=a\lrcorner(b \wedge c)=\langle a, b\rangle c-\langle a, c\rangle b
$$

Throughout this paper we make use of the nabla symbol $\nabla=\sum_{j=1}^{n} e_{j} \partial_{j}$. We recall that the products \wedge,$\lrcorner and \triangle$ induce differential operators

$$
\begin{aligned}
d F(x) & :=\nabla \wedge F(x)=\sum_{j=1}^{n} e_{j} \wedge\left(\partial_{j} F\right)(x), \\
\delta F(x) & \left.:=\nabla\lrcorner F(x)=\sum_{j=1}^{n} e_{j}\right\lrcorner\left(\partial_{j} F\right)(x), \\
\mathbf{D} F(x) & :=\nabla \triangle F(x)=\sum_{j=1}^{n} e_{j} \triangle\left(\partial_{j} F\right)(x)=d F(x)+\delta F(x) .
\end{aligned}
$$

In the same spirit we also denote the full differential of F by $\nabla \otimes F(x)=\sum e_{j} \otimes$ $\left(\partial_{j} F\right)(x) \in \mathbf{R}^{n} \otimes \wedge$. Here the formal adjoint of the exterior derivative operator d is the negative of the interior derivative δ; this differs from the standard convention. Sometimes we refer to d as (generalised) curl and to δ as (generalised) divergence. The (elliptic) Dirac operator $\mathbf{D}=d+\delta$ is formally skew-adjoint. Here \mathbf{D} is a square root of the Hodge-Laplace operator $\Delta=d \delta+\delta d$.

The most important property of the differential operators d and δ is that they commute with a change of variables if we change the direction of the field in an appropriate way.
Definition 2.5. Let $\rho: U \rightarrow V$ be a diffeomorphism between two open sets U and $V \subset \mathbf{R}^{n}$. Denote by ρ_{x} the Jacobian matrix of ρ at $x \in U$ and extend this linear $\operatorname{map} T_{x} \mathbf{R}^{n} \rightarrow T_{\rho(x)} \mathbf{R}^{-x}$ to a \wedge-isomorphism $\underline{\rho}_{x}: \wedge \rightarrow \wedge$ such that $\underline{\rho}_{x}\left(e_{0}\right)=e_{0}$ and

$$
\underline{\rho}_{x}\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}\right)=\left(\underline{\rho}_{x} e_{i_{1}}\right) \wedge \ldots \wedge\left(\underline{\rho}_{x} e_{i_{k}}\right),
$$

if $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{0,1, \ldots, n\}$. To a field $F: V \rightarrow \wedge$ we associate the pullback $\rho^{*} F: U \rightarrow \wedge$ and push forward $\rho_{*}^{-1} F: U \rightarrow \wedge$ of F as follows.

$$
\left(\rho^{*} F\right)(x):=\left(\underline{\rho}_{x}\right)^{*}(F(\rho(x))), \quad\left(\rho_{*}^{-1} F\right)(x):=\left(\underline{\rho}_{x}\right)^{-1}(F(\rho(x))) .
$$

For convenience, we also define the reduced push forward

$$
\tilde{\rho}_{*}^{-1} F:=J(\rho) \rho_{*}^{-1} F: U \longrightarrow \wedge,
$$

where $J(\rho)(x)\left(e_{1} \wedge \ldots \wedge e_{n}\right)=\underline{\rho}_{x}\left(e_{1} \wedge \ldots \wedge e_{n}\right)$ denotes the Jacobian determinant.
Proposition 2.6. If ρ and F are as in Definition 2.5, then we have commutation properties

$$
\begin{equation*}
d\left(\rho^{*} F\right)=\rho^{*}(d F), \quad \delta\left(\tilde{\rho}_{*}^{-1} F\right)=\tilde{\rho}_{*}^{-1}(\delta F) \tag{10}
\end{equation*}
$$

and homomorphism properties

$$
\begin{array}{ll}
\rho^{*}(F \wedge G)=\rho^{*} F \wedge \rho^{*} G, & \\
\rho_{*}^{-1}(F \wedge G)=\rho_{*}^{-1} F \wedge \rho_{*}^{-1} G \tag{12}\\
\left.\left.\rho^{*}(F\lrcorner G\right)=\rho_{*}^{-1} F\right\lrcorner \rho^{*} G, & \\
\left.\left.\rho_{*}^{-1}(F\lrcorner G\right)=\rho^{*} F\right\lrcorner \rho_{*}^{-1} G .
\end{array}
$$

In particular, if $\left.F^{\perp}:=F\right\lrcorner e_{01 \ldots n}$ denotes the complement of F, then $\rho^{*}\left(F^{\perp}\right)=$ $\left(\tilde{\rho}_{*}^{-1} F\right)^{\perp}$.
Proof. Note that we have the two pairs of adjoint operators

$$
\underline{\rho}_{x}: T_{x} \mathbf{R}^{n} \longrightarrow T_{\rho(x)} \mathbf{R}^{n}, \quad\left(\underline{\rho}_{x}\right)^{*}: T_{\rho(x)} \mathbf{R}^{n} \longrightarrow T_{x} \mathbf{R}^{n},
$$

and

$$
\tilde{\rho}_{*}: L_{2}(U ; \wedge) \longrightarrow L_{2}(V ; \wedge), \quad \rho^{*}: L_{2}(V ; \wedge) \longrightarrow L_{2}(U ; \wedge),
$$

if $\nabla \otimes \rho, \nabla \otimes \rho^{-1} \in L_{\infty}$. The identities $d\left(\rho^{*} F\right)=\rho^{*}(d F), \rho^{*}(F \wedge G)=\rho^{*} F \wedge \rho^{*} G$ and $\rho_{*}^{-1}(F \wedge G)=\rho_{*}^{-1} F \wedge \rho_{*}^{-1} G$ are well known facts from the theory of differential forms. The remaining identities follow by duality.

In order to treat Stokes' type theorems in a unified way, we record the following theorem, here referred to as the boundary theorem.
Theorem 2.7. Let V be a finite dimensional linear space and let $F: \bar{\Omega} \rightarrow V$ be a function in Ω smooth up to $\Sigma=\partial \Omega$ with boundary trace $f:=\left.F\right|_{\Sigma}$. Then we have

$$
\int_{\Sigma} \nu(y) \otimes f(y) d \sigma(y)=\int_{\Omega} \nabla \otimes F(x) d x
$$

where the integrand is $\mathbf{R}^{n} \otimes V$ valued, ν is the outward pointing normal and $d \sigma$ is the scalar surface measure.
Remark 2.8. (i) Note that, via a limiting argument, the boundary theorem can be extended to less regular functions.
(ii) Recall that this theorem is universal in the sense that for any given finite dimensional linear space W and bilinear form $L: \mathbf{R}^{n} \times V \rightarrow W, L$ can be lifted to a linear map $L: \mathbf{R}^{n} \otimes V \rightarrow W$. Applying this to the formula in the boundary theorem gives the special case $\int_{\Sigma} L(\nu(y), f(y)) d \sigma(y)=\int_{\Omega} L(\nabla, F(x)) d x$.

We end this section with a discussion, preliminary to Section 4, about natural boundary conditions for d and δ. Let $F: \Omega \rightarrow \wedge$ be a multivector field in Ω, smooth up to Σ, and extend it by zero to a field F_{z} on \mathbf{R}^{n}. If σ denotes the surface measure on Σ, it follows that in distribution sense we have

$$
\left.d\left(F_{z}\right)=\left.d F\right|_{\Omega}-(\nu \wedge f) \sigma \quad \text { and } \quad \delta\left(F_{z}\right)=\left.\delta F\right|_{\Omega}-(\nu\lrcorner f\right) \sigma
$$

For example, the first identity follows from the boundary theorem, using $V=\wedge \otimes \wedge$ and the linear map $L: \mathbf{R}^{n} \otimes(\wedge \otimes \wedge) \rightarrow \mathbf{C}: a \otimes(F \otimes G) \mapsto(a \wedge F, G)$, since

$$
\left.\left(\nabla \wedge F_{z}, \Phi\right)=-\int_{\Omega}\langle F, \nabla\lrcorner \Phi\right\rangle=\int_{\Omega}\langle\nabla \wedge F, \Phi\rangle-\int_{\Sigma}\langle\nu \wedge f, \phi\rangle,
$$

for any $\Phi \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)$. Thus, requiring that $d\left(F_{z}\right) \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ means that $d F \in L_{2}(\Omega ; \wedge)$ and that $\nu \wedge f=0$, i.e. the field F is normal to Σ. Similarly, requiring that $\delta\left(F_{z}\right) \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ means that $\delta F \in L_{2}(\Omega ; \wedge)$ and that $\left.\nu\right\lrcorner f=0$, i.e. the field F is tangential to Σ. We note that each boundary condition refers to half of the components (in the full exterior algebra \wedge) of the field vanishing on Σ.

When $F \in L_{2}(\Omega ; \wedge)$ and $d\left(F_{z}\right) \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$, although the field F is normal to Σ, it does not necessarily have a well defined normal component $\nu\lrcorner f$ on Σ. To see this, consider the vector field

$$
F(x):= \begin{cases}e_{n}, & 1 /(2 j+1)<x_{n} \leq 1 /(2 j) \\ 0, & 1 /(2 j)<x_{n} \leq 1 /(2 j-1)\end{cases}
$$

locally around $x=\left(x^{\prime}, x_{n}\right)=0$. Then $F_{z} \in L_{2, \mathrm{loc}}\left(\mathbf{R}^{n} ; \wedge\right)$ and $d\left(F_{z}\right)=0$, but clearly F does not have a well defined trace.

Similarly, control of F and $\delta\left(F_{z}\right)$ is not enough for defining the tangential part of the trace.

3. Nilpotent operators in Hilbert spaces

In this section we develop the operator theory for a nilpotent operator Γ. This is then applied to the d and δ operators in Section 4.

Recall the following basic spaces associated with a linear operator $A: \mathcal{H}_{1} \rightarrow$ \mathcal{H}_{2} between Hilbert spaces \mathcal{H}_{i}.

- Domain $\mathrm{D}(A):=\left\{x \in \mathcal{H}_{1} ; A x\right.$ is defined $\}$
- Null space $\mathrm{N}(A):=\{x \in \mathrm{D}(A) ; A x=0\}$
- Range $\mathrm{R}(A):=\{A x ; x \in \mathrm{D}(A)\}$
- Graph $\mathrm{G}(A):=\left\{(x, A x)^{t} \in \mathcal{H}_{1} \oplus \mathcal{H}_{2} ; x \in \mathrm{D}(A)\right\}$

If A_{1} and A_{2} are two linear operators, then we write $A_{1} \subset A_{2}$ if $\mathrm{G}\left(A_{1}\right) \subset \mathrm{G}\left(A_{2}\right)$.
Definition 3.1. An operator $\Gamma: \mathcal{H} \rightarrow \mathcal{H}$ in a Hilbert space \mathcal{H} is said to be nilpotent if it is closed (i.e. $\mathrm{G}(\Gamma)$ is closed), densely defined (i.e. $\mathrm{D}(\Gamma)$ is dense in \mathcal{H}) and if $\mathrm{R}(\Gamma) \subset \mathrm{N}(\Gamma)$. In particular, $\Gamma^{2} \subset 0$.

Recall that $\mathrm{N}(A)$ always is closed in \mathcal{H}_{1} for a closed operator. For a nilpotent operator Γ in \mathcal{H}, we have inclusions

$$
\begin{equation*}
\mathrm{R}(\Gamma) \subset \overline{\mathrm{R}(\Gamma)} \subset \mathrm{N}(\Gamma) \subset \mathrm{D}(\Gamma) \subset \mathcal{H} \tag{13}
\end{equation*}
$$

Note carefully that $R(\Gamma)$ may not be closed. Our main work will be to prove that $\mathrm{R}(\Gamma)$ is closed when Γ is one of the d and δ operators in Ω.

