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Abstract

We introduce a divergence-free Hardy space ’Hi div (Rf ,RY) and prove its divergence-free

atomic decomposition. We also characterize its dual space and establish a “div-curl” type
theorem on Ri_ with an application to coercivity.
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1. Introduction

In [1], among other things, we studied the divergence-free Hardy space on RY and
obtained its divergence-free atomic decomposition. A natural question to ask is: can we
define divergence-free Hardy spaces on domains and do these spaces have divergence-free
atomic decompositions? In [2], we considered divergence-free Hardy spaces of vector-
valued functions supported on bounded Lipschitz domains and proved their divergence-
free atomic decompositions. In this paper we introduce a divergence-free Hardy space on
]Rf , denoted by H;,dw (Rf ,RY), as the space of divergence-free vector-valued functions
on RY whose first N — 1 components are in H.(RY ) and the last one is in H}(RY). As
the main result of this paper we prove the following divergence-free atomic decomposition
of #? ;i (RVRYN) (Theorem 4.1):

z,div
1

z,div

atoms are also divergence-free and have support in ]Rf .

Any element in H! ;. (RY,R") can be decomposed into a sum of atoms, where the

From this result it is easy to see that HJ,, (RY,R") coincides with the divergence-free

Hardy space of vector-valued functions on RV with support in @ (Corollary 4.2). A
crucial element in the proof of the theorem is the use of even and odd functions on RV .
The contents of the paper are as follows. In Sections 2, we recall definitions of Hardy
spaces on Rﬂ\_’ and their links with the spaces and even or odd functions on R . In Section
3, we provide definitions of ’H; div (R_AJ ,RY) and its atoms. Section 4 is devoted to the

divergence-free atomic decomposition of ’H; div (Rﬁ RN ). In the final section, using the

decomposition, we characterize its dual as a type of BM O space and establish a “div-curl”
type theorem on Ri with an application to coercivity.

2. Preliminaries

Hardy spaces on R} were introduced by Chang, Krantz and Stein in [3]. There are two
kinds of Hardy spaces defined on RY, namely H}!(RY) and H.(RY).

Definition 2.1. (i) A function f on RY is said to be in H; (R} ) if it is the restriction to
RY of a function F in the Hardy space H!(RY). When f € HL(RY), define

||f||H;(Rf) = inf ”F”Hl(RN)a

where the infimum is taken over all the functions F € H!(RY) such that F |Rf =f.
(ii) A function f on RY is said to be in H!(RY) if the function F defined by

F(z) = { g(x) iz EX,

belongs to H'(RV). If f € HL(RY), its norm ||f||H;(Rf) = || F |32 mvy-

Equipped with the norms ||-||H;(Rf) and “‘”Hi(Rf)’ HE(RY and HL(RY are Banach

spaces.
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Definition 2.2. For each * = (2/,zx) € RY, where 2’ = (xy,...,2x_1), define the
corresponding point
i=(2,—zny) eRY.
A function f from RV to R is called even when
f(@) = f(z),
while f is called odd when
f(@) =—f(z).

From Corollaries 1.6 and 1.8 in [3], we see that H#!(RY) and H.(RY) are exactly the
restrictions to R™of odd (respectively even) functions belong to H'(RY). So the odd

function _
f(x in RY
folry =4 T R
—f(&) inRZ

belongs to HY(RY) if f € H}(RY) with
11l @y ~ [ follr ®ny,

while the even function

fe(x) = { f(x) " Rﬁ

f(z) inRY
belongs to H*(RY) with
1l gy ~ [ fellae @)
when f € HI(RY).

3. Divergence-Free Hardy Space on R@V

We now introduce a divergence-free Hardy space on Rﬂ\rf . Let f=(f1,-s fn), div f=0
in the sense of distributions, and let fi, ..., fv—1 € HL(RY). Suppose fi,..., fnv—1 have
even extensions F7, ..., Fiy_1 respectively and Fp is the extension of fy. In order for
F = (Fy, ..., Fy) to preserve the divergence-free condition, Fy must be an odd extension.
So we see that fy should be in H}(RY ). Therefore it is natural to define the following
divergence-free Hardy space.

