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Abstract

We introduce Hardy spaces ’H,i d(Q,/\l) of exact I-forms on domains Q in RY. We prove
atomic decompositions of ’Hi d(Q, /\l) when €2 is a special Lipschitz domain or a bounded

strongly Lipschitz domain in RY and use these atomic decompositions to characterize dual
spaces of ’Hi d(Q, /\l). We also establish a “div-curl” type theorem on €2 with an application
to coercivity.
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1. Introduction

In [LM2], we studied Hardy spaces HL(RN,A!) of exact {—forms on RY. We proved
their atomic decompositions: any element in these spaces can be decomposed into a sum
of exact atoms. In this paper, we introduce Hardy spaces ’H;, (€, AY) of exact —forms
supported in Lipschitz domains Q@ C RM. A natural question to ask is: under what
conditions on Q does it follow that H. ,(1, A!) has an exact atomic decomposition, i.e.
the atoms are exact and have supports in Q7

We answer this question by proving theorems concerning atomic decompositions of
H;, 4(©2,AY) when Q is a special Lipschitz domain or a bounded strongly Lipschitz domain
in RY (Theorems 3.1 and 4.1). In particular, we show, for 1 <1 < N, that an [—form f
on RY is in H. 4(Q, AY) if and only if it has an atomic decomposition

f = Z )‘k:ak:a
k=0

where the atoms aj, are exact [—forms and have supports in Q and Y po , [Ax| < o0. A
crucial element in the proof is the construction of reflection maps in neighborhoods of
Lipschitz boundaries.

As a consequence, applying these atomic decompositions, in Section 5 we characterize
the dual spaces of 7—[; (€, AY) as BMO-type spaces. The duality result implies the ex-
tension theorems of BMO,.(Q) to BMO(RY) for special Lipschitz domains and bounded
strongly Lipschitz domains.

In Section 6, we establish a “div-curl” type theorem on domains by using the duality
relationship obtained in Section 5. It is an extension of the “div-curl” theorem by Coifman,
Lions, Meyer and Semmes to the case of domains.

Section 7 is devoted to an application of the “div-curl” type theorem to coercivity
properties of quadratic forms, which come from the linearization of polyconvex variational
integrals studied in nonlinear elasticity by Ball.

In Appendix A we construct a bilipschitz reflection map defined in a neighborhood of
a Lipschitz boundary.

Unless otherwise specified, C denotes a constant independent of functions occurring in
the inequalities. Such C' may differ at different occurrences.

The authors wish to thank Ben Andrews, Pascal Auscher, Andreas Axelsson, Tom ter
Elst, Terry Tao and Kewei Zhang for helpful discussions, suggestions and comments.

2. Definitions and Preliminaries

Before we introduce Hardy spaces of exact forms on domains, we first review some
definitions and known results concerning Hardy spaces, BM O and tent spaces, which we
use later on.

Unless otherwise specified, domains considered in this paper are special Lipschitz do-
mains and bounded strongly Lipschitz domains. A special Lipschitz domain is the domain
above the graph of Lipschitz function defined on RN~1. A strongly Lipschitz domain is
by definition a domain in RY whose boundary is covered by a finite number of parts of
Lipschitz graphs (up to rotations) at most one of them being infinite.
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Definition 2.1. A function f € L1(Q) belongs to H1(£2) if the zero extension f, of f to
RY belongs to the Hardy space H'(RY). This is a Banach space under the norm

1l ) = [ f=ll3r vy

For relevant details pertaining to the Hardy spaces on RY and on domains Q of RV,
the reader is referred to [JSW], [M], [CKS], [CDS] (for local Hardy spaces) and [AR].

Definition 2.2. A Lebesgue measurable function a is said to be an H!(Q)-atom if there
exists a cube ) C €2 such that supp a C @) and a satisfies the moment condition:

/Qa(ac) dx =0

lallz2 o) < 1QIY2,

where |@Q| denotes the volume of Q).

and the size condition:

These atoms provide a description of H1(£2).

Theorem 2.3. A function f on Q belongs to H1(Q) if and only if it has a decomposition

f = Z )‘k:akn
k=0

where the ay’s are HL(Q)-atoms and Y oo, M| < 00. Furthermore,

[ f1132 () ~ inf (Z \)\k|) ;

k=0
where the infimum is taken over all such decompositions. The constants of the proportion-
ality are independent of f.

Theorem 2.3 is proved by a constructive method in [CKS, Theorem 3.2] on bounded
strongly Lipschitz domains for local Hardy spaces. In [C], it is derived from an extension
theorem by Jones for BMO [J, Theorem 1] and duality. Another argument can be found
in [JSW]. If Q is unbounded, see [AR, Theorem 1].

Definition 2.4. A function f is said to be in BMO,(Q2) if f is locally integrable and

1 1/2
sup (@/Q\f(x) — fQ\2 dx) < 00, (2.1)

QCH

where the supremum is taken over all cubes () in the domain €2.

Remark. The supremum in (2.1) can also be taken over all cubes with sides parallel to the
axes or over all balls in €2 [J, Theorem 1].

The duality statement is as follows [C]. See also [JSW] and [AR].
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Theorem 2.5. The dual space of H1(Q) is BMO,.(Q).

To define tent spaces we need the following square function

1/2
S(F) (@) = ( [, oo fﬁf’i) ,

where I'(z) = {(y,t) : |x — y| < t} denotes the cone with vertex at = € RY.

Definition 2.6. The tent space NP (Rﬂ\: 1)1 < p < 00, is defined as the space of functions
F on RY*! 5o that S(F) € LP(RY). The space is equipped with the norm

IE ] w1y = IS E) || Lo evy-

We now come to the atomic decomposition of N'1(RY!). Let us start with the defini-
tion of AN'L(RYT!)-atoms.

Definition 2.7. An N'Y(RY™)-atom is a function o on RY ™! supported in a tent T(B) =
{(x,t) : |z — 20| < r —t} over a ball B = B(xg,r) in RV with

dydt B
| letwnr ©F <1,
T(B)

The following atomic decomposition theorem for At (Rf +1) was proved by Coifman,
Meyer and Stein in [CMS].