From (13) we also see that Γ acts as a bounded nilpotent operator $\Gamma: D(\Gamma) \rightarrow$ $\mathrm{D}(\Gamma)$, where $\mathrm{D}(\Gamma)$ is a Hilbert space with the graph norm $\|x\|_{\mathrm{D}(\Gamma)}^{2}:=\|x\|^{2}+\|\Gamma x\|^{2}$.
Definition 3.2. Let $A_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and $A_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ be two linear operators. We say that A_{1} and A_{2} are (maximal) adjoint operators if

$$
\begin{aligned}
\mathrm{G}\left(A_{1}\right) & =\left\{\left(x, A_{1} x\right)^{t} \in \mathcal{H}_{1} \oplus \mathcal{H}_{2} ; x \in \mathrm{D}\left(A_{1}\right)\right\} \\
I \mathrm{G}\left(A_{2}\right) & =\left\{\left(-A_{2} y, y\right)^{t} \in \mathcal{H}_{1} \oplus \mathcal{H}_{2} ; y \in \mathrm{D}\left(A_{2}\right)\right\}
\end{aligned}
$$

are orthogonal complements in $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where $I(x, y)^{t}:=(-y, x)^{t}$. In particular both A_{1} and A_{2} are closed, densely defined operators, and if $x \in \mathrm{D}\left(A_{1}\right)$ and $y \in \mathrm{D}\left(A_{2}\right)$, then $\left(x, A_{2} y\right)=\left(A_{1} x, y\right)$.

Given a closed, densely defined operator A in \mathcal{H}, we define $\mathrm{G}\left(A^{*}\right):=(I \mathrm{G}(A))^{\perp}$. Since A is densely defined, $\mathrm{G}\left(A^{*}\right)$ is the graph of a closed linear operator A^{*}, and since A is closed it follows that A^{*} is densely defined. We say that A^{*} is the (maximal) adjoint operator of A.

A fundamental result for adjoint operators is the following, which for example can be found in Kato [13].
Theorem 3.3. Let A and A^{*} be adjoint closed, densely defined Hilbert space operators. Then $R(A)^{\perp}=N\left(A^{*}\right)$ and $R\left(A^{*}\right)^{\perp}=N(A)$. Moreover, $R(A)$ is closed if and only if $R\left(A^{*}\right)$ is closed.
Corollary 3.4. If Γ is a nilpotent operator, then so is Γ^{*}.
Note that a nilpotent operator acts

$$
\Gamma: \mathrm{N}(\Gamma)^{\perp}=\overline{\mathrm{R}\left(\Gamma^{*}\right)} \longrightarrow \mathrm{R}(\Gamma) \subset \mathrm{N}(\Gamma)
$$

where the restriction of Γ is injective. Thus $\mathrm{N}(\Gamma)$ is at least "half" of \mathcal{H}.
Proposition 3.5. Let Γ be a nilpotent operator in a Hilbert space \mathcal{H}, with adjoint Γ^{*}. For each $\alpha \in \mathbf{C}$ with $|\alpha|=1$, let the corresponding swapping operator be $\Pi_{\alpha}:=\Gamma+\alpha \Gamma^{*}$ with domain $D\left(\Pi_{\alpha}\right):=D(\Gamma) \cap D\left(\Gamma^{*}\right)$. Then we have \mathcal{H}-orthogonal decompositions

$$
\begin{array}{rlrl}
\mathcal{H} & = & \overline{R\left(\Gamma^{*}\right)} \oplus\left(N\left(\Gamma^{*}\right) \cap N(\Gamma)\right) \oplus \overline{R(\Gamma)}, \\
D(\Gamma) & =\left(D(\Gamma) \cap \overline{R\left(\Gamma^{*}\right)}\right) \oplus\left(N\left(\Gamma^{*}\right) \cap N(\Gamma)\right) \oplus \overline{R(\Gamma)}, \\
D\left(\Gamma^{*}\right) & = & \overline{R\left(\Gamma^{*}\right)} \oplus\left(N\left(\Gamma^{*}\right) \cap N(\Gamma)\right) \oplus\left(D\left(\Gamma^{*}\right) \cap \overline{R(\Gamma)}\right), \\
D\left(\Pi_{\alpha}\right) & =\left(D(\Gamma) \cap \overline{R\left(\Gamma^{*}\right)}\right) \oplus\left(N\left(\Gamma^{*}\right) \cap N(\Gamma)\right) \oplus\left(D\left(\Gamma^{*}\right) \cap \overline{R(\Gamma)}\right) . \tag{17}
\end{array}
$$

The swapping operator is a closed, densely defined operator in \mathcal{H} with null space $N\left(\Pi_{\alpha}\right)=N(\Gamma) \cap N\left(\Gamma^{*}\right)$ and range $R\left(\Pi_{\alpha}\right)=R(\Gamma) \oplus R\left(\Gamma^{*}\right)$. The adjoint of Π_{α} is $\alpha^{c} \Pi_{\alpha}$. Thus Π_{1} is a self adjoint operator and Π_{-1} is a skew adjoint operator.

The swapping operator Π_{α} is unitary equivalent to both $\sqrt{\alpha} \Pi_{1}$ and $-\Pi_{\alpha}$. In particular, the spectrum $\sigma\left(\Pi_{\alpha}\right)$ is contained in the line $\sqrt{\alpha} \mathbf{R}$ and it is symmetric with respect to 0 .

Proof. From Theorem 3.3 we obtain the two orthogonal splittings

$$
\mathcal{H}=\overline{\mathrm{R}\left(\Gamma^{*}\right)} \oplus \mathrm{N}(\Gamma)=\mathrm{N}\left(\Gamma^{*}\right) \oplus \overline{\mathrm{R}(\Gamma)}
$$

Using (13), we get inclusions $\overline{R\left(\Gamma^{*}\right)} \subset N\left(\Gamma^{*}\right)$ and $\overline{R(\Gamma)} \subset N(\Gamma)$. Therefore taking the intersection of the two splittings gives (14). Now write

$$
\begin{aligned}
& \mathcal{H}_{1}:=\overline{\mathrm{R}\left(\Gamma^{*}\right)}=\mathrm{N}(\Gamma)^{\perp} \approx \mathcal{H} / \mathrm{N}(\Gamma), \\
& \mathcal{H}_{0}:=\mathrm{N}\left(\Gamma^{*}\right) \cap \mathrm{N}(\Gamma) \approx \mathrm{N}(\Gamma) / \overline{\mathrm{R}(\Gamma)} \approx \mathrm{N}\left(\Gamma^{*}\right) / \overline{\mathrm{R}\left(\Gamma^{*}\right)}, \\
& \mathcal{H}_{2}:=\overline{\mathrm{R}(\Gamma)}=\mathrm{N}\left(\Gamma^{*}\right)^{\perp} \approx \mathcal{H} / \mathrm{N}\left(\Gamma^{*}\right),
\end{aligned}
$$

and let P_{i} denote the orthogonal projection onto \mathcal{H}_{i}. To prove the decomposition (15), note that the inclusion \supset is trivial. For the opposite inclusion, decompose $x \in \mathrm{D}(\Gamma)$ with (14) as $x=x_{1}+x_{0}+x_{2}$, where $x_{i} \in \mathcal{H}_{i}$. Since $x_{2} \in \overline{\mathrm{R}(\Gamma)} \subset \mathrm{D}(\Gamma)$ and $x_{0} \in \mathrm{~N}\left(\Gamma^{*}\right) \cap \mathrm{N}(\Gamma) \subset \mathrm{D}(\Gamma)$ we deduce that $x_{1}=x-x_{0}-x_{2} \in \mathrm{D}(\Gamma)$.

The decomposition of $D\left(\Gamma^{*}\right)$ follows similarly, and taking the intersection of (15) and (16) yields (17).

To determine $\mathrm{N}\left(\Pi_{\alpha}\right)$, note that the inclusion \supset is trivial and \subset follows since $\mathrm{R}(\Gamma)$ and $\mathrm{R}\left(\Gamma^{*}\right)$ are orthogonal. For $\mathrm{R}\left(\Pi_{\alpha}\right)$, the inclusion \subset is trivial. On the other hand if $y=\Gamma x_{1}+\alpha \Gamma^{*} x_{2}$, then $y=\Pi_{\alpha}\left(P_{1} x_{1}+P_{2} x_{2}\right)$ where $P_{1} x_{1}+P_{2} x_{2} \in$ $\mathrm{D}(\Gamma) \cap \mathrm{D}\left(\Gamma^{*}\right)$.

We now show that Π_{α} and $\alpha^{c} \Pi_{\alpha}$ are maximal adjoint operators. First note that $\left(\Pi_{\alpha} x, y\right)=\left(x, \alpha^{\mathrm{c}} \Pi_{\alpha} y\right)$ if $x, y \in \mathrm{D}\left(\Pi_{\alpha}\right)$, i.e. $\mathrm{G}\left(\Pi_{\alpha}\right)$ and $I \mathrm{G}\left(\alpha^{\mathrm{c}} \Pi_{\alpha}\right)$ are orthogonal. To prove that $\mathrm{G}\left(\Pi_{\alpha}\right)^{\perp} \subset I \mathrm{G}\left(\alpha^{\mathrm{c}} \Pi_{\alpha}\right)$, let $(-z, y)^{t} \in \mathrm{G}\left(\Pi_{\alpha}\right)^{\perp}$ and decompose $y=y_{1}+y_{0}+y_{2}$ with (14). We see that $y_{1} \in \overline{\mathrm{R}\left(\Gamma^{*}\right)} \subset \mathrm{D}\left(\Gamma^{*}\right), y_{0} \in \mathrm{~N}\left(\Gamma^{*}\right) \cap \mathrm{N}(\Gamma) \subset$ $\mathrm{D}\left(\Gamma^{*}\right) \cap \mathrm{D}(\Gamma)$ and $y_{2} \in \overline{\mathrm{R}(\Gamma)} \subset \mathrm{D}(\Gamma)$. To verify that $y_{2} \in \mathrm{D}\left(\Gamma^{*}\right)$, let $x \in \mathrm{D}(\Gamma)$ and calculate

$$
\left(\Gamma x, y_{2}\right)=\left(\Pi_{\alpha} P_{1} x, y_{2}\right)=\left(\Pi_{\alpha} P_{1} x, y\right)=\left(x, P_{1} z\right)
$$

This proves that $\left(y_{2}, P_{1} z\right)^{t} \in(I \mathrm{G}(\Gamma))^{\perp}=\mathrm{G}\left(\Gamma^{*}\right)$. Similarly it follows that $y_{1} \in \mathrm{D}(\Gamma)$ and thus $y \in \mathrm{D}\left(\Pi_{\alpha}\right)$.

That Π_{α} is closed and densely defined now follows from the adjointness of Π_{α} and $\alpha^{\mathrm{c}} \Pi_{\alpha}$ (or can be verified directly). Furthermore, note that for any $\beta \in \mathbf{C}$, $|\beta|=1$ we have

$$
\Pi_{\alpha}\left(P_{1}+P_{0}+\beta^{\mathrm{c}} P_{2}\right)=\left(P_{1}+P_{0}+\beta^{\mathrm{c}} P_{2}\right) \beta \Pi_{\left(\beta^{\mathrm{c}}\right)^{2} \alpha}
$$

The case $\beta=-1$ show that Π_{α} and $-\Pi_{\alpha}$ are unitary equivalent, and the case $\beta=\sqrt{\alpha}$ shows that Π_{α} and $\sqrt{\alpha} \Pi_{1}$ are unitary equivalent.

Remark 3.6. We have chosen the name "swapping operator" since we have the following mapping diagram

in which Π_{α} swaps the subspaces $\overline{\mathrm{R}\left(\Gamma^{*}\right)}$ and $\overline{\mathrm{R}(\Gamma)}$.
We now investigate when a nilpotent operator is maximal in the sense that it is "half elliptic". More precisely we make the following definitions.

Definition 3.7. Let $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a closed, densely defined operator between Hilbert spaces. We say that A is a Fredholm operator if the null space $N(A)$ and the cokernel $\mathcal{H}_{2} / \mathrm{R}(A)$ are finite dimensional and the range $\mathrm{R}(A)$ is closed (which follows from $\left.\operatorname{dim}\left(\mathcal{H}_{2} / \mathrm{R}(A)\right)<\infty\right)$.
Proposition 3.8. Let $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a closed, densely defined operator between Hilbert spaces. Then A is a Fredholm operator if and only if there exist bounded operators $T_{1}, T_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ and compact operators $K_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $K_{2}: \mathcal{H}_{2} \rightarrow$ \mathcal{H}_{2} such that $R\left(T_{2}\right) \subset D(A)$ and

$$
\begin{array}{ll}
T_{1} A=I+K_{1} & \text { on } D(A) \subset \mathcal{H}_{1}, \\
A T_{2}=I+K_{2} & \text { on } \mathcal{H}_{2} .
\end{array}
$$

In this case, the following are equivalent.

- The embedding $D(A) \hookrightarrow \mathcal{H}_{1}$ is compact.
- The left inverse T_{1} is compact.
- The right inverse T_{2} is compact.