Definition 3.1. The divergence-free Hardy space on ]Rf is defined as
/H;,div(Rf’RN) :{f : fla ""fN—l € H;(Rf)a fN S H%(Rf)’
div f=0 in RY, / f- Do dz =0 for all p € C=(RY)}
Ry
with norm
N—1
11l @Y RY) = > 1 fillze @y + 1N 1202 ),
i=1

where D¢ denotes the gradient of the function ¢ : RV — R.
We next define atoms for H! ,. (RY,RY).

z,div
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Definition 3.2. An #H! , (RY,RY)-atom is a function a supported in a cube (or a ball)

z,div
Q with 4Q C ]Rf that satisfies
(i) fQ a(x) dx = 0;
(i) llall2@ry) <1Q
(iii) div @ = 0 in the sense of distributions.
Here |@Q| denotes the Lebesgue volume of @ and 4@ the cube with same center as @ and
four times side-length of Q.

|—1/2‘

Remark. 1t is easy to see that (iii) implies (i). Note that here we require that the supports
of atoms are away from the boundary of ]Rf , which is stronger than the usual definition

of 1! (R)-atoms.

4. Divergence-Free Atomic Decomposition

In this section we prove the divergence-free atomic decomposition for the space ’Hi, div (Rﬂ ,RY)

by using the decomposition of the divergence-free H(RY,R") and properties of even and
odd functions. Our main theorem of the paper is the following:

Theorem 4.1. A function f on Rﬂ\_] belongs to H;’dw(Rf,RN) if and only if it has a
decomposition

F=Y o, (4.1)
k=0

where the o ’s are H. 4, (RY RN ) —atoms and 372 [7k| < oo,
Furthermore

o
1 llsr ., ey ey ~ inf (3 el
k=0

where the infimum s taken over all such decompositions. The constants of the proportion-
ality depend only on the dimension N.

By Theorem 4.1 we have the following interesting result which reveals that the space

H; div (Rﬂ\: ,RY) is in fact the same as the divergence-free Hardy space of vector-valued

functions on RY which support on @

Corollary 4.2. If f € H! ,. (RY,RN), then fy € HL(RY).

z,div

The proof of Theorem 4.1 is based on the following lemmas. Proofs of Lemmas 4.3 and
4.4 are given at the end of this section.

Lemma 4.3. Let A = (ay,...,an) be an HY (RN, RN )-atom with div A = 0 in RN . Define

(a1(:c) F a1 (&), oy an—1(2) + an_1(F), an(z) — aN(as)) in RV
0 mn @

b=

Then
divb=0 in RVN.
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Lemma 4.4. Suppose b € L2(RN ,RY) is supported in a cube Q C Rﬁ and div b = 0 in
RN . Then b can be written as
i=0

where the b;’s are H. 4, (RY, RN )-atoms and

S luil < CIRIMIbl 2(g.2)

i=0
for some constants C' independent of b and Q.

The following lemma is a special case of Theorem 3.3.3 in [4, Chapter 3|, where
H}(B,RY) denotes the closure of C§°(B,RY) in the Sobolev space H'(B,RY) and Du =

(gz;) for u = (uy,...,un), N > 2.

Lemma 4.5. Let B be a ball in RN . Ifu € L?*(B,RY), divu =0 in B and n-ulpp =0,
then there exists ¢ € HY(B,RN) and a constant C independent of u and B such that

u=div ¢
and
Dol 2 (Bry) < Cllullp2sry)-
We next recall the main result from [1, Theorem 6.4].

Theorem 4.6. A function f with div f = 0 belongs to the Hardy space H'(RN ,RN) if
and only if it has a decomposition

F=Y Ay (4.1)
k=0

with
Z Akl < Ol @ gvys
k=0

where the Ay’s are HY(RY RN )-atoms and div Ay, =0 on RV .

