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Abstract

We present a simple, Cli�ord algebra based approach to several key
results in the theory of Maxwell's equations in non-smooth subdomains
of Rm. Among other things, we give new proofs to the boundary energy
estimates of Rellich type for Maxwell's equations in Lipschitz domains
from [20] and [10], discuss radiation conditions and the case of variable
wave number.

1 Introduction.

It has been long recognized that there are fundamental connections between
electromagnetism and Cli�ord algebras. Indeed, understanding Maxwell's
equations was part of Cli�ord's original motivation.

A more recent trend concerns the treatment of such PDE's in domains
with irregular boundaries. See [11] for an excellent survey of the state of
the art in this �eld up to early 1990's and [13], [18] for the role of Cli�ord
algebras in this context.

Following work in the context of smooth domains ([24], [2], [4], [23]), the
three-dimensional Maxwell system

(M3)

8><
>:

curlE � ikH = 0 in R3 n �
;
curlH + ikE = 0 in R3 n �
;
n� E = f 2 L2(@
);
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(plus appropriate radiation conditions at in�nity) in the complement of a
bounded Lipschitz domain 
 � R has been solved in [20], while the higher
dimensional version (involving di�erential forms)

(Mm)

8><
>:

dE � ikH = 0 in Rm n �
;
�H + ikE = 0 in R n �
;
n ^ E = f 2 L2(@
);

(plus suitable radiation conditions) for arbitrary Lipschitz domains 
 � Rm,
has been solved in [10] (precise de�nitions will be given shortly). See also
[19], [16] for related developments.

One of the key ingredients of the approach in [20], [10] was establishing
estimates to the e�ect that the so-called voltage-to-current map, taking n�E
into n �H and n ^ E into n _H , respectively, is an isomorphism between
appropriate boundary spaces. Ultimately, this comes down to proving norm
equivalences of the following form

kn� EkL2(@
) + khn;HikL2(@
) � kn�HkL2(@
) + khn;EikL2(@
)(1)

in R3 and, more generally,

kn ^EkL2(@
) + kn ^HkL2(@
) � kn _ EkL2(@
) + kn _HkL2(@
)(2)

in Rm. As shown in [20, Theorem 4.1] (for Im k > 0) and [10, Theorem
8.5] (for arbitrary k 6= 0), the above estimates lead to the invertibility of
certain magnetostatic (and electrostatic) boundary integral operators which,
in turn, are used to solve (Mm), m � 3.

The aim of this paper is to shed new light on the basic estimates (1), (2)
and to present an alternative, natural approach to proving such boundary
energy estimates, developed in the framework of Cli�ord algebras. This is
an extension of work in [18] where such an approach has �rst been used
for certain PDE's in Lipschitz domains. Besides its intrinsic merit, the
relevance of this work should be most apparent for the numerical treatment
of electro-magnetic scattering problems in non-smooth domains. For the
smooth context and di�erent techniques see [8].

The departure point for us (which in fact goes back to Maxwell himself;
it has also been reinvented by M.Riesz) is to write the Maxwell system
as a single equation which, in fact, expresses the Cli�ord analyticity of a
certain Cli�ord algebra-valued function. Speci�cally, if E and H are the

2



electric and magnetic components of an electro-magnetic wave in R3, then
the entire Maxwell system is equivalent to the Maxwell-Dirac equation

(D + ke4)(H + iEe4) = 0:(3)

Here E and H are regarded as Cli�ord algebra-valued functions in R3, and
D + ke4 is a perturbed Dirac operator.

This is both mathematically convenient and physically relevant. In
fact, the same idea has been extensively used by physicists who employ
the Lorentz metric in the four dimensional (at Minkowskian) space-time
domains in order to write the 3D Maxwell system for E = (Ei)i=1;2;3 and
H = (Hi)i=1;2;3 solely in terms of the electromagnetic �eld-strength tensor.
Due to its skew symmetry, the latter de�nes the exterior di�erential form
(sometimes referred to as a Faraday bi-vector �eld)

! := (E1dx1 +E2dx2 +E3dx3) dt

+H1dx2dx3 +H2dx3dx1 +H3dx1dx2

(typically, electrical forces are vectorial while magnetic ones are 2-tensors).
See, e.g., the monographs [5], [31], [9], and [28].

The radiation conditions for E and H can also be naturally rephrased
in terms of !. Parenthetically, let us note that it is also possible to work
with the non-homogeneous form E + H and write Maxwell's equations in
the form (D + ik)(E +H) = 0 (cf. [23], [10]) but this setup appears to be
less physically relevant.

However, the most attractive aspect of this algebraic context is that it
preserves many of the key features of the classical complex function the-
ory. For us, Hardy spaces of monogenic functions in Lipschitz domains and
Cauchy vanishing formulas will play a basic role in the sequel. Based on
these, if 
 � R3 is the complement of a bounded Lipschitz domain and if
n � n1e1 + n2e2 + n3e3 denotes the outward unit normal to @
, we shall
show that for any solution ! = H + iEe4 of (3) there holds

kn! � !nkL2(@
) � k!kL2(@
);

modulo residual terms. The Rellich type estimate (1) follows from this. In
fact, a similar argument applies in the higher dimensional case.

Before commencing the major developments we shall introduce here some
notation. Call a bounded domain 
 Lipschitz if its boundary is locally given
by graphs of Lipschitz functions in appropriate rectangular coordinates. We
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let d� denote the surface measure on @
 and set n for the outward unit
normal to @
. For a (possibly algebra-valued) function u de�ned in 
, the
nontangential maximal function u� is given by u�(X) := sup fju(Y )j; Y 2

; jX � Y j � 2 dist (Y; @
)g. Also, the nontangential boundary trace on @

of a function u de�ned in 
 is taken as the pointwise nontangential limit
almost everywhere with respect to the surface measure on the boundary.

Acknowledgments. This research was initiated while MM was visiting AM at
Macquarie University. It is a pleasure to have the opportunity to thank here
this institution for its hospitality as well as the Australian Research Council
for its support. We also wish to thank Ren�e Grognard for his interesting
and helpful comments.