The Fredholm inverses T_{1} and T_{2} satisfies $T_{1}+T_{1} K_{2}=T_{2}+K_{1} T_{2}$.
Two references on Fredholm operator theory are Schechter [22] and Kato [13].
Definition 3.9. Let $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a Fredholm operator between Hilbert spaces. We say that A is diffuse if its domain $\mathrm{D}(A)$ is compact in \mathcal{H}_{1}, or equivalently if it has a compact Fredholm inverse.

Definition 3.10. Let Γ be a nilpotent operator in a Hilbert space \mathcal{H}. We say that Γ is a Fredholm-nilpotent operator if the reduced operator

$$
\widetilde{\Gamma}: \mathcal{H} / \mathrm{N}(\Gamma) \longrightarrow \mathrm{N}(\Gamma)
$$

with domain $D(\widetilde{\Gamma}):=D(\Gamma) / N(\Gamma)$ is a Fredholm operator. If $\widetilde{\Gamma}$ is a diffuse Fredholm operator, then Γ is said to be a diffuse Fredholm-nilpotent operator.
Proposition 3.11. Let Γ and Π_{α} be as in Proposition 3.5. Then the following are equivalent.
(i) Γ is a Fredholm-nilpotent operator.
$\left(i^{\prime}\right) \Gamma^{*}$ is a Fredholm-nilpotent operator.
(ii) Π_{α} is a Fredholm operator.

When this holds, Γ induces a Hodge type decomposition (or splitting) of \mathcal{H}, i.e.

$$
\mathcal{H}=R\left(\Gamma^{*}\right) \oplus\left(N\left(\Gamma^{*}\right) \cap N(\Gamma)\right) \oplus R(\Gamma)
$$

where the ranges $R\left(\Gamma^{*}\right)$ and $R(\Gamma)$ are closed and $N\left(\Gamma^{*}\right) \cap N(\Gamma)$ is finite dimensional. If in addition $N\left(\Gamma^{*}\right) \cap N(\Gamma)=\{0\}$, then the splitting is said to be exact.

The equivalence of (i), (i^{\prime}) and (ii) remains true if "Fredholm(-nilpotent) operator" is replaced by "diffuse Fredholm(-nilpotent) operator". In this case, we also have the following.
(iii) The spectrum $\sigma\left(\Pi_{\alpha}\right)$ is a discrete set consisting of eigenvalues only.
(iv) If Γ_{0} is a bounded, nilpotent operator such that $\Gamma \Gamma_{0}+\Gamma_{0} \Gamma=0$ on $D(\Gamma)=$ $D\left(\Gamma+\Gamma_{0}\right)$, then the perturbed operator $\Gamma+\Gamma_{0}$ is also a diffuse Fredholmnilpotent operator.

Proof. Split $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{0} \oplus \mathcal{H}_{2}$ as in the proof of Proposition 3.5.
Theorem 3.3 shows that (i) and (i^{\prime}) are equivalent since

$$
\mathcal{H}_{0}=\mathrm{N}(\Gamma) \cap \mathrm{R}(\Gamma)^{\perp}=\mathrm{N}\left(\Gamma^{*}\right) \cap \mathrm{R}\left(\Gamma^{*}\right)^{\perp} .
$$

Furthermore, since $\Gamma: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ and $\Gamma^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ are adjoint operators, it follows that $\left(\Gamma^{*}\right)^{-1}=\left(\Gamma^{-1}\right)^{*}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is compact if and only if $\Gamma^{-1}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ is. Therefore Γ is a diffuse Fredholm-nilpotent operator if and only if Γ^{*} is.

Note that since $R(\Gamma)$ and $R\left(\Gamma^{*}\right)$ are orthogonal, they are both closed if and only if $\mathrm{R}\left(\Pi_{\alpha}\right)=\mathrm{R}\left(\Gamma^{*}\right) \oplus \mathrm{R}(\Gamma)$ is closed. As $\mathrm{N}\left(\Pi_{\alpha}\right)=\mathcal{H}_{0}=\mathcal{H} / \overline{\mathrm{R}\left(\Pi_{\alpha}\right)}$ it follows that (i) and (i^{\prime}) are equivalent with (ii). Moreover $\mathrm{D}\left(\Pi_{\alpha}\right)=\mathrm{D}\left(\widetilde{\Gamma}^{*}\right) \oplus \mathcal{H}_{0} \oplus \mathrm{D}(\widetilde{\Gamma})$, so Π_{α} is a diffuse Fredholm operator if and only if both Γ and Γ^{*} are diffuse Fredholm-nilpotent operators.

The discreteness result (iii) follows from the identity

$$
(\sqrt{-\alpha}-\lambda)^{-1}-\left(\sqrt{-\alpha}-\Pi_{\alpha}\right)^{-1}=(\sqrt{-\alpha}-\lambda)^{-1}\left(\lambda-\Pi_{\alpha}\right)\left(\sqrt{-\alpha}-\Pi_{\alpha}\right)^{-1}
$$

which shows that $\left(\lambda-\Pi_{\alpha}\right)$ fails to be invertible if and only if $(\sqrt{-\alpha}-\lambda)^{-1} \in \sigma(K)$. But since $K:=\left(\sqrt{-\alpha}-\Pi_{\alpha}\right)^{-1}$ is compact, its spectrum is discrete.

To prove (iv), let Π_{α} and Π_{α}^{\prime} be swapping operators corresponding to Γ and $\Gamma+\Gamma_{0}$. Then $\mathrm{D}\left(\Pi_{\alpha}^{\prime}\right)=\mathrm{D}\left(\Pi_{\alpha}\right)$ is compactly embedded in \mathcal{H}. Lemma 3.14 below now shows that $\Gamma+\Gamma_{0}$ is a diffuse Fredholm-nilpotent operator.

Remark 3.12. An important observation here is that the statement (i) is independent of which Hilbert norm on \mathcal{H} we are using (as long as it induces the same topology), whereas in (i^{\prime}) and (ii), the adjoint operator Γ^{*} and Π_{α} depends on the scalar product.

We finish this section with two techniques to establish Fredholm-nilpotence of a given nilpotent operator Γ.

Lemma 3.13. Let \mathcal{H} and \mathcal{H}_{0} be two Hilbert spaces and consider the diagram

where Γ and Γ_{0} are closed, densely defined operators in \mathcal{H} and \mathcal{H}_{0} respectively and T and S are bounded maps such that $T S=I_{\mathcal{H}}$. If $T \Gamma_{0} \subset \Gamma T$ and $S \Gamma \subset \Gamma_{0} S$, then we have the following.
(i) If Γ_{0} is a nilpotent operator, then so is Γ.
(ii) If Γ_{0} is a Fredholm-nilpotent operator, then so is Γ.
(ii) If Γ_{0} is a diffuse Fredholm-nilpotent operator, then so is Γ.

The proof of this intertwining lemma is straightforward and we omit it.
Lemma 3.14. Let Π_{α} be a swapping operator as in Proposition 3.5. If the embedding $D\left(\Pi_{\alpha}\right) \hookrightarrow \mathcal{H}$ is compact, then Π_{α} is a diffuse Fredholm operator with index zero.

Proof. Consider the operators

$$
\begin{equation*}
\lambda I-\Pi_{\alpha}: \mathrm{D}\left(\Pi_{\alpha}\right) \longrightarrow \mathcal{H} \tag{18}
\end{equation*}
$$

Since $\sigma\left(\Pi_{\alpha}\right) \subset \sqrt{\alpha} \mathbf{R}$ by Proposition 3.5, (18) is an isomorphism when $\lambda \notin \sqrt{\alpha} \mathbf{R}$. Now observe that $\lambda I: \mathrm{D}\left(\Pi_{\alpha}\right) \rightarrow \mathcal{H}$ is a compact operator. Thus $\Pi_{\alpha}: \mathrm{D}\left(\Pi_{\alpha}\right) \rightarrow \mathcal{H}$ is a Fredholm operator with index zero.

4. Hodge decompositions for d and δ

In this section we apply the general theory for nilpotent operators from Section 3 to the following d and δ operators in a bounded weakly Lipschitz domain Ω.

Definition 4.1. (i) Let d_{Ω} and δ_{Ω} be the closed, nilpotent d and δ operators (without boundary conditions) in $L_{2}(\Omega ; \wedge)$ with natural domains, i.e.

$$
\mathrm{D}\left(d_{\Omega}\right):=\left\{F \in L_{2}(\Omega ; \wedge) ; d F \in L_{2}(\Omega ; \wedge)\right\}
$$

and similarly for δ_{Ω}.
(ii) Let $d_{\bar{\Omega}}$ (d with normal boundary conditions) and $\delta_{\bar{\Omega}}$ (δ with tangential boundary conditions) be the closed, nilpotent d and δ operators in Ω with domains

$$
\begin{aligned}
& \mathrm{D}\left(d_{\bar{\Omega}}\right):=\left\{F \in L_{2}(\Omega ; \wedge) ; d\left(F_{z}\right) \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)\right\} \\
& \mathrm{D}\left(\delta_{\bar{\Omega}}\right):=\left\{F \in L_{2}(\Omega ; \wedge) ; \delta\left(F_{z}\right) \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)\right\}
\end{aligned}
$$

where $F_{z} \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ denotes the zero-extension of F to \mathbf{R}^{n}.

Remark 4.2. If $F \in \mathrm{D}\left(d_{\bar{\Omega}}\right)$, then F is normal to Σ. The nilpotence of $d_{\bar{\Omega}}$ shows that not only is $d_{\bar{\Omega}} F$ curl free, it is also normal to Σ. Similarly, if $F \in \mathrm{D}\left(\delta_{\bar{\Omega}}\right)$, then F is tangential to Σ. The nilpotence of $\delta_{\bar{\Omega}}$ shows that not only is $\delta_{\bar{\Omega}} F$ divergence free, it is also tangential to Σ.

Examples of nilpotent operators considered in this paper are, for each wave number $k \in \mathbf{C}$, the four operators

$$
\begin{array}{ll}
d_{k, \Omega}=d_{\Omega}+k e_{0} \wedge, & \left.\delta_{k, \Omega}=\delta_{\Omega}+k e_{0}\right\lrcorner \\
d_{k, \bar{\Omega}}=d_{\bar{\Omega}}+k e_{0} \wedge, & \left.\delta_{k, \bar{\Omega}}=\delta_{\bar{\Omega}}+k e_{0}\right\lrcorner
\end{array}
$$

Obviously we have $d_{k, \bar{\Omega}} \subset d_{k, \Omega}$ and $\delta_{k, \bar{\Omega}} \subset \delta_{k, \Omega}$.
Proposition 4.3. The operators d_{Ω} and $d_{\bar{\Omega}}$ have cores (i.e. a subset of the domain which is dense in graph norm)

$$
\left.C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)\right|_{\Omega} \subset D\left(d_{\Omega}\right), \quad C_{0}^{\infty}(\Omega ; \wedge) \subset D\left(d_{\bar{\Omega}}\right)
$$

respectively. In particular, the inclusions

$$
d\left(\left.C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)\right|_{\Omega}\right) \subset R\left(d_{\Omega}\right), \quad d\left(C_{0}^{\infty}(\Omega ; \wedge)\right) \subset R\left(d_{\bar{\Omega}}\right)
$$

are dense. We also have dense subspaces

$$
\begin{array}{r}
\left\{\left.F\right|_{\Omega} ; F \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right), \operatorname{supp} d F \subset \subset \Omega^{-}\right\} \subset N\left(d_{\Omega}\right), \\
\left\{F \in C_{0}^{\infty}(\Omega ; \wedge) ; d F=0\right\} \subset N\left(d_{\bar{\Omega}}\right) .
\end{array}
$$

The same holds true when d is replaced by δ.
Before giving the proof, we note the following important corollary.
Corollary 4.4. The two operators $d_{\bar{\Omega}}$ and $-\delta_{\Omega}$ are adjoint in the sense of Definition 3.2 and so are d_{Ω} and $-\delta_{\bar{\Omega}}$. For the zero order perturbations we have $d_{k, \bar{\Omega}}^{*}=-\delta_{-k^{c}, \Omega}$ and $d_{k, \Omega}^{*}=-\delta_{-k^{c}, \bar{\Omega}}$.

Proof. Consider the first pair. By Definition 3.2 we need to prove that $\mathrm{G}\left(d_{\Omega}^{*}\right)=$ $\mathrm{G}\left(-\delta_{\Omega}\right)$, where $\mathrm{G}\left(d_{\bar{\Omega}}^{*}\right)=I \mathrm{G}\left(d_{\bar{\Omega}}\right)^{\perp}$.