Proof of Theorem 4.1. The easy part of the proof is the “if” part, where we assume f has
a decomposition (4.1). For then, if the sum is finite,

11152

z,div

(RY,RN) = ||f||H;(Rf,1R<N)

< Z Vil ll 20 oy mavy < Z Vel
% %

where we used the fact that ||04;€||7_@(R$,RN) < 1 when oy, is an HL(RYRY)-atom. This

gives the convergence of the sum, and so f € H! ;.. (Rf RV,
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We next prove the “only if” part. Let f € H} ,, (RY,RY). We consider even extensions

z,div
in the last coordinate for f, ..., fxv_1 and the odd extension in the last coordinate for fy.

Let _

fort=1,...,N—1 and L
fN(x) in Rf
—fn(@) inRN.

Then F = (Fy,..., Fy) € HY(RY,RY). We know that

FN(.I‘) == {

f-Dpdx=0

N
Ry

for all ¢ € C*°(RY). Combining this with Green’s formula gives

/ F-D(pda::/
RN RY

= [ [f(z) Dp(Z) dv =0

N
R+

f- Dy da:+/R (fl(aé),...,fN_l(a?),—fN(a”c)) Dy(x) dx

N

for all ¢ € C5°(RYN). That is, div F = 0 in RV. Applying Lemma 4.6 to F, one finds that
any F €eH1 (RN, RY) can be written as

F = Z A Ak (4'2)
k=0
with .
Z Akl < CF|l3r @~ mry, (4.3)

k=0
where the Ay’s are HY(RY, RN )-atoms and div A, = 0 in RN. Let Ay = (a,...,ad),
then (4.2) implies F; = Y7 Agal, ¢ = 1,..., N. Since Fi,..., Fx_y are even and Fy is
odd in the last coordinate, we may write, for : = 1,..., N — 1,

FZ(.T) 2
k=0 k=0
and
= Z)"C ay’ (x) ; ay (2) _ Z)\kalzcv
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Note that FZ-|R$ = f;. Combining this together with expressions of F; (i = 1, ..., N) above,
we obtain f;= Y, )\k&};h@ﬁ, i=1,...,N. Hence

fF=>"Ara, (4.4)
k=0

where a; = <d,1€|R$, ...,afjm).

Next we need to decompose aj into 7—[; div (BJ,V]RN )-atoms. For any k, define

1 1/~ N—1 N—1,= N N/~ -
b — { (ak_(m)+a2k(m) - ay (m);‘ak (m)’ ay (x);ak (ac)) in ]R]-IY
k -_—
0 in RN.
Since aj, ..., ay are H'(RY)-atoms, it is easy to show that there exists a cube Q C RY

such that supp by C Qr and

10k]l 2@y ) < ClQi|7'?2

for a constant C' independent of by and Q. Applying Lemma 4.3 to bg, we have
divb, =0 on RY.

It follows from Lemma 4.4 that b, can be written as
b= > wibh, (@5)
i=0

where the b}’s are H. ;. (RY, RY)-atoms and for any k

Z | < C|Qk|1/2”bk”L2(Qk,RN) <C. (4.6)

1=0

Note that a; = bk|Rf- We obtain

F=> XY uibi (4.7)
k=0 =0
by (4.4) and (4.5). Combining (4.3) with (4.6) yields

D Akl < ClIF|lp e gy
k,i=0
N—1

< (Y Willz@y) + vl @)
=1

= CHfHHiydw(Rf,RN)-
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The proof of Theorem 4.1 is finished. [
Proof of Lemma 4.3. For p € C$°(RY), define

o= 4 ) in RY;
V(@) Lm)mmy

It is easy to check that 1 € H'(RY). Note that the following Green’s formula,

/ A-Dcpdx:—/ div A- ¢ dx
RN RN

for all A € L2RY,RY) with div A € L2(RV) and ¢ € H'(RY) (ref. [5, pages 27-28]).
We have

A(z) - Dy(z) dx +/ A(z) - Dp(Z) dx

b- Dy dx :/
RN RY RN

:/ A(z)-DY(x) de =0
RN

for all ¢ € C°(RY). That is, divb=0in RY. O

Proof of Lemma 4.4. Suppose ¥ is a bilipschitz function from RY to RV which maps the
cube Q to a ball B with the same center. Let 3 = (U~1)*b be the pull-back of b. Then
B € L2(RN,R") with support B and div 3 = 0 in RV. Applying Lemma 4.5 to 3, there
exists ¢ € Hi(B,RY) and a constant C independent of 3 and B such that

B = curl ¥

and
DYl 2B ,rvy < CllBllL2(BRY)- (4.8)
Let U* := . Note that b = U*/3. We have

b= U*(curl ¢) = curl (¥*¢) = curl ¢.

