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Abstract

Applying the atomic decomposition of the divergence-free Hardy space we characterize its
dual as a variant of BMO. Using the duality result we prove a “div-curl” type theorem:
For b in L2

loc(R3,∧1), sup
R

b ∧ du ∧ dv is equivalent to the BMO-type norm of b, where

the supremum is taken over all u, v ∈ H1(R3) with ‖du‖L2 , ‖dv‖L2 ≤ 1. This theorem
can be used to get some coercivity results for polyconvex quadratic forms which come from
the linearization of polyconvex variational integrals studied in nonlinear elasticity in R3. In
addition, we introduce Hardy spaces of exact forms on RN , study their atomic decompositions
and dual spaces, and establish a “div-curl” type theorem on RN .
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1. STATEMENT OF THE MAIN THEOREM

In this paper, we consider the divergence-free Hardy space on R3, give its divergence-
free atomic decomposition and use this to characterize its dual space. Applying the duality
relationship between the Hardy space and the BMO-type space we prove our main result
of the paper, the following “div-curl” type theorem concerning an estimate of quadratic
forms on R3.

Theorem 4.1. Let b ∈ L2
loc(R3,∧1). Then

sup
u,v∈W

∫

R3
b ∧ du ∧ dv ∼ ‖b‖BMOd(R3,∧1), (1.1)

where W = {w ∈ H1(R3) : ‖dw‖L2(R3,∧1) ≤ 1} and

‖b‖BMOd(R3,∧1) := sup
B

inf
g

(
1
|B|

∫

B

|b− g|2 dx

)1/2

, (1.2)

the supremum in (1.2) being taken over all balls B in R3, the infimum being taken over all
g ∈ BMO(B,∧1) with dg = 0 in B. The implicit constants in (1.1) are absolute constants.

Theorem 4.1 holds for N -dimensions and any form b. We are especially interested in the
three-dimensional case, because, as shown in Section 5, Theorem 4.1 can be used to give
some coercivity results of polyconvex quadratic forms which come from the linearization
of polyconvex variational integrals studied in nonlinear elasticity by Ball [B]. These results
answer questions of Kewei Zhang, who previously obtained analogous 2-dimensional results
in [Z].

Extensions of these results to the case of Lipschitz domains in RN is contained in the
sequels [LM1] and [LM2] to this paper.

The paper is organized as following. Section 2 provides the definition of the divergence-
free Hardy space on R3 and the proof of its divergence-free atomic decomposition. Using
the atomic decomposition we characterize its dual in Section 3. The proof of the main
theorem is in Section 4. Section 5 is devoted to applications of the main theorem to
coercivity properties and G̊arding’s inequality of certain polyconvex quadratic forms. In
Section 6, we introduce Hardy spaces of exact forms on RN , give their atomic decom-
positions, characterize their dual spaces and establish a “div-curl” theorem on RN . In
addition, we give a decomposition theorem of these Hardy spaces into “du∧dv” quantities
which is a generalization of a similar decomposition theorem by Coifman, Lions, Meyer
and Semmes [CLMS].

In this paper, unless otherwise specified, C denotes a constant independent of functions
and domains related to the inequalities. Such C may differ at different occurrences.

2. DIVERGENCE-FREE ATOMIC DECOMPOSITION

In this section we introduce the divergence-free Hardy space and prove its divergence-
free atomic decomposition. A similar decomposition was obtained by Gilbert, Hogan and
Lakey in [GHL] by using a result of divergence-free wavelet decomposition of L2(R3,R3)
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due to Lemarié-Rieusset [Le]. Our proof is different from that in [GHL] and is valid for
forms of all degrees as is shown in Section 6.

We first recall briefly some definitions and results of Hardy spaces and tent spaces which
are used in this paper.

The Hardy space H1(R3) is the space of locally integrable functions f for which

M(f)(x) = sup
t>0

|ϕt ∗ f(x)|

belongs to L1(R3), where ϕ ∈ C∞0 (R3), ϕt(x) = 1
t3 ϕ(x

t ), t > 0,
∫
R3 ϕ(x) dx = 1, supp ϕ ⊂

B(0, 1), a ball centered at the origin with radius 1. The norm of H1(R3) is defined by

‖f‖H1(R3) = ‖M(f)‖L1(R3),

where M is the maximal function. Among many characterizations of Hardy spaces, the
atomic decomposition is an important one. An L2(R3) function a is an H1(R3)-atom if
there is a cube or a ball B = Ba in RN satisfying:

1) supp a ⊂ B;
2) ‖a‖L2(R3,R3) ≤ |B|−1/2;
3)

∫
B

a(x) dx = 0.