To show $d_{\Omega}^{*} \subset-\delta_{\Omega}$, let $(U, F)^{t} \in \mathrm{G}\left(d_{\Omega}^{*}\right)$. Then in particular

$$
\int_{\Omega}\left\langle U, d \Phi^{\mathrm{c}}\right\rangle=\int_{\Omega}\left\langle F, \Phi^{\mathrm{c}}\right\rangle \quad \text { for all } \Phi \in C_{0}^{\infty}(\Omega) \subset \mathrm{D}\left(d_{\bar{\Omega}}\right) .
$$

Thus $-\delta_{\Omega} U=F \in L_{2}(\Omega ; \wedge)$ in distribution sense, which proves $(U, F)^{t} \in \mathrm{G}\left(-\delta_{\Omega}\right)$.
Conversely, to show $d_{\Omega}^{*} \supset-\delta_{\Omega}$, by Proposition 4.3 it suffices to prove that $I \mathrm{G}\left(d_{\bar{\Omega}}\right)$ and $\left\{\left(\Phi,-\delta_{\Omega} \Phi\right)^{t} ; \Phi \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right) \mid \Omega\right\}$ are orthogonal. If $U \in \mathrm{D}\left(d_{\bar{\Omega}}\right)$ and $\left.\Phi \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)\right|_{\Omega}$, we get

$$
\int_{\Omega}\left\langle\Phi, d_{\bar{\Omega}} U^{\mathrm{c}}\right\rangle=\int_{\mathbf{R}^{n}}\left\langle\Phi, d U_{z}^{\mathrm{c}}\right\rangle=\int_{\mathbf{R}^{n}}\left\langle-\delta \Phi, U_{z}^{\mathrm{c}}\right\rangle=\int_{\Omega}\left\langle-\delta_{\Omega} \Phi, U^{\mathrm{c}}\right\rangle .
$$

This shows that $d_{\bar{\Omega}}$ and $-\delta_{\Omega}$ are adjoint. The adjointness of d_{Ω} and $-\delta_{\bar{\Omega}}$ follows similarly. Moreover, since $(A+T)^{*}=A^{*}+T^{*}$ whenever A is a closed, densely
defined operator and T is a bounded operator, this proves the rest of the corollary.

To prove Proposition 4.3, we use Lie flows $t \mapsto \alpha_{t}^{*}$ and $t \mapsto \tilde{\alpha}_{t *}^{-1}$ constructed as follows.

Lemma 4.5. There exists a family $\alpha_{t}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ of bilipschitz maps (all being identity outside a compact set), $|t|<T$, with the following properties.

$$
\begin{aligned}
\overline{\alpha_{t}(\Omega)} \subset \Omega, & 0<t<T, \\
\alpha_{t}(\Omega) \supset \bar{\Omega}, & -T<t<0 \\
\left\|\alpha_{t}^{*} F-F\right\|_{L_{2}\left(\mathbf{R}^{n} ; \wedge\right)} \longrightarrow 0, & t \longrightarrow 0, \quad F \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right), \\
\left\|\tilde{\alpha}_{t *}^{-1} F-F\right\|_{L_{2}\left(\mathbf{R}^{n} ; \wedge\right)} \longrightarrow 0, & t \longrightarrow 0, \quad F \in L_{2}\left(\mathbf{R}^{n} ; \wedge\right) .
\end{aligned}
$$

Proof. Let $\bar{\Omega} \subset \cup_{j=0}^{N} V_{j}$ and $\rho_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, j=1 \ldots N$, be the local bilipschitz parametrisations from Definition 2.1 and let $V_{0} \subset \subset \Omega$ be contained in the interior. Let $B_{1}:=B(0,1) \subset B_{2}:=B(0,2)$ be concentric balls. We may assume that $\Sigma \subset \cup_{1}^{N} \rho_{j} B_{1}$ and that $\rho_{j} B_{2} \subset \subset V_{j}, j=1 \ldots N$. Let $\eta \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ be such that $0 \leq \eta \leq 1,\left.\eta\right|_{B_{1}}=1$ and $\left.\eta\right|_{\mathbf{R}^{n} \backslash B_{2}}=0$. Define for $|t| \leq T$ the translation map

$$
\beta_{t}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}: x \longmapsto x+\eta(|x|) t e_{n}
$$

let $\alpha_{t}^{j}:=\rho_{j} \circ \beta_{t} \circ \rho_{j}^{-1}$ and extend to identity outside V_{j} and let $\alpha_{t}:=\alpha_{t}^{N} \circ \ldots \circ \alpha_{t}^{1}$. Obviously the required mapping properties for α_{t} holds.

For the Lie pullback flow, if $\alpha_{t}^{*} F=\left(\alpha_{t}^{1}\right)^{*} G$ where $G:=\left(\alpha_{t}^{2}\right)^{*} \ldots\left(\alpha_{t}^{N}\right)^{*} F$ then

$$
\begin{aligned}
&\left\|\alpha_{t}^{*} F-F\right\|_{L_{2}\left(\mathbf{R}^{n} ; \wedge\right)} \leq\left\|\left(\alpha_{t}^{1}\right)^{*} G-F\right\|_{L_{2}\left(V_{1} ; \wedge\right)}+\left\|\left(\alpha_{t}^{1}\right)^{*} G-F\right\|_{L_{2}\left(V_{1}^{c} ; \wedge\right)} \\
& \leq\left\|\left(\alpha_{t}^{1}\right)^{*} G-G\right\|_{L_{2}\left(V_{1} ; \wedge\right)}+\|G-F\|_{L_{2}\left(V_{1} ; \wedge\right)}+\|G-F\|_{L_{2}\left(V_{1}^{c} ; \wedge\right)}
\end{aligned}
$$

Thus it suffices to show that $\left\|\left(\alpha_{t}^{j}\right)^{*} F-F\right\|_{L_{2}\left(V_{j} ; \wedge\right)} \rightarrow 0$. But (essentially) since translation is L_{2} continuous, this follows from

$$
\left\|\left(\alpha_{t}^{j}\right)^{*} F-F\right\|_{L_{2}\left(V_{j} ; \wedge\right)} \lesssim\left\|\left(\beta_{t}\right)^{*}\left(\rho_{j}^{*} F\right)-\left(\rho_{j}^{*} F\right)\right\|_{L_{2}\left(U_{j} ; \wedge\right)} \longrightarrow 0
$$

The proof of the L_{2}-continuity of the reduced push forward flow is similar.
Proof of Proposition 4.3. Let $\eta_{s}(x):=s^{-n} \eta(x / s)$ be a mollifier. For $F \in \mathrm{D}\left(d_{\Omega}\right)$, let $0<s \ll t$ and define approximating fields

$$
F_{s, t}:=\eta_{s} *\left(\alpha_{t}^{*} F_{z}\right)
$$

Then $\left\|F_{s, t}-F\right\|_{\mathrm{D}\left(d_{\Omega}\right)} \approx\left\|F_{s, t}-F\right\|_{L_{2}}+\left\|(d F)_{s, t}-d F\right\|_{L_{2}} \rightarrow 0$ as $s, t \rightarrow 0$. Furthermore, if $d_{\Omega} F=0$ and $0<s \ll t$, then $d F_{s, t}=0$ in a neighbourhood of $\bar{\Omega}$, due to Proposition 2.6.

On the other hand for $F \in \mathrm{D}\left(d_{\bar{\Omega}}\right)$, let $0<s \ll-t$ and define approximating fields $F_{s, t}$ as above. Then $F_{s, t} \in C_{0}^{\infty}(\Omega ; \wedge)$ if $0<s \ll-t$ and $\left\|F_{s, t}-F\right\|_{\mathrm{D}\left(d_{\bar{\Omega}}\right)} \rightarrow 0$ as $s, t \rightarrow 0$. Furthermore, if $d_{\bar{\Omega}} F=0$ then $d_{\bar{\Omega}} F_{s, t}=0$.

Example 4.6. Using Proposition 3.5, we form the corresponding swapping operators Π_{-1}.
(i) If $\Gamma=d_{\bar{\Omega}}$, then the (Hodge-)Dirac operator on Ω with normal boundary conditions is

$$
\mathbf{D}_{\Omega^{\perp}}:=d_{\bar{\Omega}}+\delta_{\Omega}
$$

Note that $\mathbf{D}_{\Omega^{\perp}}^{2}=d_{\bar{\Omega}} \delta_{\Omega}+\delta_{\Omega} d_{\bar{\Omega}}$ is the Hodge-Laplace operator with relative (generalised Dirichlet) boundary conditions. For a scalar function $U: \Omega \rightarrow \wedge^{0}$, we have $\mathbf{D}_{\Omega^{\perp}}^{2} U=\delta_{\Omega} d_{\bar{\Omega}} U$, and $U \in \mathrm{D}\left(d_{\bar{\Omega}}\right)$ incorporates the boundary condition $\left.U\right|_{\Sigma}=0$ since all scalars are tangential.
(ii) If $\Gamma=d_{\Omega}$, then the (Hodge-)Dirac operator on Ω with tangential boundary conditions is

$$
\mathbf{D}_{\Omega_{\|}}:=d_{\Omega}+\delta_{\bar{\Omega}} .
$$

Here the Hodge-Laplace operator with absolute (generalised Neumann) boundary conditions is $\mathbf{D}_{\Omega \|}^{2}=d_{\Omega} \delta_{\bar{\Omega}}+\delta_{\bar{\Omega}} d_{\Omega}$. Note that for a scalar function $U: \Omega \rightarrow \wedge^{0}$, we have $\mathbf{D}_{\Omega^{\perp}}^{2} U=\delta_{\bar{\Omega}} d_{\Omega} U$, and $d_{\Omega} U \in \mathrm{D}\left(\delta_{\bar{\Omega}}\right)$ incorporates the boundary condition $\frac{\partial U}{\partial \nu}=\left\langle\nu,\left.\nabla U\right|_{\Sigma}\right\rangle=0$.
(iii) As is well known, the null spaces

$$
\begin{aligned}
& \mathrm{N}\left(\mathbf{D}_{\Omega^{\perp}}\right)=\mathrm{N}\left(d_{\bar{\Omega}}\right) \cap \mathrm{N}\left(\delta_{\Omega}\right)=\mathrm{N}\left(\mathbf{D}_{\Omega^{\perp}}^{2}\right), \\
& \mathrm{N}\left(\mathbf{D}_{\Omega^{\|}}\right)=\mathrm{N}\left(d_{\Omega}\right) \cap \mathrm{N}\left(\delta_{\bar{\Omega}}\right)=\mathrm{N}\left(\mathbf{D}_{\Omega_{\|}}^{2}\right)
\end{aligned}
$$

of the Dirac operators $\mathbf{D}_{\Omega^{\perp}}$ and $\mathbf{D}_{\Omega_{\|}}$can be identified with the de Rham cohomology spaces of Ω with normal (relative) and tangential (absolute) boundary conditions, and are thus determined by the global topology of Ω. However, we are here mainly interested in how the local regularity of the boundary Σ influences the Fredholm properties of the Dirac operators $\mathbf{D}_{\Omega^{\perp}}$ and $\mathbf{D}_{\Omega_{\|}}$.

We now turn to the proof of Theorem 1.3 and show how to reduce to the case $\Omega=B$, where B is the unit ball in \mathbf{R}^{n}. The proof that $\mathbf{D}_{B^{\perp}}$ and $\mathbf{D}_{\Omega_{\|}}$are diffuse Fredholm operators is deferred to the end of this section. It follows from either Theorem 4.10, Theorem 4.13 (combined with Lemma 3.14) or Theorem 4.17 (combined with Proposition 3.11).

Proof of Theorem 1.3. (i) We first consider the unperturbed case $k_{1}=k_{2}=0$. By Proposition 3.11 it suffices to show that $\mathbf{D}_{\Omega^{\perp}}$ is a diffuse Fredholm operator. Using Definition 2.1 we see that there exist bilipschitz maps $\rho_{j}: B \rightarrow \Omega_{j}, j=1, \ldots, N$, where B denotes the open unit ball in \mathbf{R}^{n}, such that $\Omega=\bigcup_{j=1}^{N} \Omega_{j}$. Furthermore we may assume that ρ_{j} extends to a bilipschitz map between slightly larger open sets. Choose a smooth partition of unity $\left\{\eta_{j}\right\}$ such that supp $\eta_{j} \subset \subset \mathbf{R}^{n} \backslash \overline{\left(\Omega \backslash \Omega_{j}\right)}$ and $\sum \eta_{j}^{2}=1$ on Ω.