Theorem 2.8. Any F € NY(RY ™) can be written as
F= Z)\kak, (2.2)
k=0

where the ay’s are Nl(RfH)—atoms and

> el < Pl ey
=0

for some constants C' independent of F'.

Remark. The atoms aj can be chosen with supp ar C supp F'. For if aj, is an atom, so is
Qk Xsupp F, Where Xsupp F 1S the characteristic function on supp F.

Now we introduce Hardy spaces of exact forms on domains €2 (see, for example, Appen-
dix B in [LM2] for information on forms). Let D’(, A¥) denote the space of distributions
on € with values in AF.
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Definition 2.9. Suppose 1 <[ < N. The Hardy space of exact l-forms supported in Q is
defined as

%;,d(Qv/\l) ={f eH'RY ,AY): f =dg for some
g € D'(RY, A1), supp g C O}

with the norm
11l @ty = IF I e ary-

Remark. When | = N, H] ;(, AY) is isomorphic to the Hardy space H1(Q). When [ =
N —1and Q= Rﬂ\r’ , ’H; (€, AY) reduces to the divergence-free Hardy space on Rﬂ\rf which
was studied in [LM1].

Definition 2.10. We say that a is an #] ,4(<, AD-atom if
(i) there exists b € L2(Q, A'=1) supported in a cube Q with 4Q C  such that a = db;
(ii) « satisfies the size condition: ||al|2(g a1y < Q|72

Remarks. (1) Here we require that supports of ] (<, AY)-atoms are away from the bound-
ary of €, which is stronger than the usual definition of H!({2)-atoms.

(2) The function b can be chosen to satisfy a size estimate: |[b]| 2,11y < C 1(Q) Q=12
where [(Q) denotes the side-length of @ and C is independent of b and Q. This follows
from the following lemma, which is a consequence of Theorem 3.3.3 in [Sc].

Lemma 2.11. Let 2 be a bounded smooth domain in RN . Suppose u = dv € L2(RN, AY)
and v € D'(RN, A1) with support in Q. Then there exists w € H}(Q,A"Y) and a
constant C' depending only on €2 such that

u = dw

and
w5 (@,ni-1) < Cllull2 @,

If Q= B, a ball in RN, we have

|1 Dw||z2(B a1y < Cllullp2(,a1)

and
lwllp2B,at-1y < C r(B)||ull 28,A1)

for a constant C' which depends only on the dimension N.

In Lemma 2.11, HJ(, Al=1) denotes the space of functions in the Sobolev space

HY(Q, A1) with zero boundary values, Dw = (86—;‘1,--- , 68&), g—;"i => g—;}idﬂ?] for

w = ) ;wrxr and r(B) is the radius of B. It is easy to see that Lemma 2.11 gives the
size estimate of the function b in Remark (2). In fact, suppose W is a bilipschitz function
which maps the cube @ to the ball B. Let a := (¥~1)*a. Applying Lemma 2.11 to «,
there exists 3 € L?(B, A'"1) satisfying

18ll2(B,at-1) < C r(B)|lal[r2(B,At- (2.3)
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Denote b := ¥U*3. Then (2.3) implies the desired estimate.

3. Atomic Decompositions of 7—[;@(9, AY) for Special Lipschitz Domains

In the present section, we prove the atomic decomposition of the space ’H;, 2(€, AY for

special Lipschitz domains by using the decomposition of HL(RV,A!) and the reflection
property. Suppose 2 = {x : xx > &(2')}, where & : RV~! — R is a Lipschitz function.
One of our main theorems is the following:

Theorem 3.1. Let1 <1 < N, and let Q2 be a special Lipschitz domain in RN . An l—form
f on RN isin ’H;’d(Q, AY) if and only if it has a decomposition

f = Z )\kaka
k=0

where the ay’s are H. 4(Q, A -atoms and Y3 | Ak| < oo.

Furthermore,
1£1l7: (@.at) ~ inf (Z |Ak|> ,
k=0

where the infimum is taken over all such decompositions. The constants of the propor-
tionality depend only on the dimension N and on the Lipschitz constant of 2, namely
1DV |oc -

Proof. We first prove the “if” part. Suppose that f can be written as a sum of ’H; 4(€, Ab-
atoms. Then f € HY(RN Al) with

£l @ ary < C Y Akl
k=0

When N = 1 we have nothing to do. When N > 2 we need to prove that the sum
Zzozo Arby is convergent in the sense of distributions on RY. For then f = dg with
g = ZZO:O b € D/(RN, /\l_l). Since

n
Z|)\k|—>0 as  m, n— 00,

k=m
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we have, for any ¢ € C3° (RN, AN=!+1) with compact support K,

n n
Akbg /\99‘ < |)\k\‘/ bk/\SO‘
L)<z ml ],

< C Y Nelllbell L2 @pnini-1) @k N KM

k=m

<O IM@QR)IQKIT2QK N KM
k=m

<O vyl min{1, 9}
k=m

§C’(1+\Q\)Z|/\k\—>0 as m, n — oo,

k=m

where the constant C' depends only on ¢ and we used the size estimate of b; in Remark
(2). The convergence of > ; Agby is proved.

Now we prove the “only if” part. It follows from the proof of Theorem 6.4 in [LM2]
that any f € H. ,(%, A C HE(RN, Al) has a decomposition

f = Z)\kak (31)
k=0

with -
DIl S Cllf @y oany = Cllfllaee @
=0

k
where the ay’s are HL(RY, Al)-atoms, i.e. there exist by € L2(RY,A!"!) supported in
cubes Qi C RV such that aj, = dby, and ||al|2(q, A1) < |Qrl™Y2. .
Define the reflection

T (x',xN) — (x',Q@(x’) —a:N> in RY,
where 2/ = (x1,---,xn_1). Since supp f C Q then supp r*f C Q¢, where r*f is the

pull-back of f [T, page 64]. Combining this with (3.1) and noting that r*(dby) = d(r*bg),
we have

fla=(f=7r"fla
= Z)\k(ak — T*(Lk)‘ﬂ
k=0
=3 d (b, — b (3.2)
k=0
For k=0,1,--- let

ar —r*ap in €
ap = —
0 in Q¢
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and
bk - T*bk in Q;
Br = .
0 in Q¢°.
Then (3.2) gives
(o ]
k=0