It is obvious that any H1(R3)-atom a is in H1(R3). The basic result about atoms is the
following atomic decomposition theorem ([CW], [La]): A function f on R3 belongs to
H1(R3) if and only if f has a decomposition

f =
∞∑

k=0

λkak,

where the ak’s are H1(R3)-atoms and
∑∞

k=0 |λk| < ∞. Furthermore,

‖f‖H1(R3) ∼ inf

( ∞∑

k=0

|λk|
)

,

where the infimum is taken over all such decompositions, the constants of the proportion-
ality are absolute constants. Here “A ∼ B” means that there are constants C1 and C2

such that C1A ≤ B ≤ C2A.
Define the tent space N p(R4

+) (1 ≤ p < ∞) to consist of all measurable functions F on
R4

+ for which S(F ) ∈ Lp(R3), where S(F ) is the square function defined by

S(F )(x) =

(∫

Γ(x)

|F (y, t)|2 dydt

t4

)1/2

,

Γ(x) = {(y, t) ∈ R4
+ : |y − x| < t}, ‖F‖Np(R4

+) = ‖S(F )‖Lp(R3).
An N p(R4

+)-atom is a function α supported in a tent T (B) = {(x, t) : |x− x0| ≤ r− t}
of a ball B = B(x0, r) in R3, for which

∫

T (B)

|α(x, t)|2 dxdt

t
≤ |B|1−2/p.
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When 1 ≤ p < ∞, Coifman, Meyer and Stein proved the following atomic decomposition
theorem [CMS]: any F ∈ N p(R4

+) can be written as

F =
∞∑

k=0

λkαk,

where the αk are N p(R4
+)-atoms and

∑∞
k=0 |λk| ≤ C‖F‖Np(R4

+).
In the proof of Theorem 2.3, we use the following two facts: one is that the operator

defined by

g 7→ Sψ(g) :=

(∫

Γ(x)

|g ∗ ψt(y)|2 dydt

t4

)1/2

is bounded from H1(R3) to L1(R3) for ψ ∈ S(R3) (the space of test functions) with∫
ψ dx = 0, and

‖Sψ(g)‖L1(R3) ≤ C‖g‖H1(R3) (2.1)

(see Theorems 3 and 4 in Chapter III of [St2]). The other is that the operator

πψ(a) =
∫ ∞

0

a(·, t) ∗ ψt
dt

t

is bounded from N 2(R4
+) to L2(R3) and

‖πψ(a)‖L2(R3) ≤ C‖a‖N 2(R4
+) (2.2)

([CMS, Theorem 6]).
Now we define the divergence-free Hardy space. Let H1(R3,R3) denote the space of

vector-valued functions with each component in H1(R3).

Definition 2.1. The divergence-free Hardy space on R3 is defined as

H1
div(R3,R3) = {f ∈ H1(R3,R3) : div f = 0 in R3}

with norm
‖f‖H1

div(R3,R3) = ‖f‖H1(R3,R3),

where div f is defined in the sense of distributions.

Definition 2.2. A function a ∈ L2(R3,R3) is said to be an H1
div(R3,R3)-atom if there is

a cube or ball B = Ba in R3 satisfying
(i) supp a ⊂ B;
(ii) ‖a‖L2(R3,R3) ≤ |B|−1/2;
(iii)

∫
B

a(x) dx = 0;
(iv) div a = 0 in R3.

The properties of tent spaces can be used to clarify various points in the theory of Hardy
spaces, for example, atomic decompositions. Combining this with an idea of Auscher we
prove a divergence-free atomic decomposition of the divergence-free Hardy space.