Applying a Whitney decomposition to the cube @ with respect to its boundary [6, Chapter
6], Q can be decomposed into a family of subcubes {Q;} from a dyadic grid of RV :

Q=J@
=0

such that 8Q; C @ and |Q| = Y 0, |Q:i|- Denote ¥(Q;) := B;, then B has a similar

decomposition
oo
B=|JB..
i=0

Let -
Zm (x)=1
i=0
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be the smooth partition of unity such that n;(x) = 1if z € Q;, n;(z) = 0 if x ¢ 2Q; and
|Dni ()] < C 1(Qi)~,

where 1(Q) denotes the side-length of ). Applying the smooth partition of unity to ¢, we
have

[ee) [ee)
b= Zcurl (mip) == Zﬂibia
i=0 i=0
where
b — curl(n; )
C12Qi V2] [curl(ni)|l 22, v M)
and

pi = [2Qi 2 leurl(ni9) |2 (2, ).

It is straightforward to check that the function b; is an H! (IBJ,V]RN )-atom. We next

z,div

prove that there exists a constant C' independent of b and () such that

> i < ClQIM?|Ibll 2 (g n)- (4.9)
i=0

We write the left-hand side of (4.9) into two parts

e’} 0 N 87]'
S 27 Y 120 ([ cunt plaecag, O

=+ 11,

where ¢; and ,, denote respectively the I** and m'" component of ¢ and z.
Note that 0 < n; < 1. The Cauchy-Schwartz inequality gives

I< 2!/2 Z |2Qi|1/2|| curl 90||L2(2Qi,RN)
i=0
1/2

[e%e] 00 1/2
< 2l/2 20Q; b2 d
< (;wm) (;/MH x)

< C\Q\1/2||b||L2(Q,RN)

for constants C' independent of ) and b.
Let y = ¥(x) for x € Q, then d(z,0Q) ~ d(y,0B) and the implicit constants do not
depend on () and B. Note that

|Dni(2)] < C U(Q:)™" < Cd(z,0Q)™", =z €2Q;.
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We obtain

oni(x) |2 / oi(z) |2
<
/mi ‘W(‘E) 9 ‘ dv<C d(z 8Q)‘ du

501(37 2
o1 (¥ —1y/
< S0 20 7
<c [\ | e ) dy

<
C/ ‘dy,(()B 4y,

where B; = ¥ (2Q;) and C depends only on ¥. Applying Hardy’s inequality (see, for
example, [7, Chapter 1, Section 5]), we get

. 1/2 n
veef) B

1=0

1/2
SC\Q|1/2 (/\dyaB )

s0|Q|1/2Z||le||Lz(B,RN) (by

=1
< ClQIM?*1Bll2pryy (4-8))

< C\Q|1/2||b||L2(Q,RN),

1/2

where C does not depend on ) and b, in the last step we used the fact that

||5||L2(B,RN) ~ ||b||L2(Q,RN)'

This proves (4.9). The proof of Lemma 4.4 is finished. O

5. Dual Space and an Application to Coercivity

The aim of this section is to characterize the dual space of H} div (Rf ,RY) and establish

a “div-curl” type theorem on Rﬁ_ with an application to coercivity. The proofs of these
results are similar to the corresponding results in [1] and so are skipped.