We now show that aj and [ satisfy the following conditions:
(1) there exists a cube @} C RN such that supp B C Q};
(2) ap=dp in RY;
(3) MNarllzz@r Ay < C|Q)|71/2, where the constant C' is independent of a and Q).
We first prove (2). It suffices to show that

/ (ak—dﬁk)/\wzo
RN

for all w € C°(RN, AN=1). In fact, from Stokes’ theorem we have

/ Ozk/\w:/(ak—r*ak)/\w
RN Q
:/ﬂﬂm—r%@Au)
Q
= (—1)l+1/(bk—r*bk)/\dw+/ nV (nA (b — b)) Aw)
Q o002

= (—1)l+1 ﬁk A dw
RN

=/ dBr N w
RN
for all w € C§° (RN, AN=!), where we used the fact that for any form b € D'(RN, AF),
nA(b—1%b)|sq = 0. (3.4)
In fact, from (9.6) of [T, page 362], (3.4) is equivalent to
(b — 1*b) = 0, (3.5)

where i : ¢ € 00 — x € RY is the inclusion. Note that r is the identity map on 9€2. Then
(3.5) follows from the following

i*(b—1r*b) =i*(b) — (rod)*(b) = 0.
We now prove (1) and (3). The proof is divided into three cases according to the

location of the support Qi of ag.
Case (a): Qr C Q. Set Q}, = Qi, then ay = aj and B; = by.
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Case (b): Qr C Q°. Then ay, = —r*ay and S = —r*b;. Let @}, be the smallest cube
containing r(Qx) and let ar, =), o; o <n @y’ (@) dviy Ao ANdayy, y = r(z). We
have - -

J

where the implicit constants depend only on N and ||DV¥||». Combining (3.6) with the
size condition of aj gives

J

ool de= [ | Y a ) g B ey dy

Nx:i woe .1
Qk 1<i1 < <i; <N (11’ ’ 7'1)

~ ||ak||2L2(Qk,/\l), (3.6)

l
k

ou(@) P do = [ irtan(e) do

A k
< Cllaelz(gu,n
< ClQk~F < OlQkITY, (3.7)

where we used the fact that I[(Qx) ~ [(Q},)- )
Case (¢): Qr NI # 0. Let @), be the smallest cube containing (Qr N Q) Ur(Q \ 2)).
Then supp aj = supp B C Q). Similar to the proof of (3.7) we have

J

an(@)? da < 2 /

oun0 |ak(x)|2 dx + 2/ |r*ak(a:)\2 dx
N

m(Qr\R2)

\
gc/|%mﬁw
k
< ClQk|™' < ClQiI

Our next task is to decompose each atom ay, as a sum of H;,d(Q, Ab)-atoms. Consider
subdomains A of €2 of the type

A={(2,zn): 2" = (21, - ,xNn_1), ¢ < < d;,
i=1,---,N—1, &(2') < zy < &(2) + s},

where s € (0,400) and d; —¢; = s, 1 < i < N — 1. Let Ay be the smallest domain
of this type such that Ay D Q) N Q. From properties of Lipschitz functions, there is an
integer n depending only on the Lipschitz constant of the domain € such that A; C nQ)
for all k. Also there exists a bilipschitz function ¥ such that ¥ maps Ay to the ball
By, = By (x, s) and has bilipschitz constants which depend only on the Lipschitz constant
of Q. Applying the Whitney decomposition to the domain Ay with respect to its boundary
0Ay [St, Chapter 6], A, can be decomposed into a family of subcubes:

A= Qi
i=0

such that 8Q% C Q and |Ax| =Y o, |Q%]. Denote ¥(Q%) := Bi, so that By = |J;=, Bi.-
Let

w .
E () =1 in Ay
i=0
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be a smooth partition of unity satisfying 7 (z) =1 if x € Q%, ni(x) = 0 if ¢ 2Q%, and
| D, ()| < C U@~
For £k =0,1,- -, define
&k = (‘P_l)*ak and Bk = (\If_l)*ﬂk

Then properties (1) — (3) of oy, and Sy yield the following properties of &y, and Br:

1) supp By C By;

2) &k = dﬂk in RN;

3) Nakllpe(Be,aty < C|By|~"/?, where C is independent, of &, and By.
Applying Lemma 2.11 to éz, one finds that there exists ¥y, € HE(Bg, A1) such that

= diy,

and ~
DYkl 2By At-1) < Cllakll 2B, At (3.8)

for constants C' independent of By and daj. Let w*;&k = g, S0 that supp ¢r C A and
ap = Uray = U (diy) = d(U* ) = dopp.

From the smooth partition of unity, we have

ag =Y dnjpr) =) _ Tiag, (3.9)
=0 1=0
where )
of = —— A0
2Q11Y2(|d(nf o)l L2203 At
and

7 = 2Q4 "2 d(mior) 2 21 A1) -

It is clear that of is an H] ,(9, A)-atom, and f is a sum of ai’s by (3.3) and (3.9).
Therefore Theorem 3.1 is proved if we can show that there exists a constant C' depending
only on the dimension N and the domain €2 such that

o0
ZT,i < C < 0. (3.10)
i=0
To prove (3.10), we write
o <22 " 12Q0 2 (Inkder |2 20: Ay + lerdnill 2 20t -1y
k k

i=0 i=0
=1+11.
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Note that 0 < 7% < 1. By the size condition of «j, we have

oo 1/2 /o 1/2
[<2'/? (Z |2Q%;|> (Z/ o/ dw)
i=0 i=0 v 2@}

< ClAk|1/2||a”k”L2(Ak,/\L)
< ClQLI"?llakll 2 a < C,

where the constant C' depends only on N and €. Since d(z,0Ax) ~ d(y,0By) for x €
Ak, y = ¥(x), we obtain