Assuming that $\mathbf{D}_{B^{\perp}}$ is a diffuse Fredholm operator, it follows from Proposition 3.11 that $d_{\bar{B}}$ is a diffuse Fredholm-nilpotent operator. We may now apply Lemma 3.13 with $\mathcal{H}=L_{2}\left(\Omega_{j} ; \wedge\right), \mathcal{H}_{0}=L_{2}(B ; \wedge), A=d_{\bar{\Omega}_{j}}, A_{0}=d_{\bar{B}}, T=\left(\rho_{j}^{-1}\right)^{*}$
and $S=\rho_{j}^{*}=T^{-1}$, since Proposition 2.6 proves that T and S intertwine A and A_{0}. This shows that $d_{\bar{\Omega}_{j}}$ is a diffuse Fredholm-nilpotent operator.

Applying Proposition 3.11 again with $\Gamma=d_{\bar{\Omega}_{j}}$ shows that $\mathbf{D}_{\Omega_{j}^{\perp}}$ is a diffuse Fredholm operator. Localising, we can now prove that the Dirac operator $\mathbf{D}_{\Omega^{\perp}}$ is a diffuse Fredholm operator. Indeed, if T_{j} are compact Fredholm inverses to $\mathbf{D}_{\Omega_{j}^{\perp}}$ respectively as in Proposition 3.8, then a compact Fredholm inverse to $\mathbf{D}_{\Omega^{\perp}}$ is

$$
T(F):=\sum_{j} \eta_{j} T_{j}\left(\eta_{j} F\right)
$$

Similarly one can show that the Dirac operator $\mathbf{D}_{\Omega_{\|}}$is a diffuse Fredholm operator.
(ii) To prove that the map (2) is a diffuse Fredholm map for general k_{1} and k_{2}, note that (i) above and Proposition 3.11(iv) with $\Gamma+\Gamma_{0}=d_{-k_{2}^{c}, \bar{\Omega}}$ and $\Gamma^{*}+\Gamma_{0}^{*}=-\delta_{k_{2}, \Omega}$ shows that we have a Hodge decomposition

$$
L_{2}(\Omega ; \wedge)=\mathrm{R}\left(\delta_{k_{2}, \Omega}\right) \oplus\left(\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{-k_{2}^{c}, \bar{\Omega}}\right)\right) \oplus \mathrm{R}\left(d_{-k_{2}^{c}, \bar{\Omega}}\right)
$$

and that $\delta_{k_{2}, \Omega}: \mathrm{N}\left(d_{-k_{2}^{\mathrm{c}}, \bar{\Omega}}\right) \rightarrow \mathrm{N}\left(\delta_{k_{2}, \Omega}\right)$ is a diffuse Fredholm map. In particular $\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) / \mathrm{R}\left(\delta_{k_{2}, \Omega}\right)$ is finite dimensional, and similarly $\mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right) / \mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)$ is finite dimensional. Thus it suffices to prove that

$$
\delta_{k_{2}, \Omega}: \mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right) \longrightarrow \mathrm{R}\left(\delta_{k_{2}, \Omega}\right)
$$

is a diffuse Fredholm map. Consider the following diagram

where P_{1} and P_{2} denotes the associated orthogonal projections. To show that $\left.\delta_{k_{2}, \Omega} P_{1}\right|_{\mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)}=\left.\delta_{k_{2}, \Omega}\right|_{\mathrm{R}\left(d_{\left.k_{1}, \bar{\Omega}\right)}\right)}$ is a diffuse Fredholm map, we first prove a priori estimates for $\left.P_{1}\right|_{\mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)}$. Note that (i) above and Proposition 3.11(iv) show that any $F \in \mathrm{R}\left(d_{k_{1}, \bar{\Omega}}\right)$ has a potential $F=d_{k_{1}, \bar{\Omega}} U$ where the map $F \mapsto U$ is compact. This gives

$$
\left.\|F\|^{2}=\int_{\Omega}\left\langle P_{1} F, F^{\mathrm{c}}\right\rangle+\left\langle P_{2} F,\left(d_{k_{1}, \bar{\Omega}} U\right)^{\mathrm{c}}\right\rangle=\int_{\Omega}\left\langle P_{1} F, F^{\mathrm{c}}\right\rangle-\left(k_{1}^{\mathrm{c}}+k_{2}\right)\left\langle e_{0}\right\lrcorner F, U^{\mathrm{c}}\right\rangle .
$$

Dividing by $\|F\|$ gives the a priori estimate $\|F\| \lesssim\left\|P_{1} F\right\|+\|U\|$. This shows that $\delta_{k_{2}, \Omega}\left(\mathrm{~N}\left(d_{k_{1}, \bar{\Omega}}\right)\right)$ is closed and that $\mathrm{N}\left(\left.\delta_{k_{2}, \Omega}\right|_{\mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right)}\right)$ is finite dimensional. Now Lemma 4.7 below shows that the cokernel $\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \ominus \delta_{k_{2}, \Omega} \mathrm{~N}\left(d_{k_{1}, \bar{\Omega}}\right)$ is finite dimensional, which completes the proof.

Lemma 4.7. The deficiency indices of the maps (2) and (3) are

$$
\begin{aligned}
& \alpha\left(\left.\delta_{k_{2}, \Omega}\right|_{N\left(d_{k_{1}}, \bar{\Omega}\right)}\right)=\operatorname{dim}\left(N\left(\delta_{k_{2}, \Omega}\right) \cap N\left(d_{k_{1}, \bar{\Omega}}\right)\right) \\
& \beta\left(\left.\delta_{k_{2}, \Omega}\right|_{N\left(d_{k_{1}}, \bar{\Omega}\right)}\right)=\operatorname{dim}\left(N\left(\delta_{k_{2}, \Omega}\right) \cap N\left(d_{-k_{2}^{c}, \bar{\Omega}}\right)\right)+\operatorname{dim}\left(R\left(\delta_{-k_{1}^{c}, \Omega}\right) \cap R\left(d_{-k_{2}^{c}, \bar{\Omega}}\right)\right) \\
& \alpha\left(\left.d_{k_{1}, \bar{\Omega}}\right|_{N\left(\delta_{k_{2}, \Omega}\right)}\right)=\operatorname{dim}\left(N\left(\delta_{k_{2}, \Omega}\right) \cap N\left(d_{k_{1}, \bar{\Omega}}\right)\right) \\
& \beta\left(\left.d_{k_{1}, \bar{\Omega}}\right|_{N\left(\delta_{k_{2}, \Omega}\right)}\right)=\operatorname{dim}\left(N\left(\delta_{-k_{2}^{c}, \Omega}\right) \cap N\left(d_{k_{1}, \bar{\Omega}}\right)\right)+\operatorname{dim}\left(R\left(\delta_{-k_{1}^{c}, \Omega}\right) \cap R\left(d_{-k_{2}^{c}, \bar{\Omega}}\right)\right) .
\end{aligned}
$$

For any k_{1} and k_{2} these indices are finite. Moreover, if the wave numbers are non zero and $\arg \left(k_{1}\right)+\arg \left(k_{2}\right) \neq 0 \bmod 2 \pi$, then $N\left(\delta_{k_{2}, \Omega}\right) \cap N\left(d_{k_{1}, \bar{\Omega}}\right)=\{0\}$.
Proof. (i) Using Theorem 3.3 we get identities

$$
\begin{aligned}
\mathrm{N}\left(\left.\delta_{k_{2}, \Omega}\right|_{\mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right)}\right) & =\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right) \\
\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \ominus \delta_{k_{2}, \Omega} \mathrm{~N}\left(d_{k_{1}, \bar{\Omega}}\right) & =\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap d_{-k_{2}^{\mathrm{c}}, \bar{\Omega}}^{-1} \mathrm{R}\left(\delta_{-k_{1}^{\mathrm{c}}, \Omega}\right) \\
& =\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{-k_{2}^{\mathrm{c}}, \bar{\Omega}}\right) \oplus \mathrm{R}\left(\delta_{k_{2}, \Omega}\right) \cap d_{-k_{2}^{\mathrm{c}}, \bar{\Omega}}^{-1} \mathrm{R}\left(\delta_{-k_{1}^{\mathrm{c}}, \Omega}\right),
\end{aligned}
$$

which gives the deficiency indices for $\left.\delta_{k_{2}, \Omega}\right|_{\mathcal{N}\left(d_{k_{1}, \bar{\Omega}}\right)}$. Similarly for $\left.d_{k_{1}, \bar{\Omega}}\right|_{\mathcal{N}\left(\delta_{k_{2}}, \Omega\right)}$.
(ii) The a priori estimate in (ii) in the proof of Theorem 1.3 above shows that $\operatorname{dim}\left(\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right)\right)<\infty$ for all $k_{1}, k_{2} \in \mathbf{C}$. To prove that the space $\mathrm{N}\left(\delta_{k_{2}, \Omega}\right) \cap \mathrm{N}\left(d_{k_{1}, \bar{\Omega}}\right)$ vanishes unless k_{1} and k_{2}^{c} have the same direction, write $\Gamma=d_{\bar{\Omega}}$, $\Gamma^{*}=-\delta_{\Omega}, \Gamma_{0}=e_{0} \wedge(\cdot)$ and $\left.\Gamma_{0}^{*}=e_{0}\right\lrcorner(\cdot)$. The algebraic property we use here is that not only is $\Gamma \Gamma_{0}+\Gamma_{0} \Gamma=0$ but also $\Gamma^{*} \Gamma_{0}+\Gamma_{0} \Gamma^{*}=0$, which follows from the derivation property (9). Assuming $\left(\Gamma+k_{1} \Gamma_{0}\right) F=\left(-\Gamma^{*}+k_{2} \Gamma_{0}^{*}\right) F=0$, we calculate

$$
\begin{aligned}
& 0=\left(F,\left(\Gamma^{*} \Gamma_{0}+\Gamma_{0} \Gamma^{*}\right) F\right)=\left(\Gamma F, \Gamma_{0} F\right)+\left(\Gamma_{0}^{*} F, \Gamma^{*} F\right) \\
& \quad=-k_{1}\left\|\Gamma_{0} F\right\|^{2}+k_{2}^{\mathrm{c}}\left\|\Gamma_{0}^{*} F\right\|^{2} .
\end{aligned}
$$

This shows that $F=0$ under the assumptions on k_{1} and k_{2} since Γ_{0} induces an exact Hodge decomposition.

Another way of reducing to the case of a smooth domain with Lemma 3.13 is to use the extension maps constructed in Proposition 4.8 below. Let $B \subset \mathbf{R}^{n}$ be a ball containing Ω, let $\chi_{\Omega}: L_{2}(B ; \wedge) \rightarrow L_{2}(\Omega ; \wedge)$ be the restriction map and pick a δ-extension map $\varepsilon_{\Omega}: L_{2}(\Omega ; \wedge) \rightarrow L_{2}(B ; \wedge)$ as in Proposition 4.8 below. Then, modulo a partition of unity, Lemma 3.13 applies with $\mathcal{H}=L_{2}(\Omega ; \wedge), \mathcal{H}_{0}=$ $L_{2}(B ; \wedge), A=\delta_{\Omega}, A_{0}=\delta_{B}, T=\chi_{\Omega}$ and $S=\varepsilon_{\Omega}$.
Proposition 4.8. Let $\chi_{\Omega}: L_{2}\left(\mathbf{R}^{n} ; \wedge\right) \rightarrow L_{2}(\Omega ; \wedge)$ be the restriction operator and let $K \supset \Omega$ be a compact set. Then there exists a bounded extension operator ε_{Ω} : $L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ such that
(i) $\chi_{\Omega} \varepsilon_{\Omega}=$ identity on $L_{2}(\Omega ; \wedge)$.
(ii) $\operatorname{supp}\left(\varepsilon_{\Omega} F\right) \subset K$ for all $F \in L_{2}(\Omega ; \wedge)$.
(iii) $d_{\mathbf{R}^{n}} \varepsilon_{\Omega}-\varepsilon_{\Omega} d_{\Omega}$ extends to an $L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ bounded map. In particular, ε_{Ω} restricts to a bounded map

$$
\varepsilon_{\Omega}: D\left(d_{\Omega}\right) \rightarrow D\left(d_{\mathbf{R}^{n}}\right)
$$

(iv) $\varepsilon_{\Omega}\left(F_{1}+e_{0} \wedge F_{2}\right)=\varepsilon_{\Omega} F_{1}+e_{0} \wedge \varepsilon_{\Omega} F_{2}$.