2 Cli�ord algebra rudiments.

Recall that the (complex) Cli�ord algebra associated with Rm endowed with
the usual Euclidean metric is the minimal enlargement of Rm to a unitary
complex algebra Am, which is not generated (as an algebra) by any proper
subspace of Rm and such that x2 = �jxj2, for any x 2 Rm. This identity
readily implies that, if fejgmj=1 is the standard orthonormal basis in Rm,
then

e2j = �1 and ejek = �ekej for any j 6= k:

In particular, we identify the canonical basis fejg from Rm with the algebraic
basis of Am. Thus, any element u 2 Am can be uniquely represented in the
form

u =
mX
l=0

X
jIj=l

0
uI eI ; uI 2 C;(4)

where eI stands for the product ei1ei2 : : : eil if I = (i1; i2; : : : ; il) (we make
the convention that e; := 1). For this multi-index I we call l the length of I
and denote it by jI j. We shall adopt the convention that

P0 indicates that
the sum is performed only over strictly increasing multi-indices I .

The Cli�ord conjugation on Am is de�ned as the unique complex-linear
involution on Am for which �eIeI = eI �eI = 1 for any multi-index I . In
particular, if u =

P
I uI eI 2 Am, then �u =

P
I uI �eI . Note that

�u = (�1)
l(l+1)

2 u;(5)

4



for any u 2 �l. For the complex conjugation on Am we set

uc =

 X
I

uIeI

!c

:=
X
I

�uIeI :(6)

We de�ne the scalar part of u =
P

I uIeI 2 Am as u0 := u;, and endow
Am with the natural Euclidean metric hu; �uci = juj2 := (u�uc)0 = (�ucu)0.
Note that (uv)0 = (vu)0 = hu; �vi, for any u; v 2 Am. Another useful
observation is that

ja uj = ju aj = jujjaj(7)

for any u 2 Am and a 2 Rm. We also de�ne

u� := 1
2 fu� �ug(8)

for each u 2 Am.
With u as in (4), de�ne �lu :=

P0
jI j=l uI eI and denote by �

l the range of

�l : Am ! Am. Elements in �
l will be referred to as l-vectors or di�erential

forms of degree l. The exterior and interior product of forms are de�ned for
� 2 �1, u 2 �l, respectively, by

� ^ u := �l+1(�u) and � _ u := ��l�1(�u):(9)

By linearity, these operations extend to arbitrary u 2 Am.
Two identities which are going to be of importance in the sequel are

�u = � ^ u � � _ u;(10)

and
u� = (�1)l (� ^ u+ � _ u) ;(11)

valid for arbitrary � 2 �1 and u 2 �l.
We shall work with the Dirac operator D :=

Pm
j=1 ej

@
@xj

. Then �D =Pm
j=1 �ej

@
@xj

= �D, and D2 = �4, the negative of the Laplacian in Rm. For

reasons which will become more apparent shortly, we shall �nd it useful to
embed everything into a larger Cli�ord algebra, say Rm � Am � Am+1. If
for k 2 C we now set

IDk := D + kem+1(12)

then �ID2
k = 4+ k2. Furthermore,

IDc
k = D + �kem+1 = ID�k and �IDk = �D � kem+1 = �IDk:(13)
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If u is a Am+1-valued function de�ned in a region 
 of Rm, set

IDku :=
mX
j=1

ej
@u

@xj
+ kem+1u

and

uIDk :=
mX
j=1

@u

@xj
ej + kuem+1:

Call u left (right, two-sided) k-monogenic if IDku (uIDk , or both IDku and
uIDk) = 0 in 
. Note that each component of a k-monogenic function is
annihilated by the Helmholtz operator 4 + k2. A function theory for the
perturbed Dirac operator IDk which is relevant for us here has been worked
out in [21] and [22].

The exterior derivative operator d acts on a �l-valued function u by
du := �l+1(Du). It extends by linearity to arbitrary Am-valued functions.
Its formal transpose, �, is given by �u := �l�1(Du) if u is �l-valued. Once
again, � extends by linearity to arbitrary Am-valued functions. Since D =
d+ �, it follows that d2 = 0, �2 = 0 and �(d� + �d) = 4, as is well known.
More detailed accounts on these matters can be found in [1], [7], [12], [18].
Further references can be found in [14].

3 A distinguished fundamental solution.

The aim is to construct a convenient, explicit fundamental solution for the
Dirac operator IDk. The departure point is deriving an explicit expression
for a fundamental solution of the Helmholtz operator 4 + k2 in Rm. If
k = i, this can be taken to be minus the kernel of the Bessel potential
J� = (�4+ I)��=2 corresponding to � = 2. This kernel is known (cf. [27],
p. 131) to have the form

�(X) = �
1

(4�)m=2

Z 1

0
exp

 
�t �

jX j2

4t

!
dt

tm=2
:(14)

For general k 2 iR+ we simply re-scale the expression of � to obtain that

�k(X) := �
1

(4�)m=2

Z 1

0
exp

 
k2t�

jX j2

4t

!
dt

tm=2
(15)

is a fundamental solution for the operator 4+ k2 in Rm. Clearly this also
continues to hold true for all k 2 C with Im k > jRe kj and, in fact, the
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above expression can be continued analytically to the open upper-half plane
Im k > 0 with the property that �k(X) = O(exp f�jX j Imkg) as jX j ! 1.
For instance, when Im k > 0 and m � 2, one may take

�k(X) = �
1

!m

(�ik)m�2

(m� 2)!

Z 1

1
eikjXjt (t2 � 1)

m�3
2 dt; X 2 Rm n 0;

where !m is the area of the unit sphere in Rm. It is worth pointing out that
the above de�nition can be further extended to fk 2 C n 0; Im k � 0g by
setting, for X 2 Rm n 0,

�k(X) =

8>>>><
>>>>:

�
� 1

2�r
@
@r

�m�1
2
�

1
2ike

ikr
����
r=jXj

; if m is odd;

�
� 1

2�r
@
@r

�m�2
2
�
� i

4H
(1)
0 (kr)

����
r=jX j

; if m is even;

(16)

where H
(1)
0 is the usual zero-order Hankel function of the �rst kind. We

shall continue to denote this extension by �k. For this and a more detailed
discussion see the excellent treatment in [6], pp. 59-74.