For simplicity, we prove the result by using the language of forms. Let us interpret
vector fields as two-forms. Then H1(R3,R3) and H1

div(R3,R3) become H1(R3,∧2) and
H1

d(R3,∧2) respectively. Similarly we can define tent spaces and their atoms for forms. See
Appendix B for definitions of exterior operator d and its formal adjoint δ and information
on forms.
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Theorem 2.3. A function f on R3 is in H1
d(R3,∧2) if and only if it has a decomposition

f =
∞∑

k=0

λkak,

where the ak’s are H1
d(R3,∧2)-atoms and

∑∞
k=0 |λk| < ∞. Furthermore,

‖f‖H1
d(R3,∧2) ∼ inf

( ∞∑

k=0

|λk|
)

,

where the infimum is taken over all such decompositions. The constants of the proportion-
ality are absolute constants.

Proof. The easy part is the “if” part, that is, assuming f has such a decomposition in
D′(R3,∧2) (the space of distributions). For then, if the sum is finite,

‖f‖H1
d(R3,∧2) ≤

∑

k

|λk|‖ak‖H1(R3,∧2) ≤ C
∑

k

|λk|, (2.3)

where we used the fact that ‖a‖H1(R3,∧2) ≤ C when a is an H1(R3,∧2)-atom.
We now prove the “only if” part. Suppose f =

∑
1≤i<j≤3 fij ei ∧ ej ∈ H1

d(R3,∧2).
Choose a function ϕ ∈ C∞0 (R3) with support in the unit ball, which satisfies

∫ ∞

0

t|ξ|2ϕ̂(tξ)2 dt = 1. (2.4)

Define
F (x, t) = tδ

(
f ∗ ϕt(x)

)
, x ∈ R3, t > 0

(see Appendix B for the definition of δ). Then F (x, t) can be written as

F (x, t) =
∑

1≤i<j≤3

3∑

l=1

t
∂

∂xl

(
fij ∗ ϕt

)
(x) µ∗l (e

i ∧ ej)

=
∑

1≤i<j≤3

3∑

l=1

fij ∗ (∂lϕ)t(x)(δlie
j − δlje

i). (2.5)

Since fij ∗ (∂lϕ)t ∈ N 1(R4
+) by (2.1), then F ∈ N 1(R4

+,∧1) with

‖F‖N 1(R4
+,∧1) ≤ C‖f‖H1(R3,∧2).

By the atomic decomposition theorem for tent spaces, F has a decomposition

F =
∞∑

k=0

λkαk (2.6)
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with ∞∑

k=0

|λk| ≤ C‖F‖N 1(R4
+,∧1),

where the αk’s are N 1(R4
+,∧1)-atoms, i.e. there exist balls Bk such that supp αk ⊂ T (Bk)

and ∫

T (Bk)

|αk(y, t)|2 dydt

t
≤ 1
|Bk| . (2.7)

Define
πF = −

∫ ∞

0

td
(
F (·, t) ∗ ϕt

) dt

t
.

Then (2.6) gives πF =
∑∞

k=0 λkak, where ak = παk. Let αk =
∑3

i=1 αi
k ei, ai,l

k =
−π∂lϕ(αi

k), where the αi
k’s are N 1(R4

+)-atoms, then

ak =
3∑

i,l=1

ai,l
k µl(ei).

It is easy to check that the function ak satisfies the following conditions: 1) supp ak ⊂ 2Bk,
since ∂lϕ is supported in the unit ball and supp αk ⊂ T (Bk); 2)

∫
ak dx = 0, since

∂lϕ ∈ S(R3) and
∫

∂lϕ dx = 0; 3) dak = 0 in R3. We now prove that ak also satisfies
the size condition: 4)

∫
2Bk

|ak|2 dx ≤ C|2Bk|−1, where C is independent of ak and Bk.
Since αi

k are N 1(R4
+)-atoms, then αi

k ∈ N 2(R4
+). The boundedness of πψ in (2.2) and

(2.7) imply that ai,l
k ∈ L2(R3) and

‖ai,l
k ‖2L2(2Bk) ≤ C‖αi

k‖2N 2(R4
+)

= C

∫

R3

∫

R4
+

∣∣∣αi
k(y, t)

∣∣∣
2

χ(x− y/t)
dydt

t4
dx

≤ C

∫

T (Bk)

∣∣∣αi
k(y, t)

∣∣∣
2 dydt

t

≤ C|2Bk|−1,

where χ denotes the characteristic function in the unit ball. We proved that ak are
H1

d(R3,∧2)-atoms. Moreover we next show that

f =
∞∑

k=0

λkak

is an atomic decomposition of f , where the λk’s are the same as those in (2.6). To see this
we only need to prove that

f = πF.