. er(z) |2
2 i A1) <
lordnill L2 2qi a1y < 0/2@- d(zx, (9Al~c)‘ &
or(T'(y) )
30/ dy
P (yaaBk) ‘
)
< C — dy,

where B = ¥(2Q%) and C depends only on . Applying Hardy’s inequality (see, for
example, [D, Chapter 1, Section 5]), we get
1/2
dy)

I<c (2 \2Q7;I) (Z/

- 1/2
/ Vr(y) |2
< ClA? (/B 5] dy)

< C‘Ak|1/2||Dl’5k||L2(B]c7/\l_1)
< C‘Ak|1/2”dk”L2(Bk,/\l) (by (3.8))
< C|Ag|V?By7Y2 < C,

yaaBk

where C' depends only on N and Q. This completes the proof of (3.10). The proof of
Theorem 3.1 is finished. [

4. Atomic Decompositions of ’H;’d(Q, AY) for Bounded Lipschitz Domains

In this section we consider Hardy spaces H;’d(Q, AY) when Q is a bounded strongly
Lipschitz domain. As one of the main results of this paper we prove the following atomic
decomposition theorem. Its proof uses atomic decompositions of tent spaces and a reflec-
tion map defined in a neighborhood of the boundary 99 of the domain @ (see Appendix
A).

Theorem 4.1. Suppose § is a bounded strongly Lipschitz domain in RY and1 <1< N.
An l—form f on RN is in H;’d(Q,/\l) if and only if f can be written as

f = Z )‘k:aka
k=0
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where the ay’s are H. 4(Q, AY-atoms and Y72 |Ak| < oo.

Furthermore,
o0
11l ,(@,at) ~ inf (Z |/\k|> :
k=0

where the infimum is taken over all such decompositions. The constants of the proportion-
ality depend only on N and Q.

To prove Theorem 4.1 we first prove a weaker result. Here and subsequently Q., = {z :
dist(z, Q) < v} for v > 0.

Proposition 4.2. Suppose Q is a bounded strongly Lipschitz domain in RN, 1 <[ < N
and ¢ > 0. Then any f € M} 4(Q,A') can be written as

0. ]
F=2 na
§=0

with
> il < Cllifllae y@.n)
Jj=0

for some constants C independent of f, where the functions a; satisfy the following con-
ditions:

(1) there exists b; € L2(RN , A'=1) supported in a cube Q; C Qg /7. such that 1(Q;) < ¢
and aj = dbj;

(2) llajllL2(q;.nny < 1Qs172.

Proof. 1t follows from the proof of Theorem 2.3 in [LM2] that any f € H;,d(Q, AY) can be
written as

o dt
0
where ¢ € Cg°(RY) with support in the unit ball and [~ ¢|¢|?3(¢t€)* dt = 1. For any
e > 0, write

t
= A+a. (4.1)

e d o0 d
f= —/0 td(t6(f * 1) * ¢1) ad —/s td(t6(f * 1) * ¢1) Tt

Define F(y,t) = to(f * p¢)(y) for 0 <t < e and F(y,t) = 0 if ¢ > . Similar to the proof
of Theorem 6.4 in [LM2] we can show that F' € N'! (Rerl,/\l_l) and

IE s v+t a1y < Cliflla @y noy-

Since supp f C Q then supp F C Q. x (0,¢]. Using Theorem 2.8, F' has a decomposition

F= i )\kak
k=1
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with -
S el < CllFllys s picy < ClFll e moy

k=1
where the a;’s are NL(RY ! Al=1)-atoms with supports in T'(By,) N (Q: x (0,¢]) for some

balls By, satisfying r(By) < /4, and

dydt 1

[ Jatwr 2 < o (1.9

T(B) | B|

Define

© dt

ar = —/ td (o (-, t) * 1) —.

0 t

We have supp ar C 2Bj, N Q. and
k=1

aZ’Jei/\

Let ay := Y, ale; € A=, where the a}l’s are N} (R} T!)-atoms. Thenay =3, ;

ey, where

V== [ el @ §
== [ (@ltn/2) < @i

where y denotes the characteristic function in the unit ball. Given v € C§°(RY) with
Jon ¥(z) dz =0, it is proved in Theorem 6 of [CMS] that

| atnreuc]

for a constant C' independent of a. Thus

< Cllallyagey )

L2(RN)

”
|y ”%2(2Bk) < C”ai”iﬂ(]@f“)

2 dydt
_c o[
o o o0 i
2 dydt
—c [ Jetwo]
R

< C|2B| ™1

by (4.2). This implies ||lak| 225, a1y < C|2Bi|~'/2, where C is independent of k. From
the definition of aj, we see that a; can be written as a = dek for some ka € LI(RN, /\l_l)

with support in 2B, N Q. satisfying
(4.4)

||5k||L1(2Bk,/\l—1) <Ce
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for a constant C independent of k. Applying Lemma 2.11 to aj, there exists by €
L2(RN, A=1) supported in 2By, such that aj = dbg. Let Qj, be the smallest cube contain-
ing 2By, then aj, = dby, for by, € L2(RY, Al~1) supported in Q) C Qgyw. With 1[(Qr) < ¢
and [|ak||z2(g,,n1) < ClQk| ™12, where C does not depend on k.

We now deal with the second term in (4.1), i.e.

a:—/ td(t6(f * pr) * @) %

From this expression for a, there exists ¢ with ¥(&) = [ t|¢|2|@(t€)|? dt, € € RV, such
that

a = —lb * f7
where we used the fact that df = 0. Next we prove a € L2(RV,A!). Note that f €
LY RN, Al). To prove a € L2(RN, Al), we only need to show that ¢ € L2(RN) ie. 1 €
L2(RN). In fact

N

O <0 [ B a=cle
for s > N/4, where C depends only on ¢ and . This gives

[p@ra= [ ioF s [ oo e

l€l<1 1€1>1

gc+c/ |71 dé = C < .
[§1>1

That is, 1) € L2(RY). Hence a € L2(RN, AL).
Let Qg be the smallest cube containing €23.. Then

lallz2(@o,nty < Wl @m) Il f |l @y Aty
= o|Qo| 7?2,

where A\g = C||f[|z1 @~ Aty > 0, the constant C depends only on Q3. and N. Letting

an = &

0 — )\O’
then [|aglz2(q,at) < [Qo| /2 Since f € HL ,(Q,A!), there exists g € D'(RV, AI7Y)
supported in Q such that f = dg. Now we define

b — g — 2211 )‘kék
O — .