The same holds true when d is replaced by δ.
Proof. Let $\bar{\Omega} \subset \cup_{j=0}^{N} V_{j}, \eta_{j} \in C_{0}^{\infty}\left(V_{j}\right),\left.\sum_{0}^{N} \eta_{j}\right|_{\Omega}=1$ and let $\rho_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, j=$ $1 \ldots N$, be the local bilipschitz parametrisations from Definition 2.1 and $V_{0} \subset \subset \Omega$ be contained in the interior.
(i) We first note that it suffices to construct an extension map $\varepsilon: L_{2}\left(\mathbf{R}_{+}^{n} ; \wedge\right) \rightarrow$ $L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$ acting on fields supported in $\left(\rho_{j}^{-1} \operatorname{supp} \eta_{j}\right) \cap \overline{\mathbf{R}_{+}^{n}}$. Indeed, this gives local extension maps $\varepsilon_{j}:=\left(\rho_{j}^{-1}\right)^{*} \varepsilon \rho_{j}^{*}: L_{2}\left(V_{j} \cap \Omega ; \wedge\right) \rightarrow L_{2}\left(V_{j} ; \wedge\right)$, extending fields supported in $\operatorname{supp} \eta_{j} \cap \bar{\Omega}$ to fields compactly supported in $V_{j}, j=1, \ldots, N$. Then we can construct ε_{Ω} as

$$
\begin{equation*}
\varepsilon_{\Omega} F:=\eta_{0} F+\sum_{j=1}^{N} \varepsilon_{j}\left(\eta_{j} F\right) . \tag{19}
\end{equation*}
$$

Moreover, from the construction of ε below and Proposition 2.6, d commutes with ε_{j} and thus

$$
\begin{equation*}
\left(d_{\mathbf{R}^{n}} \varepsilon_{\Omega}-\varepsilon_{\Omega} d_{\Omega}\right) F=\left(d \eta_{0}\right) \wedge F+\sum_{j=1}^{N} \varepsilon_{j}\left(\left(d \eta_{j}\right) \wedge F\right) \tag{20}
\end{equation*}
$$

Clearly, both (19) and (20) define L_{2}-bounded operators.
(ii) To construct the extension map $\varepsilon: L_{2}\left(\mathbf{R}_{+}^{n} ; \wedge\right) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)$, consider the stretched reflections

$$
r_{k}:\left(x^{\prime},-x_{n}\right) \longmapsto\left(x^{\prime}, k x_{n}\right) .
$$

By Proposition 4.3, it suffices to consider $\left.G \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)\right|_{\mathbf{R}_{+}^{n}}$. If we decompose $\left.G(x)=G_{1}(x)+e_{n} \wedge G_{2}(x), e_{n}\right\lrcorner G_{i}=0$, into parts tangential and normal to \mathbf{R}^{n-1}, then the pullbacks are given by $r_{k}^{*} G\left(x^{\prime},-x_{n}\right)=G_{1}\left(x^{\prime}, k x_{n}\right)-k e_{n} \wedge G_{2}\left(x^{\prime}, k x_{n}\right)$, and we see that both tangential and normal parts of the field

$$
\widetilde{G}:= \begin{cases}G, & x_{n}>0, \\ 3 r_{1}^{*} G-2 r_{2}^{*} G, & x_{n}<0,\end{cases}
$$

are continuous across Σ. We can assume that $\operatorname{supp} \eta_{j}$ is small enough so that $\operatorname{supp} \widetilde{G} \subset \rho_{j}^{-1} V_{j}$ if $\operatorname{supp} G \subset\left(\rho_{j}^{-1} \operatorname{supp} \eta_{j}\right) \cap \overline{\mathbf{R}_{+}^{n}}$. Now define $\varepsilon:=3 r_{1}^{*}-2 r_{2}^{*}$.

The proof for δ is analogous. We here use the reduced pushforwards $\left(\tilde{r}_{k *}^{-1}\right) F=$ $-k F_{1}+e_{n} \wedge F_{2}$.

Remark 4.9. (i) We see that in a natural way $\mathrm{D}\left(d_{\bar{\Omega}}\right) \subset \mathrm{D}\left(d_{\mathbf{R}^{n}}\right)$ and

$$
\mathrm{D}\left(d_{\Omega}\right)=\mathrm{D}\left(d_{\mathbf{R}^{n}}\right) / \mathrm{N}\left(\chi_{\Omega}\right)
$$

Proposition 4.8 shows that $\chi_{\Omega}: \mathrm{D}\left(d_{\mathbf{R}^{n}}\right) \rightarrow \mathrm{D}\left(d_{\Omega}\right)$ is surjective and that ε_{Ω} : $\mathrm{D}\left(d_{\Omega}\right) \rightarrow \mathrm{D}\left(d_{\mathbf{R}^{n}}\right)$ embeds $\mathrm{D}\left(d_{\Omega}\right)$ as a complement of $\mathrm{N}\left(\chi_{\Omega}\right)$ in $\mathrm{D}\left(d_{\mathbf{R}^{n}}\right)$.
(ii) From expressions (19) and (20) we obtain norm estimates

$$
\begin{aligned}
\left\|\varepsilon_{\Omega}\right\|_{L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)} & \lesssim 1+\sum_{j=1}^{N}\left(\sup _{x \in \rho_{j}^{-1} V_{j}} \frac{\left\|\underline{\rho}_{j}(x)\right\|_{\mathrm{op}}}{\sqrt{J\left(\rho_{j}\right)(x)}}\right)\left(\sup _{y \in V_{j}} \frac{\left\|\underline{\rho}_{j}^{-1}(y)\right\|_{\mathrm{op}}}{\sqrt{J\left(\rho_{j}^{-1}\right)(y)}}\right), \\
\left\|\left[d, \varepsilon_{\Omega}\right]\right\|_{L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)} & \lesssim\left\|\nabla \eta_{0}\right\|_{\infty}+ \\
& \sum_{j=1}^{N}\left(\sup _{x \in \rho_{j}^{-1} V_{j}} \frac{\left\|\underline{\rho}_{j}(x)\right\|_{\mathrm{op}}}{\sqrt{J\left(\rho_{j}\right)(x)}}\right)\left(\sup _{y \in V_{j}} \frac{\left\|\underline{\rho}_{j}^{-1}(y)\right\|_{\mathrm{op}}}{\sqrt{J\left(\rho_{j}^{-1}\right)(y)}}\right)\left\|\nabla \eta_{j}\right\|_{\infty}, \\
\left\|\varepsilon_{\Omega}\right\|_{\mathrm{D}\left(d_{\Omega}\right) \rightarrow \mathrm{D}\left(d_{\mathbf{R}^{n}}\right)} & \leq\left\|\varepsilon_{\Omega}\right\|_{L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)}+\left\|\left[d, \varepsilon_{\Omega}\right]\right\|_{L_{2}(\Omega ; \wedge) \rightarrow L_{2}\left(\mathbf{R}^{n} ; \wedge\right)},
\end{aligned}
$$

where $\underline{\rho}_{j}(x): \wedge \rightarrow \wedge$ denotes the \wedge-homomorphism which extends the Jacobian matrix and $J\left(\rho_{j}\right)$ is the Jacobian determinant.

We end with a discussion of various ways to prove that the Dirac operators $\mathbf{D}_{\Omega^{\perp}}$ and $\mathbf{D}_{\Omega^{\|}}$are diffuse Fredholm operators under certain additional regularity and topological assumptions on Σ. First we recall the standard proof in the smooth case. Both here and in Theorem 4.13 we use Lemma 3.14, which shows that it suffices to prove that $\mathrm{D}\left(d_{\bar{\Omega}}\right) \cap \mathrm{D}\left(\delta_{\Omega}\right)$ and $\mathrm{D}\left(d_{\Omega}\right) \cap \mathrm{D}\left(\delta_{\bar{\Omega}}\right)$ are compactly embedded in $L_{2}(\Omega ; \wedge)$.
Theorem 4.10. Assume that Ω is a bounded open set with C^{2}-regular boundary Σ. Then

$$
\begin{aligned}
& D\left(\mathbf{D}_{\Omega^{\perp}}\right)=D\left(d_{\bar{\Omega}}\right) \cap D\left(\delta_{\Omega}\right)=W_{2}^{1}\left(\Omega^{\perp} ; \wedge\right):=\left\{F \in W_{2}^{1}(\Omega ; \wedge) ; \nu \wedge f=0\right\} \\
& \left.D\left(\mathbf{D}_{\Omega^{\|}}\right)=D\left(d_{\Omega}\right) \cap D\left(\delta_{\bar{\Omega}}\right)=W_{2}^{1}\left(\Omega^{\|} ; \wedge\right):=\left\{F \in W_{2}^{1}(\Omega ; \wedge) ; \nu\right\lrcorner f=0\right\} .
\end{aligned}
$$

In particular, $D\left(d_{\bar{\Omega}}\right) \cap D\left(\delta_{\Omega}\right)$ and $D\left(d_{\Omega}\right) \cap D\left(\delta_{\bar{\Omega}}\right)$ are compactly embedded in $L_{2}(\Omega ; \wedge)$.
Moreover, if $\left\{v_{1}, \ldots, v_{n-1}\right\}$ is an $O N$-frame on Σ of directions of principal inward curvatures κ_{i}, then we have the Weitzenböck formulae
$\int_{\Omega}|\nabla \otimes F(x)|^{2}=\int_{\Omega}|d F(x)|^{2}+|\delta F(x)|^{2}- \begin{cases}\sum \int_{\Sigma} \kappa_{i}(y)\left|v_{i}(y) \wedge f(y)\right|^{2}, & F \in D\left(\mathbf{D}_{\Omega^{\perp}}\right), \\ \left.\sum \int_{\Sigma_{i}} \kappa_{i}(y) \mid v_{i}(y)\right\lrcorner\left. f(y)\right|^{2}, & F \in D\left(\mathbf{D}_{\Omega^{\|}}\right) .\end{cases}$
Remark 4.11. (i) Note that when Σ is convex, but not necessarily C^{2}, then $\kappa_{i} \geq 0$ and we obtain the inequality $\int_{\Omega}|\nabla \otimes F(x)|^{2} \leq \int_{\Omega}|d F(x)|^{2}+|\delta F(x)|^{2}$ if either $\nu \wedge f=0$ or $\nu\lrcorner f=0$. See Mitrea [18] for generalisations of this result.
(ii) Consider also the special case of the Laplace equation as explained in Example 1.1. If U is in the domain $\mathrm{D}\left(\Delta_{D}\right)$ of the Dirichlet Laplacian in Ω, then the gradient $F:=\nabla U \in \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)$. The Weitzenböck formula now reads

$$
\int_{\Omega}|\nabla \otimes \nabla U(x)|^{2}=\int_{\Omega}|\Delta U|^{2}-(n-1) \int_{\Sigma} H(y)\left|\frac{\partial u}{\partial \nu}(y)\right|^{2},
$$

where H is the (inward) mean curvature of Σ, since for normal vector fields $\left|v_{i} \wedge f\right|=$ $\left|v_{i}\right||f|=|f|$. This formula is known as Kadlec's formula, see p. 341 in Taylor [24].