It is now clear that

Ek := �IDk�k = ��kIDk = �
mX
j=1

@�k

@xj
ej � kem+1�k(17)

is a (two-sided) fundamental solution for IDk. When k = 0 then Ek reduces
to the usual radial fundamental solution for the Laplace operator. If Imk >

0 then Ek decays exponentially at in�nity. Furthermore, if Fk(X) is so that
Ek(X) = Fk(X)eikjXj then

Fk(X) = O
�
jX j�

m�1
2

�
; as jX j ! 1:(18)

This follows from the de�nition of �k plus a straightforward computation.
In the case when m is even, the classical asymptotic expansion (in the sense
of Poincar�e; cf., e.g., [26, (9.13.1), p. 166])

H
(1)
0 (z) �

�
2

�z

�1=2
eiz�i�=4

�
1� i

1

1!23z
+ i2

1 � 9

2!26z2
� i3

1 � 9 � 25

3!29z3
+ : : :

�

as jzj ! 1, is also used.
A more delicate analysis is required when k 2 R n 0 because in this case

there are two canonical decaying fundamental solutions. Speci�cally, for
k 2 R n 0, we de�ne
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E�
k := �IDk��k = ���kIDk:(19)

In passing let us note that E+
k = Ek. Now, if the functions F

�
k are so that

E�
k (X) = F�k (X)e�ikjXj then, along similar lines as before,

F�k (X) = cm;k
1

jX j
m�1
2

�
�

X

jX j
� iem+1

�
+ o

�
jX j�

m�1
2

�
; as jX j ! 1;

(20)
where cm;k 2 C n 0, and

rF�k (X) = o
�
jX j�

m�1
2

�
; as jX j ! 1:(21)

In the physically relevant case when m = 3 and Im k � 0,

�k(X) = �
1

4�jX j
eikjXj(22)

so that, for k 2 R n 0,

E�
k (X) = �

1

4�

�
X

jX j3
�

ikX

jX j2
�

ke4
jX j

�
e�ikjXj :(23)

In particular, (20)-(21) are trivially checked.

4 Function theory for perturbed Dirac operators.

Let 
 be a bounded Lipschitz domain in Rm and let n stand for the outward
unit normal to 
. As in [18], [22], [7], we introduce the Hardy type space
H2
left(
; k) of left k-monogenic functions in 
 by

H2
left(
; k) := fu : 
! Am+1; u is left k�monogenic in 
; u� 2 L2(@
)g:

Similarly, we de�ne H2
right(
; k), the Hardy space of right k-monogenic func-

tions in 
 by

H2
right(
; k) := fv : 
! Am+1; v is right k�monogenic in 
; v� 2 L2(@
)g:

We endow these spaces with the natural norms kukH2
left(
;k)

:= ku�kL2(@
),

and kvkH2
right(
;k)

:= kv�kL2(@
), respectively.
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Equivalent norms are obtained by taking the L2 norms of the boundary
trace; see [12] and the theory of monogenic Hardy spaces developed in [18].
Also, note that H2

left(
; k) \ H
2
right(
; k) consists precisely of two-sided k-

monogenic functions in 
 which have a square-integrable non-tangential
maximal function.

Proposition 4.1 Let 
 be a bounded Lipschitz domain in Rm, k 2 C, and
assume that u 2 H2

right(
; k), v 2 H
2
left(
;�k). Then u and v have (non-

tangential) boundary limits at almost every point on @
 andZ
@


u n v d� = 0:(24)

Also, if u 2 H2
right(
; k)\ H

2
left(
; k) and � 2 C1(Rm;Am+1), thenZ

@

u n uc� d� =

Z Z


u([D; �]uc � 2(Re k) em+1u

c�)(25)

where [D; �] is the commutator between D, acting from the left, and multi-
plication by � to the right.

Formula (24) can be considered as the Cli�ord analogue of the classical
Cauchy's vanishing theorem in complex analysis. The second identity, (25),
is a perturbation of this result. We state it here since we shall need it
shortly. In both cases, the integrands must be interpreted in the sense of
multiplication in the Cli�ord algebra.

Proof.

The existence of the boundary trace for u and v is proved in the usual way.
As for the vanishing formula, suppose �rst that u and v are smooth up to
and including the boundary of 
. Consequently, Gauss's formula givesZ

@

u n v d� =

Z Z


(uD) v+ u (Dv) =

Z Z


(uIDk) v + u (ID�kv):(26)

In this case, (24) follows based on the monogenicity assumptions. The gen-
eral case is then seen from this and a standard limiting argument (see, e.g.,
[30] for details in similar circumstances).

The proof of (25) is once again based on (26). This time, however,

ID�k(u
c�) = [ID�k ; �]u

c + (ID�ku
c)�

= [D; �]uc � 2(Re k) em+1u
c�:(27)
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The proof is complete. 2

We shall also need the following Cli�ord algebra version of Cauchy's
reproducing formula.

Proposition 4.2 Let 
 be a bounded Lipschitz domain in Rm and k 2 C.
Then every function u 2 H2

left(
; k) has (nontangential) boundary limits at
almost every point on @
 and

u(X) =

Z
@


Ek(X � Y )n(Y ) u(Y ) d�(Y ); X 2 
:(28)

A similar statement is valid for functions in H2
right(
; k).

Proof.

In a smoother context, the proof goes along well known lines; cf., e.g., [1]
for the case when k = 0. Note, however, that we utilize here the fact that
Ek(X � Y )ID�k;Y = �Ek(X � Y )IDk;X = 0 for X 6= Y . Then, as before,
passing to domains with Lipschitz boundaries is done via a routine limiting
argument. 2

In the second part of this section we shall discuss the exterior domain
version of Proposition 4.2. The novelty is that u should satisfy a (necessary)
decay condition at in�nity. In the case when Im k > 0, based on (18), it is
not too di�cult to see that

u(X) e�Imk jXj = o(jX j�
m�1
2 ); as jX j ! 1;(29)

is a (necessary and) su�cient condition to prove the exterior domain version
of (28). In turn, the latter implies that actually u decays exponentially at
in�nity. Parenthetically, let us also note that, e.g., u(X) = O(1) at in�nity
always entails (29).

The behavior at in�nity requires a more elaborate analysis when k 2 Rn0
in which situation (29) is no longer the appropriate decay condition. In fact,
the whole case when k 2 C n 0 has Im k � 0 can be covered by insisting that
u satis�es a decay condition of radiation type. Speci�cally, we shall ask that

�
1� iem+1X̂

�
u(X) = o(jX j�

m�1
2 ); as jX j ! 1;(30)

where we set X̂ := X
jXj , X 2 Rm n 0.