Ao
Thenﬁo € ’D’(]RN,/\f_l) by (4.4). Since supp g C Q and supp by C Qo., we have
supp bg C Qa.. Thus by is compactly supported in Qs.. Applying Lemma 2.11 to ag = dbo,
there exists by € L2(RY, A'"1) supported in Q3. such that

ag = dbo
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and
160l 22 (@0 ,At-1) < Cllaollz2(qo,nt)s

where the constant C' depends only on €23. and N.
. nN .
Let n be a positive integer. Splitting (o to subcubes Qf: Qo = U?:1 Qf such that
1(QE) = l(anO) < £ (when n is sufficient large) and Qf and @} are disjoint for any i # j.
Suppose Q¢, - - - ,Qé‘/l are all cubes which intersect the domain €23., then

M .
Q3. C | Q0.
=1

Let sz\il n; = 1 in Q3. be a smooth partition of unity such that 7; = 1 in Q§, 0 outside
2Q% and |Dn;(x)| < C 1(Q})™!. Then agy has a decomposition

M M
ag = dbo = Z d(’mbo) = Z%aé, (45)
i=1 i=1
where af = d(nibo) := db}y for by € L? (RN, A'"1) supported in 2Q% N Q3.

[2Q4T 7 [[d(mibo)ll 2 (20l
(note that 2Qf C Qgywe), and v; = |2Qg|1/2lld(nib0)||L2(2Q6,Az). We next prove that

M
Y n<cC
i=1

for a constant C' depends only on 3., n and N. In fact

M M
>3 <223 QM2 (1Imsdboll 2 2y + 100 2225 n1-1))
=1 =1

< C1Qo|"?|laoll12(go,n1) + C 2" diam(Qs:) ™" [Qol"/?[[boll 12 (@o,at-1)
< C + C 2"diam(Q3.) "1,

where we used the size estimates of ag and by. Combining (4.1) with (4.3) and (4.5), we

have
[e%) M [e%)
f= Z Akag + Z)\o%'af) = Z)\jaj-

It is easy to check that a; and A; satisfy the conditions of Proposition 4.2. The proof is
finished. [

In Proposition 4.2 we have shown that any f € ’H;,d(Q, AY) can be decomposed into a
sum of ay with support in {; /5. . In order to prove Theorem 4.1, we define a reflection
map in a neighborhood of 0f) to reflect the part of the support of ar outside 2 into
its inside. Finally using the Whitney decomposition we get the atomic decomposition of
HL 4 (2, A,
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Proof of Theorem 4.1. The proof of the “if” part is rather similar to that of Theorem 3.1
and so is skipped. We now prove the “only if” part. Suppose f has the decomposition of
Proposition 4.2. Let f := g + h, where

9= wia;

JjeJ’

is the sum of those a; supported in cubes Q; satisfying 4Q; C €2, J' is a subset of {0, 1, - - - },

and
h= D uja;
jeJIl
is the sum of remaining a;, where J” = {0,1,---} \ J'. It is obvious that a; is an

H. (9, Ab)-atom when j € J" and supp a; C Ny, /5. (09) when j € J”, where Ny /5. (09) :=
{x : dist(z, 0Q) < 61/Ne}. So to prove Theorem 4.1 we need only to show that h is also
a sum of H] ,(Q, Al)-atoms.

Choose ¢ sufficiently small so that there exists a bilipschitz reflection map

which depends only on the domain €2. See Appendix A for the construction and properties
of the map. Since supp h C €2, then

hlo = (h—7r"h)|q
Z“J a; —r*a; |Q—Z,LLJ( (b; —rb))‘ﬂ. (4.7)
jEJ GE€J"

For j € J”, define
0 = a; —r*a; in
J 0 outside €2

and

5 o { bj—T*bj inQ;
10 outside €.

Then (4.7) gives
h = Z HiQ;. (48)

jeJ”

Let P; = r(Q;) when @; NQ =0; P, = (Q; N Q) Ur(Q; \ Q) when Q; N 9N # () and
P; = Q; when Q; C Q. Then supp 8; C P;. Suppose Q;- is the smallest cube containing
P;. Similar to the proof of Theorem 3.1, we can show, for j € J”, that o; and j; satisfy

(1) «; and $; are supported in Q7;

(2) a; =dB; in RV

(3) ||Oéj||L2(Q;’/\l) < C’|Q9\_1/2, where constants C' do not depend on j.

From the definition of a strongly Lipschitz domain, there are a finite number of open
sets O1,---,0p so that Q C U%Il O,,. For each m there exists a special Lipschitz
domain €2, and a rotation rot,, such that

O NQ = Oy, V10t (Q).
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Let ¢ be sufficiently small, so that

6\/_6 aQ

||C§

For j € J", supp a; C Q; C N /x.(0Q) and I(Q;) < e. Since ¢ is sufficiently small, for
any a;, there exists an open set O, such that both the support of a; and that of «; are
contained in O,,. Therefore we can write (4.8) as

h:= Z e T I e Z i, (4.9)

JEJ1 Jj€JIMm

where Zje J,, Hjc is a sum of a;’s whose support P; and the support of a; are both
entirely contained in O,,

Let hy, = >, #jaj. We next prove that h,, can be written as a sum of H; ,(2, AD-
atoms. Without loss of generality we suppose that O,, N0€2 lies on the graph of a Lipschitz
function. Repeat the arguments in the proof of Theorem 3.1, we can show that for any
J € Jm, a; has a decomposition

oo
_ i1
- Z Ti%
i=0

where the o!’s are H. (9, Ab)-atoms and Y72 7/ < C for a constant C' depending only

on the domain 2 and the dimension N. The proof of Theorem 4.1 is finished. [

5. Dual Spaces

We first introduce BMO-spaces BM O, 4(2, A¥). Then use them to characterize the
dual spaces of 7—[; 482, AY) when € is a special Lipschitz domain or a bounded strongly
Lipschitz domain by using the duality between H! (RN, A!) and BMO(RN , AN,

Definition 5.1. Suppose 0 < k < N. Let BMO, 4(2, AF) be the space of measurable
functions G for which

1/2
16 lmv10, sy =suwint (1 [ 16 gnf o) <,

where the supremum is taken over all balls B with 2B C €2 and the infimum is taken over
all functions gp € L2(B, AF) with dgg =0 in B.