Applying the Fourier transform to ∆f = (dδ + δd)f and the following two facts

d̂f(ξ) = iξ ∧ f̂(ξ), δ̂f(ξ) = −iξ ∨ f̂(ξ),
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we obtain

∆̂f(ξ) = iξ ∧ δ̂f(ξ)

= −iξ ∧ (
iξ ∨ f̂(ξ)

)

= ξ ∧ (
ξ ∨ f̂(ξ)

)
,

where we used the fact that df = 0. In addition ∆̂f(ξ) = −|ξ|2f̂(ξ), so

ξ ∧ (
ξ ∨ f̂(ξ)

)
= −|ξ|2f̂(ξ). (2.8)

The assumption (2.4) on ϕ and (2.8) give

π̂F (ξ) = −
∫ ∞

0

itξ ∧
(
̂tδ(f ∗ ϕt)(ξ)ϕ̂(tξ)

)
dt

=
∫ ∞

0

itξ ∧
(
itξ ∨ f̂(ξ)ϕ̂(tξ)2

) dt

t

= −
∫ ∞

0

t2ξ ∧
(
ξ ∨ f̂(ξ)

)
ϕ̂(tξ)2

dt

t

=
∫ ∞

0

t|ξ|2ϕ̂(tξ)2f̂(ξ) dt = f̂(ξ).

The desired result follows. The proof of Theorem 2.3 is completed ¤

3. THE DUAL SPACE

We now characterize the dual space of H1
d(R3,∧2). Recall that under the duality

(f, g) =
∫

R3
f(x)g(x) dx,

when suitably defined, the dual of H1(R3) is the real-valued BMO(R3) space of functions
f of bounded mean oscillation, i.e.

‖f‖BMO(R3) = sup
B

inf
c∈R

(
1
|B|

∫

B

|f − c|2 dx

)1/2

< ∞,

the supremum being taken over all balls B in R3. So we haveH1(R3,∧2)∗ = BMO(R3,∧1)
under the pairing

(f, g) =
∫

R3
f ∧ g,

when suitably defined [St2].



8 ZENGJIAN LOU ALAN McINTOSH

Definition 3.1. Let BMOd(R3,∧1) be the space of measurable functions G for which

‖G‖BMOd(R3,∧1) = sup
B

inf
gB

(
1
|B|

∫

B

|G− gB |2 dx

)1/2

< ∞,

where the supremum is taken over all balls B in R3, the infimum is taken over all functions
gB ∈ L2(B,∧1) with dgB = 0 in B.

Consider the Banach space BMOd(R3,∧1)/X0 with the norm

‖G + X0‖BMOd(R3,∧1)/X0 = ‖G‖BMOd(R3,∧1),

where X0 = {G ∈ BMOd(R3,∧1) : ‖G‖BMOd(R3,∧1) = 0}. We show that it is the dual of
H1

d(R3,∧2). To prove this we first prove a lemma. Let D(R3,∧2) denote the vector space
finitely generated by H1

d(R3,∧2)-atoms. By Theorem 2.3, one has that D(R3,∧2) is dense
in H1

d(R3,∧2).

Lemma 3.2. For g ∈ BMO(R3,∧1),

∫

R3
g ∧ h = 0 for all h ∈ D(R3,∧2)

if and only if
dg = 0 in R3.

Proof. Note that dϕ is an H1
d(R3,∧2)-atom if ϕ ∈ C∞0 (R3,∧1). Then

∫
R3 g ∧ dϕ = 0 if∫

R3 g ∧ h = 0 for all h ∈ D(R3,∧2). Hence dg = 0 in R3.
Suppose h ∈ D(R3,∧2) and

h =
∑

k

λkak,

where the ak’s are H1
d(R3,∧2)-atoms, i.e. ak ∈ L2(R3,∧2) supported in balls Bk and

dak = 0 in Bk. By Proposition A.1 in Appendix A, there exist functions ϕk ∈ H1
0 (Bk,∧1)

such that ak = dϕk, where H1
0 (Bk,∧1) denotes the Sobolev space H1(Bk,∧1) with zero

boundary values. From Green’s formula, for g ∈ BMO(R3,∧1) with dg = 0 in R3, we
have