When k 2 R n 0, the opposite choice of sign in (30) will also do. Thus,
in this case, (30) may be replaced by
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�
1� iem+1X̂

�
u(X) = o(jX j�

m�1
2 ); as jX j ! 1:(31)

The source of (31) is the expression (20). As expected, for real non-zero
k, the functions E�

k satisfy (31) because

�
1� iem+1X̂

� �
�X̂ � iem+1

�
= 0 =

�
1� iem+1X̂

��
1� iem+1X̂

�
:(32)

Since 1�iem+1X̂ are, as (32) shows, zero-divisors, one cannot deduce a decay
condition of the same order for u itself based solely on (31) and algebraic ma-
nipulations. In fact, owing to the classical Rellich's lemma (cf. Appendix),
any solution u of the Helmholtz equation (�+ k2)u = 0 for non-zero real k

which satis�es u(X) = o(jX j�
m�1
2 ) in a (connected) neighborhood of in�nity

in Rm must vanish identically. Hence, generally speaking, for (31) to hold
when k 2 R n 0, certain internal cancellations must occur when multiplying
u with (1� iem+1X̂). Nonetheless, we do have the following.

Proposition 4.3 Let 
 be a bounded Lipschitz domain in Rm and let k 2
C n 0 have Im k � 0. Assume that u 2 C1(Rm n �
;Am+1) has u� 2 L2(@
)
and satis�es (30) or, if k is real, either condition in (31). Also, suppose
that IDku = 0 in Rm n �
. Then we have the integral representation formula

u(X) =
Z
@


E�
k (X � Y )n(Y ) u(Y ) d�(Y ); X 2 Rm n �
;(33)

where the choice of the sign depends on the form of the radiation condition.
In particular, the function u decays exponentially if Im k > 0 while, for

non-zero real k,

u(X) = O

 
1

jX j
m�1
2

!
; as jX j ! 1:(34)

Similar results are valid for functions annihilated by the right-handed ac-
tion of IDk (with the radiation conditions appropriately adjusted; see below).

Proof.

First we shall prove a seemingly weaker decay condition for u, namelyZ
jXj=R

juj2 d� = O(1); as R!1:(35)
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To this end, we note that

j(1� iem+1X̂)uj2 = Re
h
(1� iem+1X̂)u�uc(1� iem+1X̂)

i
0

= Re
h
(1� iem+1X̂)2u�uc

i
0

= Re
h
(2� 2iem+1X̂)u�uc

i
0

= 2juj2 � 2 Im
�
�ucX̂em+1u

�
0
:

Hence,

Z
jXj=R

j(1� iem+1X̂)uj2 d� = 2

Z
jXj=R

juj2 d�

�2 Im

 Z
jX j=R

�ucX̂em+1u d�

!
0

:(36)

We use Gauss's formula (26) to further transform the last integral above.
To this e�ect, for 0 < R0 < R < 1 with R0 su�ciently large and �xed, we
write

Z
jX j=R

�ucX̂em+1u d� =

Z Z
R0<jXj<R

[(�ucIDk)(em+1u) + �ucID�k(em+1u)]

+
Z
jXj=R0

�ucX̂em+1u d�:(37)

Next, observe that ID�k(em+1u) = �em+1IDku = 0 and that IDk = � �IDk
c
+

2i(Imk)em+1. The latter identity implies (�ucIDk)(em+1u) = �2i(Imk)�ucu
so that the solid integral in (37) becomes �2i(Imk)

RR
R0<jX j<R

�ucu. Utiliz-
ing this back in (36) and invoking the radiation condition gives

limsupjRj!1

Z
jX j=R

juj2 d� = �Im

 Z
jXj=R0

�ucX̂em+1u d�

!
0

�2 (Im k)
Z Z

jXj>R0

juj2:(38)

The last term above is zero when k 2 R and negative when Im k > 0. Thus,
in any event, (35) is proved.
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With (35) at hand, it is an easy matter to tackle (33). Speci�cally,
working on the bounded Lipschitz domain fX 2 Rm n �
; jX j < Rg and
invoking Proposition 4.2, matters are readily reduced to showing thatZ
jY j=R

jE�
k (X � Y ) Ŷ u(Y )j d� =

Z
jY j=R

jF�k (X � Y ) e�ikjX�Y j Ŷ u(Y )j d�

= o(1); as R!1;(39)

uniformly for X in compact subsets of Rm. To this end, when Im k > 0,
this follows trivially (for the \plus" choice of the sign) from (29), (35) and
Schwarz's inequality. On the other hand, when k 2 R n 0, (39) becomes,
thanks to (35) and (20)-(21), a simple exercise which we omit.

Finally, the decay of u at in�nity is easily established from (33) and the
decay of E�

k . 2

Let us remark that, as inspection of the above proof shows, (31) can be
weakened toZ

jXj=R
j(1� iem+1X̂)uj2 d� = o(1); as R!1:

In passing, let us also point out that any Cli�ord-Cauchy type integral of the
form

R
@
E

�
k (X � Y )f(Y ) d�(Y ), corresponding to an absolutely integrable

Am+1-valued function f on @
, radiates at in�nity. This follows from (20)-
(21) and elementary estimates.

In the light of the above results, it seems natural to consider the exterior
Hardy space

H2
left(R

m n �
; k) := fu : Rm n �
! Am+1; IDku = 0 in Rm n �
;

u� 2 L2(@
) and u satis�es (30)g

for any k 2 C n 0 with Im k � 0. As alluded to before, when Im k > 0,
replacing (30) by (29) or, say, u = O(1) at in�nity, yields the same space.
However, if k 2 R n 0, then there are two disjoint types of exterior Hardy
spaces. Concretely, we set

H2;�
left(R

m n �
; k) := fu : Rm n �
! Am+1; IDku = 0 in Rm n �
;

u� 2 L2(@
) and u satis�es (31)g:

13



In this setting, Proposition 4.3 becomes the natural exterior domain ana-
logue of Proposition 4.2. Of course, similar considerations apply to the space
H2;�
right(R

m n �
; k), k 2 R n 0, provided (31) is replaced by

u(X)
�
1� iem+1X̂

�
= o(jX j�

m�1
2 ); as jX j ! 1:(40)

We conclude this section by discussing the exterior domain version of
Cauchy's vanishing formula (24). Concretely, we have the following.

Proposition 4.4 Let 
 be a bounded Lipschitz domain in Rm and k 2 Rn0.
Then, for any u 2 H2;+

right(R
m n �
;�k), v 2 H2;�

left(R
m n �
; k) there holdsZ

@

u n v d� = 0:(41)

A similar conclusion is valid for any function u 2 H2;�
right(R

m n �
;�k),

v 2 H2;+
left(R

m n �
; k).