Consider BM O, 4(Q, A¥)/Xo with norm

|G + XollBrmo, s2,0%)/ %0 = Gl BMO, 4(2,A%)

where X = {G € BMO, 4(Q,A*) : |Gl pmo, @.nr) = 0}. When k = 0, BM O, 4(Q2, A*) /X0
reduces to a BMO-space on domains  which is isomorphic to BMO,(2) [L, Theorem
3.1]. The following lemma is used to prove the main theorem of this section, its proof is
based on Theorems 3.1 and 4.1 and is similar to Lemma 2.11 in [LM2], and so is skipped.
Let D, 4(2, A!) denote the vector space finitely generated by ’Hi, 4(Q, AD)-atoms, which is

dense in H, ,(Q, A') by Theorems 3.1 and 4.1.
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Lemma 5.2. Let 1 <l < N. For g€ BMORY ,AN-1),
/ gAh=0 forall he D, 42 A
Q

if and only if
dg=0 1in Q.

Theorem 5.3. Let 2 be a special Lipschitz domain or a bounded strongly Lipschitz domain
in RN and1 <1< N. If G+ Xog € BMO, 4(, AN=Y /X, then the linear functional L
defined by

L(h):/QG/\h, (5.1)

initially defined on D, 4(2, AY), has a unique bounded extension to 'H;’d(Q,/\l).
Conversely, if L € H} 4(%, AY*, then there exists a unique G+Xo € BMO,. 4(2, AN=1) /X
such that (5.1) holds. The map G + Xo» L given by (5.1) is a Banach isomorphism be-
tween BMO,. 4(Q, AN=1)/ X, and H. 4(Q, AH*.

Proof. Let G € BMO,4(Q, AN7!). If |G|l pmo, y@,av-1) = 0, then for any ball B with
2B C

inf / |G — g|* dov = 0.
B

gEL?(B,AN1),dg=0

This implies that G € L2(B,AN7!) and dG = 0 in B. Hence dG = 0 in Q. So
L(h)=0 forall he D, (A

by Lemma 5.2. Thus one can define p; : BMO, 4(Q,AN=1) /Xy — D, 4(Q, \)* by
(G + Xo)(h) = / GAh,  he D@ A,
Q

To prove that p; is bounded from BM O, 4(2, AN74) /X to H. 49, AY* | it is sufficient to
show that

|| 6 A < ClGlmar0, @ nm Wl 000 (52)

for all G € BMO, 4(Q, AN=!) and h in the dense subspace D, 4(Q2, Al) C H. 4(Q, Ab.

Suppose h = Y, Apar € D, (€, AY), where the ay’s are ’H;’d(Q, AY-atoms: ay = dby
for some by, € L*(RV, A'"""') with support in a ball By, with 2By, C Q and |lak||r2(p, A1) <
|Bk|_1/2. So for all gr € L2(Bk, /\N_l) with dgk =0in Bk,

[enn <Y [ G-ana
Q k Bk:
1/2
<l ([ 1e-guP as)  faelizgo.y
% By
) 1/2
< ww(—/ |G—gk|2dw> -
; ‘Bk‘ By,
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This gives (5.2).
Define
Y := BMORY , AN /vy,
where
Yo :={g € BMORN ,AN=Y :dg=0in Q}.
It follows from the Hahn-Banach Theorem that the map
p2: L — G+Yp,

is a Banach isomorphism between H. ,(1, AD* and YV and ||L]|op ~ |G + Yo|ly, where
Le 'H;’d(Q,/\l)* defined as in (5.1).
Define
pP3 - G+Y0 — G|Q+X0

from Y to BMO, 4(2, AN71)/Xo. We now prove that ps is well-defined and bounded. Let
G € BMORN ,AN=1), g € Yy and B be a ball with 2B C Q. Then

1 1/2 1 1/2
inf | —- —gBl* d < inf [ — —g—c*d
152(\B|/B'G"’ gz ””) —ce%z(m\/B‘G gl 9”) ’

where the infimum in the left-hand side is taken over all gg € L?(B, AN~!) with dgg = 0
in B and that in the right-hand side is taken over all constant forms ¢ in AN~!. Thus

1/2
1
G iy < sup inf | — G—g—c|®dx
IGlallsyo,onvn < s inf ([ 16-g-c a)

1 1/2
< su inf — G—g—c|?®dx
S oD et (31 6 —o-e" ar)

= ||G - g||BM0(RN,/\N—l)-
This yields
1GlellBrmo, . @anv-1) < |G + Yolly-

Hence p3 is bounded. It is clear that ps o py 0o p; = I and p; o p3 o po = I. The proof of
Theorem 5.3 is completed. [

From the proof above, we see that Y is isomorphic to BMO, 4(12, AN=U) /Xy with
equivalent norms. For [ = N, the result was proved by Jones [J] for a more general class
of domains:

Corollary 5.4. IfG € BMO(RY), then G|q € BMO,(Q). Conversely, if g € BMO,.()
then there exists G € BMO(RYN) such that g = G|q and
IGllBro®~y < CllgllBmo,.),

where C' depends only on the domain €.

6. The “Div-Cur]” Type Theorem on Domains

Applying the duality properties of ’H;’d(Q, A!) discussed in the previous section we
establish a “div-curl” type theorem for special Lipschitz domains or bounded strongly
Lipschitz domains, which is an extension of the “div-curl” theorem by Coifman, Lions,
Meyer and Semmes to the case of domains.
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Theorem 6.1. Suppose €2 is a special Lipschitz domain or a bounded strongly Lipschitz
domain in RN, k, I, m >0, k+m+1+2=N andb € L2 _(Q,AF). Then

loc

sup/ﬂb/\du/\dv ~ ||b||BMOT,d(Q,/\k), (6.1)

U,V
where the supremum s taken over all w and v such that
u € H&(Q, A™), ||du||L2(Q,/\m+1) <1
v € Hy(Q, A, ldv|| 2o nt+1) < 1.