Proof. We here only give the proof for $\mathbf{D}_{\Omega^{\perp}}$, since that for $\mathbf{D}_{\Omega_{\|}}$is similar.
(i) Assume that $F \in W_{2}^{1}\left(\Omega^{\perp} ; \wedge\right) \subset \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)$. Using the boundary theorem 2.7, we obtain identities

$$
\begin{aligned}
\int_{\Omega}|\nabla \otimes F|^{2}+\left\langle F, \Delta F^{c}\right\rangle & =\int_{\Sigma}\left\langle f,\left.(\nu, \nabla) \dot{F}^{\mathrm{c}}\right|_{\Sigma}\right\rangle, \\
\int_{\Omega}|d F|^{2}+\left\langle F, \delta d F^{\mathrm{c}}\right\rangle & \left.=\left.\int_{\Sigma}\langle f, \nu\lrcorner d F^{\mathrm{c}}\right|_{\Sigma}\right\rangle=0, \\
\int_{\Omega}|\delta F|^{2}+\left\langle F, d \delta F^{\mathrm{c}}\right\rangle & =\int_{\Sigma}\left\langle f,\left.\nu \wedge \delta F^{\mathrm{c}}\right|_{\Sigma}\right\rangle,
\end{aligned}
$$

where \dot{F} denotes the function on which the differential operator ∇ is acting. Thus, subtracting the last two equations from the first gives

$$
\int_{\Omega}|\nabla \otimes F|^{2}=\int_{\Omega}|d F|^{2}+|\delta F|^{2}-\int_{\Sigma}\left\langle f,\left.\nu \wedge \delta F^{c}\right|_{\Sigma}\right\rangle+\left\langle f,\left.(\nu, \nabla) \dot{F}^{c}\right|_{\Sigma}\right\rangle .
$$

Using the derivation property (9) and that $\nu \wedge f=0$ and $\partial_{v_{i}} \nu=\kappa_{i} v_{i}$ we rewrite the boundary integral as

$$
\begin{aligned}
& \left.\int_{\Sigma}\left\langle f, \nu \wedge \delta F^{c} \mid \Sigma\right\rangle-\left\langle f,(\nu, \nabla) \dot{F}^{\mathrm{c}} \mid \Sigma\right\rangle=-\int_{\Sigma}\langle f, \nabla\lrcorner\left(\nu \wedge \dot{F}^{\mathrm{c}}\right)\right\rangle \\
& =-\sum_{i=1}^{n-1} \int_{\Sigma}\left\langle v_{i} \wedge f, \nu \wedge \partial_{v_{i}} f^{\mathrm{c}}\right\rangle=\sum_{i=1}^{n-1} \int_{\Sigma}\left\langle v_{i} \wedge f,\left(\partial_{v_{i}} \nu\right) \wedge f^{c}\right\rangle=\sum_{i=1}^{n-1} \int_{\Sigma} \kappa_{i}\left|v_{i} \wedge f\right|^{2} .
\end{aligned}
$$

Since Σ is of regularity C^{2}, κ_{i} are continuous on Σ and thus the Sobolev trace theorem shows that the inclusion $i_{\Omega}: W_{2}^{1}\left(\Omega^{\perp} ; \wedge\right) \hookrightarrow \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)$ is a bounded semiFredholm map.
(ii) What is left to prove is that the inclusion is surjective. Note that since $e_{0} \mathbf{D}_{\Omega^{\perp}}$ is a self-adjoint operator by Proposition 3.5, we have that $\mathbf{D}_{\Omega^{\perp}}+i e_{0}$: $\mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right) \rightarrow L_{2}(\Omega ; \wedge)$ is an isomorphism (for any weakly Lipschitz domain). Thus it suffices to prove that $\mathbf{D}_{\Omega^{\perp}}+i e_{0}: W_{2}^{1}\left(\Omega^{\perp} ; \wedge\right) \rightarrow L_{2}$ is surjective.

One way to prove this is to perturb the given domain to a domain with an isometric double, e.g. the upper half $T_{+}^{n}:=\left\{x \in \mathbf{R}^{n} ; 0<x_{n}<1\right\} /(2 \mathbf{Z}+1)^{n}$ of the flat n-torus $T^{n}:=\mathbf{R}^{n} /(2 \mathbf{Z}+1)^{n}$ as in Taylor [24]. Since the problem is local, it suffices to prove that if $\rho_{t}: \Omega=\Omega_{0} \rightarrow \Omega_{t}$ is a continuous family of C^{2} diffeomorphisms, where Ω_{t} is a C^{2} domain in T^{n} for $t \in[0,1]$ and $\Omega_{1}=T_{+}^{n}$, then $\mathbf{D}_{\Omega_{0}^{\perp}}+i e_{0}: W_{2}^{1}\left(\Omega_{0}^{\perp} ; \wedge\right) \rightarrow L_{2}\left(\Omega_{0} ; \wedge\right)$ is an isomorphism. From (i) we have a continuous family of semi-Fredholm maps

$$
\rho_{t}^{*}\left(\mathbf{D}_{\Omega_{t}^{\perp}}+i e_{0}\right)\left(\rho_{t}^{-1}\right)^{*}=d_{\bar{\Omega}_{0}}+\rho_{t}^{*} \delta_{\Omega_{t}}\left(\rho_{t}^{-1}\right)^{*}+i e_{0}: W_{2}^{1}\left(\Omega_{0}^{\perp} ; \wedge\right) \longrightarrow L_{2}\left(\Omega_{0} ; \wedge\right),
$$

since pullbacks preserves normal boundary conditions, and since $\left[\rho_{t}^{*}, \delta\right]: W_{2}^{1} \rightarrow L_{2}$ depends continuously on t. Perturbation theory [13] now shows that it suffices to prove that $\mathbf{D}_{\left(T_{+}^{n}\right)^{\perp}}+i e_{0}: W_{2}^{1}\left(\left(T_{+}^{n}\right)^{\perp} ; \wedge\right) \rightarrow L_{2}\left(T_{+}^{n} ; \wedge\right)$ is surjective. Note that $\mathbf{D}_{T^{n}}+i e_{0}: W_{2}^{1}\left(T^{n} ; \wedge\right) \rightarrow L_{2}\left(T^{n} ; \wedge\right)$ is an isomorphism. We see that, given any $G \in L_{2}\left(T^{n} ; \wedge\right)$ with $\operatorname{supp} G \subset \overline{T_{+}^{n}}$, there exists $F \in W_{2}^{1}\left(T^{n} ; \wedge\right)$ such that $\left(\mathbf{D}_{T^{n}}+\right.$
$\left.i e_{0}\right) F=G$. Now the anti symmetrised field $F-r^{*} F$, where $r: T_{ \pm}^{n} \rightarrow T_{\mp}^{n}$ is the isometric reflection, belongs to $W_{2}^{1}\left(\left(T_{+}^{n}\right)^{\perp} ; \wedge\right)$ and $\left(d+\delta+i e_{0}\right)\left(F-r^{*} F\right)=$ $G-r^{*} G=G$ in T_{+}^{n} since d commutes with r^{*} and δ commutes with $\tilde{r}_{*}^{-1}=r^{*}$ by Proposition 2.6. This finishes the proof.

For non-smooth Σ, not only the source function $F:=\mathbf{D}_{\Omega^{\perp}} U$ influences the regularity of $U \in \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)$, but also Σ. A standard example, see e.g. Grisvard [11], is the following.

Example 4.12. Consider a bounded domain $\Omega \subset \mathbf{R}^{2}$ whose boundary Σ is smooth except at 0 where it coincides with $\overline{\mathbf{R}}_{+} \cup e^{i \alpha} \mathbf{R}_{+}$. Let $U: \mathbf{R}^{2} \rightarrow \wedge^{0}$ be a scalar function in Ω, smooth up to the boundary except at 0 , such that $U(x)=r^{\frac{\pi}{\alpha}} \sin \left(\frac{\pi}{\alpha} \theta\right)$ around 0 and $\left.U\right|_{\Sigma}=0$. Define

$$
F(x):=\nabla U(x)=\frac{\pi}{\alpha} r^{\frac{\pi}{\alpha}-1}\left(\sin \left(\frac{\pi}{\alpha} \theta\right) \hat{r}+\cos \left(\frac{\pi}{\alpha} \theta\right) \hat{\theta}\right),
$$

for x around 0 , where \hat{r} and $\hat{\theta}$ denotes the radial and angular unit vector fields. Then the estimate $|F| \lesssim r^{\frac{\pi}{\alpha}-1}$ shows that $F \in \mathrm{D}\left(d_{\bar{\Omega}}\right) \cap \mathrm{D}\left(\delta_{\Omega}\right)$, whereas the estimate $\left|\frac{\partial F}{\partial r}\right| \approx r^{\frac{\pi}{\alpha}-2}$ shows that

$$
\|F\|_{W_{2}^{1}(\Omega)}^{2} \geq \int_{\Omega}\left|\frac{\partial F}{\partial r}\right|^{2} \gtrsim \int_{0}^{1} r^{2\left(\frac{\pi}{\alpha}-2\right)} r d r
$$

But in the non-convex case $\alpha>\pi$ the right hand side is infinite so that $F \notin$ $W_{2}^{1}(\Omega ; \wedge)$. However, one can verify that $\|F\|_{W_{2}^{1 / 2}}<\infty$ for any $0<\alpha<2 \pi$.

For a strongly Lipschitz domain, we use the $L_{2}(\Sigma ; \wedge)$ theory of boundary value problems. This uses the Rellich estimate technique, which was first applied by Verchota [25] to the Laplace equation. This technique was later extended to the full Dirac operator by MCIntosh-Mitrea [16] and MCIntosh-Mitrea-Mitrea [15].

Theorem 4.13. Assume that Ω is a bounded, strongly Lipschitz domain. Then we have continuous inclusions

$$
D\left(\mathbf{D}_{\Omega^{\perp}}\right), D\left(\mathbf{D}_{\Omega_{\|}}\right) \subset W_{2}^{1 / 2}(\Omega ; \wedge)
$$

In particular, $D\left(d_{\bar{\Omega}}\right) \cap D\left(\delta_{\Omega}\right)$ and $D\left(d_{\Omega}\right) \cap D\left(\delta_{\bar{\Omega}}\right)$ are compactly embedded in $L_{2}(\Omega ; \wedge)$.
Proof. Consider the map $\mathbf{D}_{\Omega^{\perp}}+i e_{0}: \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right) \longrightarrow L_{2}(\Omega ; \wedge)$, which is an isomorphism since $e_{0} \mathbf{D}_{\Omega^{\perp}}$ is self-adjoint, and the dense subset

$$
S:=\left\{F \in \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right) ;\left(\mathbf{D}_{\Omega^{\perp}}+i e_{0}\right) F \in C_{0}^{\infty}(\Omega ; \wedge)\right\} \subset \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right) .
$$

It suffices to show that we have a continuous inclusion $S \hookrightarrow W_{2}^{1 / 2}(\Omega ; \wedge)$. Given $G=\left(\mathbf{D}_{\Omega^{\perp}}+i e_{0}\right) F \in C_{0}^{\infty}(\Omega ; \wedge)$, let $F_{0}:=\left(\mathbf{D}_{\mathbf{R}^{n}}+i e_{0}\right)^{-1} G \in C^{\infty}\left(\mathbf{R}^{n} ; \wedge\right)$ and form its tangential trace $\nu \wedge f_{0} \in L_{2}(\Sigma ; \wedge)$. We now apply the Rellich $L_{2}(\Sigma ; \wedge)$ theory of
boundary value problems on strongly Lipschitz domains, see [1] for more details, which shows the existence of a field $F_{1}: \Omega \rightarrow \wedge$ such that

$$
\begin{gathered}
\left(\mathbf{D}+i e_{0}\right) F_{1}=0 \quad \text { in } \Omega \\
\nu \wedge f_{1}=\nu \wedge f_{0} \quad \text { on } \Sigma \\
\left\|F_{1}\right\|_{W_{2}^{1 / 2}(\Omega ; \wedge)} \approx\left\|\nu \wedge f_{0}\right\|_{L_{2}(\Sigma ; \wedge)} \\
d F_{1}, \delta F_{1} \in W_{2}^{1 / 2}(\Omega ; \wedge) \subset L_{2}(\Omega ; \wedge) .
\end{gathered}
$$

Now let $F^{\prime}:=F_{0}-F_{1}$. We see that

$$
\begin{aligned}
& \left\|F_{0}\right\|_{W_{2}^{1 / 2}(\Omega ; \wedge)} \lesssim\left\|F_{0}\right\|_{W_{2}^{1}(\Omega ; \wedge)} \lesssim\|G\|_{L_{2}(\Omega ; \wedge)} \approx\|F\|_{\mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)} \\
& \left\|F_{1}\right\|_{W_{2}^{1 / 2}(\Omega ; \wedge)} \approx\left\|\nu \wedge f_{0}\right\|_{L_{2}(\Sigma ; \wedge)} \lesssim\left\|F_{0}\right\|_{W_{2}^{1}(\Omega ; \wedge)} \lesssim\|F\|_{\mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right)}
\end{aligned}
$$

Moreover $d F^{\prime}, \delta F^{\prime} \in L_{2}(\Omega ; \wedge)$ and $\nu \wedge f^{\prime}=\nu \wedge f_{0}-\nu \wedge f_{1}=0$. Thus $F^{\prime} \in \mathrm{D}\left(\mathbf{D}_{\Omega^{\perp}}\right) \cap$ $W_{2}^{1 / 2}(\Omega ; \wedge)$ and $\left(\mathbf{D}_{\Omega^{\perp}}+i e_{0}\right) F^{\prime}=G=\left(\mathbf{D}_{\Omega^{\perp}}+i e_{0}\right) F$. Thus $F=F^{\prime} \in W_{2}^{1 / 2}(\Omega ; \wedge)$ with $\|F\|_{W_{2}^{1 / 2}(\Omega ; \wedge)} \lesssim\|F\|_{\mathrm{D}_{\left(\mathbf{D}_{\Omega^{\perp}}\right)}}$.