Proof.

Making use of the Proposition 4.1 in the context of the bounded Lipschitz
domain fX 2 Rm; jX j � R; X =2 �
g gives

Z
@


u(X)n(X) v(X)d� =

Z
jXj=R

u(X) X̂ v(X) d�

=
1

2

Z
jXj=R

h
u(X)

�
X̂ � iem+1

�
v(X) + u(X)

�
X̂ � iem+1

�
v(X)

i
d�:(42)

Next, from the radiation conditions (31), (40) and the decay conditions
u(X) = O(jX j�(m�1)=2), v(X) = O(jX j�(m�1)=2) at in�nity we obtain

u(X)
h�
X̂ � iem+1

�
v(X)

i
= o(jX j�(m�1)); as jX j ! 1

and h
u(X)

�
X̂ � iem+1

�i
v(X) = o(jX j�(m�1)); as jX j ! 1:

These, in turn, prove that the last integral in (42) is o(1) as R ! 1. The
desired conclusion now follows easily. 2

Remark. The de�nition of the spaces H2;�
left(R

m n �
; k) can be naturally

extended for �Im k � 0, whereas that of H2;�
right(R

m n �
; k) extends for
�Im k � 0. In particular, Proposition 4.4 continues to hold true for all
Im k � 0.
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5 Rellich type identities for Cli�ord k-monogenic

functions.

In this section we present several Rellich-type identities which, in turn, will
be used later to prove boundary L2-energy estimates. The starting point is
the following theorem.

Theorem 5.1 Let 
 be a bounded Lipschitz domain in Rm, k 2 C and
u 2 H2

left(
; k) \ H
2
right(
; k). Then, for any C1-vector �eld � with real

components, also identi�ed with a Am-valued function, we have the identi-
ties:

1
2

Z
@

juj2hn; �i d� = �Re

�Z
@


� u (nu)c� d�

�
0

�Re

�Z Z



1
2u ([D; �]u

c)� (Rek)u em+1 u
c �

�
0
:(43)

Furthermore, the surface integral in the right side of (43) can be replaced by

Re

�Z
@

(un)c�u � d�

�
0
= Re

�Z
@

(� u)c� �n �ud�

�
0
= Re

�Z
@


�u �n (u �)c� d�

�
0
:

Proof.

We write hn; �i = 1
2(�n � + ��n) and juj2 = (u�uc)0 so that

juj2 hn; �i =
1

2
(u �uc �n �)0 +

1

2
(u �uc � �n)0

=
1

2
(u �uc �n�)0 +

1

2
(�n � uc �u)0

=
1

2
(u �uc �n�)0 +

1

2
(uc �u �n�)0

= Re (u �uc�n�)0 :

At this point, using the perturbed Cauchy vanishing formula (25) we may
continue withZ
@

juj2hn; �i d� = Re

�Z
@


u �uc �n� d�

�
0
= Re

�Z
@


u (�n uc + �uc �n) � d�

�
0

�Re

�Z Z


u ([D; �]uc)� 2 (Rek)u em+1 u

c �

�
0
:
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Now, since

Re

�Z
@


u (�n uc + �uc �n) � d�

�
0

= �2Re

�Z
@


u (nu)c� � d�

�
0

= �2Re

�Z
@


� u (nu)c� d�

�
0
;

the identity (43) follows.
The proof of the claim in the second part of the theorem is based on

purely algebraic manipulations (as discussed in x 2) and is left as an exercise
to the reader. 2

The previous theorem has several important consequences. To be able to
state them, we shall write A � B modC if there exists a positive constant
M , independent of the relevant parameters, so that A � M(B + C) and
B �M(A+ C).

Corollary 5.2 Assume that 
 is a bounded Lipschitz domain in Rm, k 2 C,
and u 2 H2

left(
; k)\H
2
right(
; k). Then, for any real C1-vector �eld � which

is transversal to @
, we have

kukL2(@
) � k(nu)�kL2(@
) � k(un)�kL2(@
)

� k(u�)�kL2(@
) � k(�u)�kL2(@
) modulo kukL2(
):

In particular, if u is �l+1-valued for some 0 � l � m, then

kn ^ ukL2(@
) � kn _ ukL2(@
) � k� ^ ukL2(@
)

� k� _ ukL2(@
) � kukL2(@
) modulo kukL2(
):

An analogous statement is valid in the case when 
 is replaced by the
complement of a bounded Lipschitz domain. More speci�cally, in this case,
we take � to be compactly supported and the corresponding equivalences are
valid modulo kukL2(
\supp�).

Proof.

The �rst set of equivalences is a simple consequence of the previous theorem
and the Cauchy-Schwarz inequality since, by assumption, hn; �i � c > 0 a.e.
on @
. The fact that [D; �] is a zero-order operator is also used here.

The second set of equivalences follows from the �rst one and the identities

(nu)+ =

8><
>:

n ^ u; if l(l+1)
2 is odd;

�n _ u; if l(l+1)
2 is even;

(44)
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(nu)� =

8><
>:

n ^ u; if
l(l+1)

2 is even;

�n _ u; if l(l+1)
2 is odd:

(45)

To see this, let us show, for instance, that if l(l+1)
2 is odd then (nu)+ = n^u.

To this e�ect, recall that

(nu)+ = 1
2(nu+ nu) = 1

2(nu+ �u�n):

Now, since u 2 �l+1, n 2 �1, we have that �u = (�1)
(l+1)(l+2)

2 u and �n = �n.
Also, nu = n^u�n_u and un = (�1)(l+1)[n^u+n_u], by (10) and (11).
From this and the fact that 1

2(l+ 1)(l+ 2) + (l+ 1)+ 1 has the same parity
as 1

2 l(l+ 1) + 1 (mod2) the conclusion easily follows.
The case when 
 is replaced by the complement of a bounded Lipschitz

domain is virtually identical. Note that, in this case, only the restriction of
u to supp � plays a role and, hence, the behavior of u at in�nity is not an
issue. 2

The interested reader may also consult the Rellich type estimates from
[15].

6 A priori estimates and integral representation

formulas for solutions of Maxwell's equations.

Here we indicate how our results from x 3 can be utilized in connection with
Maxwell's equations in Lipschitz domains. Our main interest is to derive a
priori boundary estimates as well as integral representation formulae.

First, we derive an integral representation formula.