The implicit constants in (6.1) depend only on N and Q.

To prove Theorem 6.1 we need the following:
Lemma 6.2 ([LM2, Lemma 6.9]). If1 < p < oo, 1—1)—}—% =1,0<m+1 < N,
u€ LPRN,A™), v € LIRV,AY), du =0, dv =0 in RN. Then u Av € HY(RN, AmH)
and there exists a constant C' independent of u and v such that

[ Az @y amety < Cllullpo @y, am)l[oll Lo @y at)-

Proof of Theorem 6.1. Suppose that u and v satisfy (6.2). Let U and V be the zero
extensions to RY of u and v. Then U € H}(RY,A™) and V € HY(RV, Al). From Lemma
6.2, dU A dV € H} (RN, Am+1+2) and

||dU/\ dV||H1(RN,/\m+l+2) < C||du||L2(Q,/\m+1)||d’U||L2(Q,/\l+1) < C. (63)

Note that dUAdV = d(UAdV') and UAdV is supported in Q, so dUAdV € H. 4(%, ATFIHZ)
with [|[dU A dV[32 (@ am+i+2) < C for a constant C' depending only on of N and € by

(6.3). Suppose b € BMO,.4(Q, A¥). Then (5.2) yields

‘/b/\du/\dv‘:‘/b/\dU/\dV
Q Q

< [t Baro,.a@an)ldU AdV 30 (@an—)
< ClbllBro, 40,0
Conversely, the proof is similar to the case of RY. We need to show, for all balls B

with 2B C Q, that there exist u € HJ(B,A™) and v € Hg(2B, ') with ||dul| 2 mn am+1),
“d'UHL2(RN,/\l+1) < 1 such that

1 1/2
inf (—/ b— gs|? dx) gC‘/ b/\du/\dv‘, (6.4)
95 \|B| /B B

the infimum being taken over all gg € L?(B, AF) with dgg = 0 in B and C is a constant
independent of b and B. By scaling we need only to show that (6.4) holds for the unit
ball, which follows the lines of the RV case in [LM2]. Note that we used 2B C © in the
construction of u and v. We skip the details of the proof. [

Remark. The equivalence in (6.1) holds if the supremum is taken over all u € H} (2, A™)
and v € H&(Q, /\l) with I|Du||L2(Q,/\m+1), ||D’UI|L2(Q’/\L+1) <1

Let k =m =0 and N = 3 in Theorem 6.1, we get
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Corollary 6.3. Let Q) be a special Lipschitz domain or a bounded strongly Lipschitz do-
main in R® and b € L2 (Q), then

loc

16l BMmO,.(2) ~ sup/ b E-F dr, (6.5)
E,FJQ

)

where the supremum is taken over all E, F € L*(Q,R3), E = Du for some u € H}(Q),
F = curl v for some v € Hy(,R?), and ||E| 2 rs), [|FllL2@rs) < 1.

When ( is replaced by R3, Corollary 6.3 is a special case of a result by Coifman, Lions,
Meyer and Semmes in [CLMS, page 262].

Corollary 6.4. Let ) be a special Lipschitz domain or a bounded strongly Lipschitz do-

main in R? and b € L% (), then we have the following Jacobian determinant estimate

|6l Baro,. () ~ sup/ b det Du dx,
u JQ

the supremum being taken over all u = (uy,uz) € Hy(,R?) with ||du;|| 2rz2r2y <1, @ =
1,2.
When 2 = R?, Corollary 6.4 can be derived from Theorems II.1 and II1.2 in [CLMS].

The following theorem gives a decomposition of f € H! (€, Ab) into “du A dv” quan-
tities. This is an extension of Theorem III.2 by Coifman,’Lions, Meyer and Semmes in
[CLMS] to the case of domains. The proof of the theorem uses Theorems 3.1 and 4.1 and
is similar to that of Theorem 6.11 in [LM2], and so is omitted.

Theorem 6.5. Let 2 be a special Lipschitz domain or a bounded strongly Lipschitz domain
RN, 1<I<Nand0<m<1—2. Then any f € ’H;’d(ﬂ, AY) can be written as

f= Z)\k dug A dvg,
k=0

where uy, € H&(Q, /\m), Vi € H&(Q, /\l—m—2) with ||Duk||L2(Q,/\m), ||ka||L2(Q7AL—m—2) <1,
and

Y < Cllfllae @
k=0

for some constants C' independent of f.

Remark. If up and vy satisfy the conditions of Theorem 6.5, then dui A dvy € ’H;’d(Q, AY
and
ldug A dvgllsz @) <C

for a constant C' independent of uy and v by Proposition 4.8 of [HLMZ].

Corollary 6.6. Let ) be a special Lipschitz domain or a bounded strongly Lipschitz do-
main in RY | then any f € HL(Q) can be written as

F=> M Ei- Fy

k=0
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with

o0

D Akl < Clifllre e

k=0
where C is independent of f, where Ey = Duy, for some u, € H}(Q), Fj, = curl vy for
some vy € H&(Q,RS) and ||Ek||L2(Q,R3), ||Fk||L2(Q,R3) <1.

When we replace by R3, Corollary 6.6 becomes the three-dimensional case of Theorem
I11.2 in [CLMS].