Remark 4.14. In the proof above we used the fact that

$$
\left\|F_{1}\right\|_{W_{2}^{1 / 2}(\Omega ; \wedge)} \approx\left\|f_{1}\right\|_{L_{2}(\Sigma ; \wedge)}
$$

when $\left(\mathbf{D}+i e_{0}\right) F_{1}=0$ in Ω. This result is presented in Fabes [7] with an incomplete proof which is corrected in Mitrea-Mitrea-Pipher [19]. See also [3] for an alternative correction.

Note that Theorem 4.13 is more constructive than Theorem 4.10 in the sense that F^{\prime} is found by solving the boundary equation $\nu \wedge f_{1}=\nu \wedge f_{0}$. However, if one is only interested in solving for example $d_{\Omega} U=F$, where $F \in \mathrm{~N}\left(d_{\Omega}\right)$, with a "good inverse" in the sense that $F \mapsto U$ is an L_{2} compact map, then this can be done much more explicitly using path integrals as we now explain.

Lemma 4.15. Let $\Omega \subset \mathbf{R}^{n}$ be an open set with a smooth retraction $\mathcal{F}_{t}: \Omega \rightarrow$ $\mathcal{F}_{t}(\Omega) \subset \Omega$ to $p \in \Omega$ such that $\mathcal{F}_{1}=I, \mathcal{F}_{t} \mathcal{F}_{s}=\mathcal{F}_{t s}$ for $0 \leq t, s \leq 1$ and $\mathcal{F}_{0}=p$. If $\theta=d \mathcal{F}_{t} /\left.d t\right|_{t=1}$ is the vector field with flow \mathcal{F}_{t}, then for smooth fields F in Ω we have the path integral formulae

$$
\begin{array}{ll}
\left.F(x)=\nabla \wedge\left(\int_{0}^{1} \theta(x)\right\lrcorner \mathcal{F}_{t}^{*} F(x) \frac{d t}{t}\right), & \text { if } \nabla \wedge F=0 \text { and }\left.F\right|_{\wedge^{0}}=0, \\
\left.F(x)=\nabla\lrcorner\left(\int_{0}^{1} \theta(x) \wedge \widetilde{\mathcal{F}}_{t *}^{-1} F(x) \frac{d t}{t}\right), \quad \text { if } \nabla\right\lrcorner F=0 \text { and }\left.F\right|_{\wedge^{n}}=0 .
\end{array}
$$

One can prove this lemma by using Cartan's formula

$$
\left.\left.\mathcal{L}_{\theta} F=\left.\frac{d}{d t}\left(\mathcal{F}_{t}^{*} F(x)\right)\right|_{t=1}=\nabla \wedge(\theta\lrcorner F\right)+\theta\right\lrcorner(\nabla \wedge F)
$$

for the Lie derivative of the differential form F and using the homomorphism formulae from Proposition 2.6. For more details, see for example Taylor [24].

Example 4.16. Let Ω be star shaped with respect to 0 and $\mathcal{F}_{t}(x):=t x$. Then for a smooth j-vector field $F: \Omega \rightarrow \wedge^{j}$ we have the path integrals

$$
\begin{aligned}
& \left.F(x)=\nabla \wedge\left(\int_{0}^{1} t^{j-1} x\right\lrcorner F(t x) d t\right), \quad \text { if } \nabla \wedge F=0 \text { and } j \geq 1, \\
& \left.F(x)=\nabla\lrcorner\left(\int_{0}^{1} t^{n-j-1} x \wedge F(t x) d t\right), \quad \text { if } \nabla\right\lrcorner F=0 \text { and } j \leq n-1
\end{aligned}
$$

Indeed, using the derivation formula (9) and that $\left.\sum_{i} e_{i} \wedge\left(e_{i}\right\lrcorner F(t x)\right)=j F(t x)$, one can directly verify that $\nabla \wedge(x\lrcorner F(t x))=j F(t x)+t \frac{d}{d t}(F(t x))$.

In particular, a curl free vector field F has a scalar potential given by the path integral $U(x)=\int_{0}^{1}(x, F(t x)) d t$ and a divergence free vector field F has a bivector potential $U(x):=\int_{0}^{1} t^{n-2} x \wedge F(t x) d t \in \wedge^{2}$. In classical notation in \mathbf{R}^{3}, the latter translates to $F=-\nabla \times U^{\perp}$ if $U(x)^{\perp}:=\int_{0}^{1} t x \times F(t x) d t$.

A third way to prove that the Dirac operators are diffuse Fredholm operators uses an L_{2} version of the classical Poincaré lemma. We here only consider fields with values in $\wedge \mathbf{R}^{n}=\wedge^{0} \oplus \ldots \oplus \wedge^{n}$. The extension to spacetime setting is straightforward.
Theorem 4.17. Let $\Omega \subset \mathbf{R}^{n}$ be a star shaped strongly Lipschitz domain. Let $0<$ $\epsilon<R<\infty$ be such that $B(0, \epsilon) \subset \Omega \subset B(0, R)$ and such that Ω is star shaped with respect to each $p \in B(0, \epsilon)$. For $1 \leq j \leq n$, let $T^{(j)}$ denote the integral operator

$$
\begin{equation*}
\left.T^{(j)} F(x):=\int_{\Omega}(x-y)\right\lrcorner F(y) k_{j}(x, y) d y, \quad F \in L_{2}\left(\Omega ; \wedge^{j}\right) \tag{22}
\end{equation*}
$$

where k_{j} denotes the kernel

$$
k_{j}(x, y):=\int_{0}^{1} \eta\left(x+\frac{y-x}{1-t}\right) \frac{t^{j-1} d t}{(1-t)^{n+1}}
$$

for some fixed $\eta \in C_{0}^{\infty}(B(0, \epsilon))$ with $\int \eta=1$. In particular

$$
\operatorname{supp} k_{j} \subset\{(x, y) ; y \in \overline{\operatorname{conv}}(B(0, \epsilon), x)\}
$$

where $\overline{\text { conv }}$ denotes the closed convex hull, k_{j} is smooth off the diagonal $\{x=y\}$ with estimates

$$
\left|k_{j}(x, y)\right| \leq \frac{1}{n}\|\eta\|_{\infty}(R+\epsilon)^{n} \frac{1}{|x-y|^{n}}
$$

and $T^{(j)}$ defines a compact operator $L_{2}\left(\Omega ; \wedge^{j}\right) \rightarrow L_{2}\left(\Omega ; \wedge^{j-1}\right)$. Then $T:=0 \oplus$ $T^{(1)} \oplus \ldots \oplus T^{(n)}: N\left(d_{\Omega}\right) \rightarrow L_{2}\left(\Omega ; \wedge \mathbf{R}^{n}\right) / N\left(d_{\Omega}\right)$ is a compact Fredholm inverse to d_{Ω}. Thus d_{Ω} is a diffuse Fredholm-nilpotent operator.

The corresponding result for δ_{Ω} holds true as well.
Proof. Assume that $F \in C_{0}^{\infty}\left(\mathbf{R}^{n} ; \wedge^{j}\right)$ and $\operatorname{supp}(\nabla \wedge F) \cap \bar{\Omega}=\emptyset$ as in Proposition 4.3. We define

$$
\left.T^{(j)} F(x)=\int \eta(p) d p\left(\int_{0}^{1} t^{j-1}(x-p)\right\lrcorner F(p+t(x-p)) d t\right),
$$

which by using Fubini's theorem and the change of variables $y=p+t(x-p)$ becomes (22). Since $\int \eta=1$, it follows from Example 4.16 that $d_{\Omega} T^{(j)} F=F$.

The estimates off $\operatorname{supp} k_{j}$ and $\left|k_{j}(x, y)\right|$ are straightforward to verify. Since the full kernel for $T^{(j)}$ has the estimate $\lesssim 1 /|x-y|^{n-1}$, Schur's lemma shows that $T^{(j)}$ defines a compact operator $L_{2}\left(\Omega ; \wedge^{j}\right) \rightarrow L_{2}\left(\Omega ; \wedge^{j-1}\right)$.

We can now apply Proposition 3.8 with $\mathcal{H}_{1}=L_{2}(\Omega ; \wedge) / \mathrm{N}\left(d_{\Omega}\right), \mathcal{H}_{2}=\mathrm{N}\left(d_{\Omega}\right)$, $A=d_{\Omega}, T_{1}=T_{2}=T=0 \oplus T^{(1)} \oplus \ldots \oplus T^{(n)}, K_{1}=0$ and $K_{2}=$ orthogonal projection onto scalar constants, which shows that d_{Ω} is a diffuse Fredholm-nilpotent operator.

References

[1] Axelsson, A. Oblique and normal transmission problems for Dirac operators with strongly Lipschitz interfaces. To appear in Comm. Partial Differential Equations (2002).
[2] Axelsson, A. Transmission problems and boundary operator algebras. To appear in Integral Equations Operator Theory (2003).
[3] Axelsson, A. Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces. PhD thesis, Australian National University, submitted 2002.
[4] Axelsson, A.; Grognard, R.; Hogan, J.; McIntosh, A. Harmonic analysis of Dirac operators on Lipschitz domains. Clifford analysis and its applications (Prague, 2000), 231-246, NATO Sci. Ser. II Math. Phys. Chem., 25, Kluwer Acad. Publ., Dordrecht, 2001.
[5] Birman, M.S.; Solomyak, M.Z. L_{2}-theory of the Maxwell operator in arbitrary domains. Uspekhi Mat. Nauk 42 (1987), no. 6(258), 61-76, 247.
[6] Birman, M.S.; Solomyak, M.Z. The selfadjoint Maxwell operator in arbitrary domains. Leningrad Math. J. 1 (1990), no. 1, 99-115.
[7] Fabes, E. Layer potential methods for boundary value problems on Lipschitz domains. in: Potential theory, surveys and problems (Prague, 1987), 55-80, Lecture Notes in Math., 1344, Springer, Berlin, 1988.
[8] Friedrichs, K.O. Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955), 551-590.
[9] Gaffney, M.P. The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U. S. A. 37, (1951). 48-50.
[10] Gaffney, M.P. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc. 78, (1955). 426-444.
[11] Grisvard, P. Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[12] Hodge, W. V. D. The Theory and Applications of Harmonic Integrals. Cambridge University Press, Cambridge, England; Macmillan Company, New York, 1941.
[13] Kato, T. Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin, New York, 1976.
[14] Kodaira, K. Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. of Math. (2) 50, (1949). 587-665.
[15] MCIntosh, A.; Mitrea, D.; Mitrea, M. Rellich type estimates for one-sided monogenic functions in Lipschitz domains and applications. in: Analytical and Numerical Methods in Quaternionic and Clifford Algebras, K. Gürlebeck and W. Sprössig eds, the Proceedings of the Seiffen Conference, Germany, 1996, 135-143.
[16] MCIntosh, A.; Mitrea, M. Clifford algebras and Maxwell's equations in Lipschitz domains. Math. Meth. Appl. Sci., 22 (1999), 1599-1620.
[17] Mitrea, D.; Mitrea, M. Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds. J. Funct. Anal. 190 (2002), no. 2, 339-417.
[18] Mitrea, M. Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math. 13 (2001), no. 4, 531-567.
[19] Mitrea, D.; Mitrea, M.; Pipher, J. Vector potential theory on nonsmooth domains in \mathbf{R}^{3} and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3 (1997), no. 2, 131-192.
[20] Morrey, C.B., Jr. Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York 1966.
[21] Picard, R. An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187 (1984), no. 2, 151-164.
[22] Schechter, M. Basic theory of Fredholm operators. Ann. Scuola Norm. Sup. Pisa (3), 21, 1967, 261-280.
[23] Schwarz, G. Hodge decomposition, a method for solving boundary value problems. Lecture Notes in Mathematics, 1607, Springer-Verlag, Berlin, 1995.
[24] Taylor, M.E. Partial differential equations. I. Basic theory. Applied Mathematical Sciences, 115. Springer-Verlag, New York, 1996.
[25] Verchota, G. Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59 (1984), 572-611.
[26] Weck, N. Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46 (1974), 410-437.
[27] Weyl, H. The method of orthogonal projection in potential theory. Duke Math. J. 7, (1940). 411-444.

Centre for Mathematics and its Applications, Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
E-mail address: Alan.McIntosh@maths.anu.edu.au

[^0]: 1991 Mathematics Subject Classification. 35J55, 35Q60, 47B99.
 Key words and phrases. Maxwell's equations, boundary value problem, Hodge decomposition, Lipschitz domain, first order system, nilpotent operator, exterior derivative.
 The authors were supported by the Australian Government through the Australian Research Council. The research was conducted at the Centre for Mathematics and its Applications at the Australian National University, Canberra.