Lemma 6.1 Let 
 be a bounded Lipschitz domain in Rm and consider k 2
C. Then for any u 2 H2

left(
; k) we have

u(X) =

Z
@


Ek(X � Y )(n^ u)(Y ) d�(Y )

�
Z
@


Ek(X � Y )(n _ u)(Y ) d�(Y ); X 2 
:

A similar statement is valid for functions in H2
left(R

m n �
; k) provided k 2

C n 0 has Im k � 0 and functions in H2;�
left(R

m n �
; k) if k 2 R n 0.
Moreover, an analogous result holds for functions annihilated by the right

handed version of IDk.
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Proof.

This follows from the Cauchy-Cli�ord reproducing formulas (28), (33) and
the fact that nu = n ^ u� n _ u. 2

In order to proceed, we make the following key observation. Let E, H be
two smooth di�erential forms of degrees l and l+1, respectively, 0 � l � m,
de�ned in some open subset of Rm. To these, we associate an Am+1-valued
function u by setting

u := H � iem+1E = H + i(�1)l+1Eem+1:(46)

For instance, if m = 3 and l = 1, the above reduces to u = H + iEe4.

Proposition 6.1 With the above notation, u is (left or right) k-monogenic
if and only if E;H satisfy the Maxwell system

(Mm)

8>>><
>>>:

dE � ikH = 0;
�E = 0;
�H + ikE = 0;
dH = 0:

Moreover, u satis�es the radiation condition (30) if and only if E, H
satisfy the Silver-M�uller type radiation conditions

8><
>:

X̂ ^ E �H = o(jX j�
m�1
2 ); as jX j ! 1;

X̂ _H � E = o(jX j�
m�1
2 ); as jX j ! 1:

(47)

Proof.

A straightforward calculation shows that

IDku = i(�1)l+1(dE + �E � ikH)em+1 + (dH + �H + ikE):

The claim in the �rst part of the proposition follows from this based on
simple degree considerations.

Similarly, (1 � iem+1X̂)u = (H � X̂E) � iem+1(X̂H � E) so that the
claim in the second part of the proposition is seen from (30) and (10). 2

Remark. The radiation conditions (31) for u translate into the Silver-
M�uller type radiation conditions for E, H

8><
>:

X̂ ^ E �H = o(jX j�
m�1
2 ); as jX j ! 1;

X̂ _H � E = o(jX j�
m�1
2 ); as jX j ! 1:

(48)
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Remark. If k is nonzero then, because d2 = 0 and �2 = 0, the equations
�E = 0, dH = 0 become superuous. Nonetheless, as for k = 0 Maxwell's
equations decouple (i.e. E and H become unrelated), it is precisely this case
for which these two equations are relevant. Also, when m = 3, l = 1 (and
k 6= 0), the formulae (Mm) reduce to the more familiar system of equations

(M3)

(
r�E � ikH = 0;
r�H + ikE = 0;

while (47) becomes the classical Silver-M�uller radiation condition for vector
�elds; see, e.g., [20] and the references therein.

We are now ready to present the estimates and the integral representa-
tion formulas alluded to earlier. They have been �rst proved in [10] with a
di�erent approach (a real variable argument).

Theorem 6.2 Let 
 be a bounded Lipschitz domain in Rm and assume that
k 2 C n 0. Also, suppose that the forms E 2 C1(
;�l), H 2 C1(
;�l+1)
solve the Maxwell system (Mm) and have E�; H� 2 L2(@
). Then, for any
real C1-vector �eld � which is transversal to @
 we have

kEkL2(@
) + kHkL2(@
) � kn ^EkL2(@
) + kn ^HkL2(@
)

� kn _EkL2(@
) + kn _HkL2(@
)

� k� ^ EkL2(@
) + k� ^HkL2(@
)

� k� _ EkL2(@
) + k� _HkL2(@
)

modulo kEkL2(
) + kHkL2(
):

Furthermore, for X 2 
,

E(X) = �d

�Z
@


�k(X � Y )(n_ E)(Y ) d�(Y )

�

+�

�Z
@


�k(X � Y )(n ^E)(Y ) d�(Y )

�

�ik

Z
@


�k(X � Y )(n _H)(Y ) d�(Y );(49)

and

H(X) = �ik
Z
@


�k(X � Y )(n ^E)(Y ) d�(Y )
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+�

�Z
@


�k(X � Y )(n^H)(Y ) d�(Y )

�

�d

�Z
@


�k(X � Y )(n _H)(Y ) d�(Y )

�
:(50)

Finally, a similar set of conclusions is valid with 
 replaced by the com-
plement of a bounded Lipschitz domain. In this latter case, as far as (49)-
(50) are concerned, we assume that Im k � 0 and, in addition, that E, H
satisfy the (generalized) Silver-M�uller radiation condition (47).

Proof.

If we set u := H + i(�1)l+1Eem+1, then everything follows by straight-
forward calculations from Proposition 6.1, Corollary 5.2, and Lemma 6.1.
2

Let us now pause and explain how these estimates relate to, for instance,
the study of boundary value problems for the Maxwell system in R3, the
Laplace operator and the Helmholtz operator. First, if 
 is a Lipschitz
domain in R3 and (E;H) solve the Maxwell system (M3) in 
, then the
above theorem yields

kn�EkL2(@
) + khn;HikL2(@
) � kn�HkL2(@
) + khn;EikL2(@
)

modulo kEkL2(
) + kHkL2(
):

This has been �rst proved by real variable methods in [20] and the impor-
tance of this estimate is discussed there in detail.

Furthermore, taking this time k := 0, E := 0 and H := du, where u is a
function harmonic in the Lipschitz domain 
 � Rm, we obtain

krtanukL2(@
) �

@u@n

L2(@
)

modulo krukL2(
):

See, e.g., [30], [11] for the relevance of this estimate in connection with
boundary value problems for the Laplacian.

Finally, if the complex-valued function U satis�es (4 + k2)U = 0 in

 � Rm, then for any transversal vector � 2 Rm to @
 one has

kUkL2(@
) + krUkL2(@
) �

@U@n

L2(@
)

�

@U@�

L2(@
)

� krtanUkL2(@
) + kUkL2(@
)

modulo krUkL2(
);
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where rtan stands for the tangential gradient on @
. This is immedi-
ately seen by applying the second part of Corollary 5.2 to the two-sided
k-monogenic function u := IDkU in 
. In fact, one can easily check that
u satis�es (30) if and only if U satis�es the higher dimensional analogue of
the classical Sommerfeld radiation condition, i.e.D

rU(X); X̂
E
� ikU(X) = o(jX j�

m�1
2 ); as jX j ! 1:

We omit the straightforward details. See also [22], [29] for a fuller treatment
of the Helmholtz equation.