7. An Application to Coercivity

In the study of homogenization of linearized elasticity, Geymonat, Miiller and Tri-
antafyllidis [GMT] considered the following system

ou;
divg A (2) 2L = f in ©
’6(5)31‘5 ! (7.1)

U\aQ - 07

where A° ’JB( x) is a periodic measurable function, 1 < i, j, a, 8 < N. A quantity A is
introduced which gives a criterion of whether an elliptic system satisfying the Legendre-
Hadamard condition can be homogenized, namely

. D,
Jon A;,B(x)ﬁﬁdx

fRN | Du|2dz

A = inf cu € C(RY,RY)

It was proved in [GMT] that if A > 0 some homogenization results can be obtained for
the system (7.1). If A < 0, the system cannot be homogenized. Zhang asked the following
question: what conditions on the coefficient A} 5 of the system imply that A > 07

Let N = 3 and suppose that Aw 5(2) ou, O, can be written in the form

dxo Oz
OJu; Ou; Ou; Ouj )
L L =B e’} - _
0z, Oxp (33) 0o 05 + bij(z)(adj Du);,;, (7.2)

i Dy D _ o
where Ay75, By € L&(R?), B;Jﬁ o, 8;‘; C|Du|? and adj Du denotes the adjoint

matrix of Du for v € H'(R3,RY) (the summation convention is understood). We are
interested in forms of this type in three dimensions, because they arrive naturally from
the linearization of polyconvex variational integrals studied in nonlinear elasticity by Ball
in [B].

By a simple calculation (see [LM2] for details), the last term in (7.2) can be written as
bl N dU2 N d’l,L3 + b2 N du1 A dU3 + b3 AN du1 N dUQ, where bz = (bila bi2, bzg), 1= 1, 2, 3. Let
a(u) denote the following polyconvex quadratic form

a(u) = |Dul? 4+ by A dug A dus + by A duy A dus + bs A dug A dusy. (7.3)

So the question when A > 0 becomes: find necessary conditions of b; such that

/ a(u) de >0 forall wue H' (R R?).
R3
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We answered this question in [LM2] (See [Z] for the two dimensional case). Now we
consider the same problem on domains 2. That is, find necessary conditions of b; such
that

/ a(u) de >0 forall ue HLHQRY). (7.4)
Q

Using Theorem 6.1 and an idea of [Z], we give an “almost” necessary and sufficient
condition on b; such that (7.4) holds. The proof of the result is similar to Proposition 5.1
in [LM2] and so is skipped.

Theorem 7.1. Let a(u) be the expression shown in (7.3).
(1) There ezists a constant Cy depending only on N and Q such that

nax, lbill Bamo,. 4,3y < Ch
implies that

1
/ a(u) dx > §||Du||L2(Q’R3) for all we Hy(Q,R?).
Q

(2) If [ a(u) dz >0 for all u € Hj(Q,R?), then there exists a constant Cy depending
only on N and Q such that

112?53 1bill BMmoO,. 4(,r2) < Ca.

Appendix A. Reflection Maps in Neighborhoods of Lipschitz Boundaries

In this appendix we construct a reflection map in a neighborhood of the boundary 02
of a bounded strongly Lipschitz domain € in RV .

By the definition of a strongly Lipschitz domain, for any p € 0, there exists a neigh-
borhood U, of p, an isometry v, : RN — R" and a Lipschitz function p : RV~ — R such
that 1, (0) = p and 1, (V, N {(a’, ¢p(2’)) : &' € RN71}) = U, N 0Q, where V, = ¢, 1 (Up).
From compactness, there are finite many U, ,--- , U, such that 9Q C |J;~, Up,. Let

Zm(l‘) =1

be a smooth partition of unity in a neighborhood of 92 such that supp n; C U,,. Let
8; := (¢p,)«(—en), the push-forward of —ey. Define



24 ZENGJIAN LOU ALAN MCINTOSH
for a.e. x € 0f). Consider the corresponding ODE:
dy
— =0(y), y(0)=z (A1)
dt
with x € 09Q. By the theory of differential equations (see, for example, [T, Chapter 1]),
(A.1) has a unique solution y = y(¢,x) on some t—interval. For fixed ¢, write y(t,z) :=
F(x).

From the construction of the vector field 0, for any p € 0€2 there exists a hypersurface
M, and a neighborhood of p, we still denote it by U, such that for all ¢ € U, N 912, 0(q)
is not tangent to M,. We can choose coordinates near p so that p is the origin and M, is
given by {xn = 0}. Thus, we can identify a point 2’ € R¥~! near the origin with 2’ € M,,.

Define a map
Fo: My x (—tp,tp) - U,

by Fy(a',t) = Fi(«'). This is a C*° and surjective derivative and so by the inverse function
theorem is a local diffeormorphism.

Let V := Fy 1(U,). Without loss of generality, suppose that Fy 1(Up N 89) lies on a
Lipschitz graph and can be expressed as

Fo (UpnoQ) ={(z',an)  any = (2), ' € M,NV}, (A.2)
where ¢ is a Lipschitz function on RV~!. Choosing a suitable [ > 0 such that
V=A@ zn) @) —l<zy <o)+, 2 e M,nV}CV.

Let U, := Fp(V) and let ¢ and [ be sufficiently small so that N.(9Q) C Ui, Up, -
Set V*:={(z',zn) €EV:xn > p(x')} and V™ := {(z',zn) €V : 2y < p(z')}. Define

R:V — VY

by R(x',xn) = (2/, 2¢(x') —x ). It is obvious that R is a bilipschitz map and satisfies (1)
RoR=I1IinV;(2) R=1on{(z',zn) €V :xn = p(2')}, where I denotes the identity
map; (3) R: V* — VF. We call a bilipschitz map with these conditions a reflection map
in V.
Now define
rp=FgoRoF, ' in U, (A.3)

It is easy to check that r, is a reflection map in U,. From (A.2), we have
U, N0Q = {FL) (@) : 2’ € M, NV},
This implies that any point x € U, can be written as
x = ]-"gﬂo(gc’)(x’), ' € M, t € (—o0,+00).
Then (A.3) yields
rp(@) = Fyo Ro 7y (F @)

=Fyo R(2,t+ ¢(z))

= Fo(a', 20(z') — t — p(a"))

= FLE ), (A.4)
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Define
r: N(0Q2) — N (09)

by r(x) = rp,(x) if x € U,,. Then it follows from (A.4) that r is well defined. Moreover, r
is a bilipschitz map satisfying 1) ror = I in N_(0Q); 2) r = I on 9Q; 3) r : NX(0Q) —
NF(09), where N (99) = N.(0Q2)NQ and N7 (9Q) = 2.\ Q. We see that r is a reflection
map in N.(09).
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