Definition 5.1. Let BMO, cyri (R]-IY ,RY) to be the space of measurable functions G on
]Rf for which

. 1/2
1Gl Bar0, oy ) = SUpinf (\B| / G~ gnl” dx) =%

where the supremum is taken over all balls B with 2B C ]Rf , the infimum is taken over
all functions gg € L?(B,RY) with curl gz =0 in B.
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Consider BM Oy cyri(RY ,RY) /X with norm

G + XO”BMOMW (RY RN)/Xo = ”G”BMOT,MH (RY RN

where Xo = {G € BMO, curi(RY,RY) : ||G||BMOT,CML(R£,RN) = 0}. Let D (RY,RY)
denote the vector space finitely generated by H! (]R_lj\_’ ,RN)-atoms, which is dense in

z,div

#! . (RY,RN) by Theorem 4.1. We have the following duality theorem.

z,div

Theorem 5.2. IfG+ X, € BMOT,CUN(R]_?_[, RY)/Xo, then the linear functional L defined

by

L(h):/R G- h,

N
+

initially defined on D,(RY ,RY), has a unique bounded extension to H} 4, (RY ,RY). Con-

z,div

versely, if L € H;Aiv (RYRN)*, then there exists a unique G+Xo € BM Oy curi(RYRY ) / X0

such that (5.1) holds. The map G + Xg» L given by (5.1) is a Banach isomorphism be-
tween BM Oy ¢ (RYRY )/ X and ’H;’dw (RVRN)*.

Using Theorem 5.2 we obtain the following “div-curl” type theorem on ]Ri.

Theorem 5.3. Suppose b e L} (R3,R?). Then

loc

sup /R3 b- (Vux Vv) ~[bllpro,, i ®2 R3)» (5.2)
+

u,v

where the supremum is taken over allu and v in Hg(R3) with ||Vul| 23 gs), ||VU||L2(R1,R3)
< 1. The implicit constants in (5.2) are independent of b.

Next we give an application of the “div-curl” type theorem to coercivity. In the study
of homogenization of linearized elasticity, Geymonat, Miiller and Triantafyllidis [8] in-
troduced the following quantity A which gives a criterion of whether an elliptic system
satisfying the Legendre-Hadamard condition can be homogenized, namely

S AGTa(@) 2 g ppeda
A = inf R s f |D1f|2(212 < :UECSO(RN;RN)
RN

and proved that if A > 0 some homogenization results can be obtained for the correspond-
ing system. If A < 0, the system cannot be homogenized. Zhang asked the following

question: what conditions on the coefficient Afxﬁ of the system imply that A > 07

Let N = 3 and suppose that Ai:jﬁ (x)g;“ gTu;- can be written as

B B, Oxg B Ok O0xg

+ bij (33) (ad_] Du)i,j,

where Aifﬁ, fo/a’ € L= (R3), Bgfé%% > C|Dul?, adj Du denotes the adjoint matrix
of Du for u € HY(R3,R3) (the summation convention is understood). We are interested in
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forms of this type in three dimensions, because they arrive naturally from the linearization
of polyconvex variational integrals studied in nonlinear elasticity by Ball in [9].

By a simple calculation (see [1] for details), the last term in (5.3) can be written as a
sum of terms like b - (Vu x Vo). Let a(u) denote the following polyconvex quadratic form

a(u) = |Dul? + by - (Vug X Vus) + by - (Vuy x Vuz) + bz - (Vuy x Vuy). (5.4)

So the question when A > 0 becomes: find necessary conditions of b; such that
/ a(u) dz >0 forall ue H' (R R?).
R3

We answered this question in [1] (see [10] for the two dimensional case). It is natural to
consider the same question on ]Ri. That is, find necessary conditions of b; such that

/ a(u) dv >0 forall wue Hy(RY,R®). (5.5)
=

Applying Theorem 5.3 and an idea of Zhang in [10], we give an “almost” necessary and
sufficient condition on b; such that (5.5) holds.

Theorem 5.4. Let a(u) be the expression shown in (5.4). Then
(1) There exists a constant Cy depending only on N such that maxi<i<s ||bil| Bmo, ., (&3 &)
< C1 implies that

1
/ a(u) do > S| Dulls gy gy forall ue HY(RL,RY).
R3 2 +?

+
(2) If [ps a(u) dz >0 for allu € Hy(R3,R?), then there exists an constant Cy depend-
+
g only on N such that

1]:21,&;(3 ||bi||BMOT,curL (Ri’_,Rs) S CQ-
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