7 More general wave numbers.

Consider �rst the propagation of an electromagnetic wave in an isotropic,
inhomogeneous medium. In this case, the Maxwell system reads(

dE � ik1H = 0;
�H + ik2E = 0;

(51)

where k1; k2 2 C2(Rm;C) are variable parameters. As before, E, H are
smooth di�erential forms of degree l and l+ 1, respectively.

The general idea is that much of our previous analysis carries over to
this context even though the various identities and estimates are going to be
valid only modulo certain residual terms. Our aim is to prove the following.

Theorem 7.1 Let 
 � Rm be an arbitrary, bounded Lipschitz domain and
let k1; k2 2 C1(Rm) be complex-valued, non-vanishing functions. Then the
map assigning (n^E; n^H) 2 L2(@
)�L2(@
) to each pair (E;H) which
solves (51) in 
 and also has E�; H� 2 L2(@
), has a closed range and a
�nite dimensional kernel. In particular, it is semi-Fredholm between appro-
priate spaces.

Proof.

The idea is to show that the mapping in the statement of the theorem is
bounded from below modulo compact operators. To this end, assume for a
moment that the estimate

kE�kL2(@
) + kH
�kL2(@
) � Ckn ^EkL2(@
) + Ckn ^HkL2(@
)

+CkEkL2(
) + CkHkL2(
)(52)
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holds uniformly in (E;H) as in the statement of the theorem. Then, since
E and H (separately) satisfy a strongly elliptic, second order, variable co-
e�cient PDE with a formally self-adjoint principal part, it follows (cf. the
results in x 3 of [17]) that

kEkW 1=2;2(
) + kHkW 1=2;2(
) � CkE�kL2(@
) + CkH�kL2(@
):(53)

Now, the desired conclusion follows from the compactness of the embedding
W 1=2;2(
) ,! L2(
). Therefore, it remains to prove the a priori estimate
(52).

To this e�ect, �x (E;H) as before and once again consider the homoge-
neous form u := H � iem+1E. Since, this time,

dH = �dk1
k1
^H and �E = �dk2

k2
_ E in 
;(54)

it follows that

���IDkju
���+ ���uIDkj

��� � Cjuj pointwise in 
; j = 1; 2:(55)

In particular, a natural adaptation of the Cauchy reproducing formula from
x 4 yields in this case

ku�kL2(@
) � CkukL2(@
) + CkukL2(
):(56)

Next, we turn attention to the Rellich type identities of x 5. The �rst ob-
servation is that, as is well known, it is possible to choose a compactly
supported, C1-variable vector �eld � with real components in Rm and so
that hn; �i � c > 0 almost everywhere on @
. Using this, invoking (55) and
paralleling the proofs of Theorem 5.1 and Corollary 5.2, we arrive at

kuk2L2(@
) � CkukL2(@
)kn ^ ukL2(@
) + Ckuk2L2(
):(57)

Using the usual trick to the e�ect that ab � "a2 + (4")�1b2 for any " > 0,
we �nally get

kukL2(@
) � Ckn ^ ukL2(@
) + CkukL2(
):(58)

Now, the estimate (52) follows by combining (56) and (58). This completes
the proof of the theorem. 2

Our next result deals with the case when (51) is equipped with a pair of
boundary conditions involving an arbitrary (Lipschitz) transversal �eld in
place of the exterior unit normal.
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Theorem 7.2 Let 
 and k1, k2 be as before and assume that � is a Lipschitz
vector �eld in Rm which is transversal to @
. Then the operator assigning
(� ^ E; � ^ H) 2 L2(@
) � L2(@
) to each pair (E;H) which solves (51)
in 
 and also satis�es E�; H� 2 L2(@
), has a closed range and a �nite
dimensional kernel. In particular, this operator is also semi-Fredholm.

Proof.

Essentially the same pattern of reasoning as in the previous theorem applies.
One notable exception is that the role of (58) is now played by

kukL2(@
) � Ck� ^ ukL2(@
) + CkukL2(
)(59)

which, in turn, follows by paralleling the corresponding argument in Corol-
lary 5.2. 2

Finally, let us point out that analogous results are valid in the case of
anisotropic, inhomogeneous media, in which case k1, k2 in (51) are matrix-
valued functions. For example, when m = 3, the problem becomes(

curlE � i!�H = 0 in 
;
curlH + i!�E = 0 in 
;

where ! 2 C plays the role of the frequency, while � = (�ij), � = (�ij)
are complex invertible matrices corresponding to the permeability and the
dielectricity of the medium, respectively. We leave the details of this matter
to the motivated reader.

8 Appendix.

Here, for the convenience of the reader, we recall a short proof of the fol-
lowing.

Lemma 8.1 (Rellich's lemma [25]) Assume that a complex-valued func-
tion u, de�ned in the complement of some ball in Rm, satis�es (�+k2)u = 0
for some non-zero real k as well asZ

jXj=R
juj2 d� = o(1); as R!1:(60)

Then u must vanish identically.
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Proof.

Let u(X) =
PP

an;�(jX j)Yn;�(X̂) be the expansion of u in spherical har-
monics, where

an;�(r) :=
Z
Sm�1

u(r!) �Yn;�(!) d!:(61)

Since the Laplacian in Rm is related to the Laplacian on the unit sphere
Sm�1 � Rm by

�Rm =
@2

@r2
+
m� 1

r

@

@r
+

1

r2
�Sm�1 ;

it follows from (� + k2)u = 0, �Sm�1Yn;� = �n(n +m � 2)Yn;� , (61) and
integration by parts that each an;� satis�es the second order, linear ODE

@2an;�
@r2

+
m� 1

r

@an;�
@r

+ (k2 �
n(n +m� 2)

r2
)an;� = 0:(62)

As is well known (cf. [3, (20)-(23),p. 96]), for each �xed n, the solutions of
(62) are linear combinations of r1�m=2J��(kr), where � := [(m=2 � 1)2 +
n(n+m� 2)]1=2 and Js is the Bessel function. In particular, the coe�cients
an;� have the asymptotic behavior

an;�(r) = ck;m;n;� e
�ikrr

1�m
2

�
1 + O(

1

r
)

�
; as r! 1:(63)

On the other hand, Parseval's identity gives

rm�1
XX

jan;�(r)j
2 =

Z
jX j=r

ju(X)j2d�r(64)

so that, by (60), rm�1jan;�(r)j
2 = o(1) as r !1. Utilizing this back in (63)

�nally yields an;� = 0 for each n; �. Thus, u = 0 as desired. 2

References

[1] F.Brackx, R. Delanghe, and F. Sommen, Cli�ord Analysis, Pitman Advanced
Publ. Program, 1982.

[2] A. P. Calder�on, The multipole expansion of radiation �elds, J. Rat. Mech.
Anal., 3 (1954), 523{537.

[3] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press,
New York, San Francisco, London, 1997.

24



[4] D. Colton and R. Kress, Integral equation methods in scattering theory, Wiley,
New York, 1983.

[5] H. Flanders, Di�erential forms with applications to the physical sciences, A.P.
Press, 1963.

[6] H.G. Garnir, Les probl�emes aux limites de la physique math�ematique, Basel,
Birkh�auser Verlag, 1958.

[7] J. Gilbert, and M. A. Murray, Cli�ord Algebras and Dirac Operators in Har-

monic Analysis, Cambridge Studies in Advanced Mathematics, 1991.

[8] K. G�urlebeck and W. Spr�o�ig, Quaternionic Analysis and Elliptic Boundary

Value Problems, Birkh�auser Verlag, Basel, 1990.

[9] B. Jancewicz, Multivectors and Cli�ord Algebras in Electrodynamics, World
Scienti�c, 1988, Singapore/ New Jersey/ London.

[10] B. Jawerth and M. Mitrea, Higher dimensional scattering theory on C1 and

Lipschitz domains, American Journal of Mathematics, Vol. 117, No. 4 (1995),
929{963.

[11] C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Bound-

ary Value Problems, CBMS Series in Mathematics, No. 83, Amer. Math. Soc.,
1994.

[12] C. Li, A. McIntosh and S. Semmes,Convolution singular integrals on Lipschitz

surfaces, J. Amer. Math. Soc., 5 (1992), 455{481.

[13] A. McIntosh, Cli�ord algebras, Fourier theory, singular integrals, and har-

monic functions on Lipschitz domains, in the Proceedings of the Conference
on Cli�ord Algebras in Analysis, J. Ryan ed., Studies in Advanced Mathe-
matics, C.R.C. Press Inc., 1995, pp. 33{88.

[14] A. McIntosh, Review of \Cli�ord algebra and spinor-valued functions, a func-

tion theory for the Dirac operator", by R. Delanghe, F. Sommen and V.

Soucek, Bull. of A.M.S., Vol. 32, No. 3, (1995), 344{348.

[15] A. McIntosh, D. Mitrea and M. Mitrea, Rellich type identities for one-sided

monogenic functions in Lipschitz domains and applications, in \Analytical and
Numerical Methods in Quaternionic and Cli�ord Algebras", W. Spr�ossig and
K. G�urlebeck eds., the Proceedings of the Sei�en Conference, Germany, 1996,
pp. 135{143.

[16] D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on non-smooth do-

mains in R3 and applications to electromagnetic scattering, Journal of Fourier
Analysis and Applications, Vol.3, No. 2 (1997), 131-192.

[17] D. Mitrea, M. Mitrea and M. Taylor, Layer potentials, the Hodge laplacian

and global boundary problems in non-smooth Riemannian manifolds, preprint,
(1997).

25



[18] M. Mitrea, Cli�ord Wavelets, Singular Integrals, and Hardy Spaces, Lecture
Notes in Mathematics, No. 1575, Springer-Verlag, Berlin Heidelberg, 1994.

[19] M. Mitrea, Electromagnetic scattering on nonsmooth domains, Mathematical
Research Letters, Vol.1, No. 6 (1994), 639{646.

[20] M. Mitrea, The method of layer potentials in electro-magnetic scattering theory
on non-smooth domains, Duke Math. Journal, Vol. 77, No. 1 (1995), 111-133.

[21] M. Mitrea, Hypercomplex variable techniques in Harmonic Analysis, in Pro-
ceedings of the Conference on Cli�ord Algebras in Analysis, J. Ryan ed.,
Studies in Advanced Mathematics, C.R.C. Press Inc., 1995, pp. 103{128.

[22] M. Mitrea, Boundary value problems and Hardy spaces for the Helmholtz equa-
tion in Lipschitz domains, Jour. Math. Anal. Appl., Vol.202 (1996), 819{842.

[23] M. Mitrea, R. Torres, and G. Welland, Regularity and approximation results

for the Maxwell problem on C1 and Lipschitz domains, in Proceedings of the
Conference on Cli�ord Algebras in Analysis, J. Ryan ed., Studies in Advanced
Mathematics, C.R.C. Press Inc., 1995, pp. 297{308.

[24] C. M�uller, Foundations of the mathematical theory of electromagnetic waves,
Springer{Verlag, New York, 1969.

[25] F. Rellich, Uber das asymptotische Verhalten der Losungen von �u+ �u = 0
in unendlichen Gebieten, Jber. Deutsch. Math. Verein., 53 (1943), 57{65.

[26] B. Spain and M. G. Smith, Functions of Mathematical Physics, Van Nostrand
Reinhold Co., London, New York, 1970.

[27] E. M. Stein, Singular integrals and di�erentiability properties of functions,
Princeton Univ. Press, Princeton, N.J., 1970.

[28] M. Taylor, Partial Di�erential Equations, Springer-Verlag, 1996.

[29] R. Torres and G. Welland, The Helmholtz equation and transmission problems

with Lipschitz interfaces, Indiana Univ. Math. J. 42 (1993), 1457{1485.

[30] G. Verchota, Layer potentials and boundary value problems for Laplace's equa-
tion in Lipschitz domains, J. Funct. Anal., 59 (1984), 572{611.

[31] C.Von Westenholz, Di�erential Forms in Mathematical Physics, North-
Holland, Amsterdam, 1978.

||||||||||||{

Alan McIntosh:

26



Macquarie University, Sydney
NSW 2109, Australia
e-mail: alan@mpce.mq.edu.au

Marius Mitrea:
Institute of Mathematics
of the Romanian Academy,
P.O. Box 1-764
RO-70700 Bucharest, Romania

and

Department of Mathematics
University of Missouri-Columbia
202 Mathematical Sciences Building
Columbia, MO 65211
e-mail: marius@math.missouri.edu

27