∫

R3
g ∧ h =

∑

k

λk

∫

Bk

g ∧ ak

=
∑

k

λk

∫

Bk

g ∧ dϕk

=
∑

k

λk

∫

Bk

dg ∧ ϕk = 0

for all h ∈ D(R3,∧2). ¤

Now we are ready to prove our main result of this section.
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Theorem 3.3. If G + X0 ∈ BMOd(R3,∧1)/X0, then the linear functional L defined by

L(h) =
∫

R3
G ∧ h, (3.1)

initially defined on D(R3,∧2), has a unique bounded extension to H1
d(R3,∧2). Conversely,

if L is in H1
d(R3,∧2)∗, then there exists a unique G + X0 ∈ BMOd(R3,∧1)/X0 such that

(3.1) holds. The map G + X0 7→ L given by (3.1) is a Banach isomorphism between
BMOd(R3,∧1)/X0 and H1

d(R3,∧2)∗.

Proof. Let G ∈ BMOd(R3,∧1). Define

L(h) =
∫

R3
G ∧ h, h ∈ D(R3,∧2).

If ‖G‖BMOd(R3,∧1) = 0 then for any ball B,

inf
g∈L2(B,∧1),dg=0

∫

B

|G− g|2 dx = 0. (3.2)

Since {g ∈ L2(B,∧1) : dg = 0 in B} is a closed subspace of L2(B,∧1) (see, for example,
[ISS, Corollary 5.2]), (3.2) implies that G ∈ L2(B,∧1) with dG = 0 in B for all B ⊂ R3.
Hence dG = 0 in R3. By Lemma 3.2 we have

L(h) =
∫

R3
G ∧ h = 0 for all h ∈ D(R3,∧2).

Therefore we can define ρ1 : BMOd(R3,∧1)/X0 → D(R3,∧2)∗ by

ρ1(G + X0)(h) =
∫

R3
G ∧ h, h ∈ D(R3,∧2).

The proof that, for every G ∈ BMOd(R3,∧1), the linear functional (3.1) is defined and
bounded on H1

d(R3,∧2) depends on the inequality

∣∣∣
∫

R3
G ∧ h

∣∣∣ ≤ C‖G‖BMOd(R3,∧1)‖h‖H1
d(R3,∧2) (3.3)

for G ∈ BMOd(R3,∧1) and h in the dense subspace D(R3,∧2) ⊂ H1
d(R3,∧2).

Similar to the proof of Lemma 3.2, write h ∈ D(R3,∧2) as a finite sum of atoms ak

supported in balls Bk. For all gk ∈ L2(Bk,∧1) with dgk = 0 in Bk, we have

∣∣∣
∫

R3
G ∧ h

∣∣∣ ≤
∑

k

|λk|
∣∣∣
∫

Bk

(G− gk) ∧ ak

∣∣∣

≤
∑

k

|λk|
(∫

Bk

|G− gk|2 dx

)1/2

‖ak‖L2(Bk,∧2)

≤
∑

k

|λk|
(

1
|Bk|

∫

Bk

|G− gk|2 dx

)1/2

,
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where we used the size condition of ak. This gives

∣∣∣
∫

R3
G ∧ h

∣∣∣ ≤
∑

k

|λk| inf
gk

(
1
|Bk|

∫

Bk

|G− gk|2 dx

)1/2

≤ C‖h‖H1
d(R3,∧2)‖G‖BMOd(R3,∧1).

Then (3.3) is proved. Therefore each G ∈ BMOd(R3,∧1) gives a bounded linear functional
on the dense subspace D(R3,∧2), and thus on H1

d(R3,∧2).
Let

Y0 := {g ∈ BMO(R3,∧1) : dg = 0 in R3}.
Note that H1

d(R3,∧2) is a closed subspace of H1(R3,∧2). Applying the Hahn-Banach
Theorem and Lemma 3.2, one finds that Y0 is a closed subspace of BMO(R3,∧1) and the
map

ρ2 : L 7→ G + Y0

is a Banach isomorphism between H1
d(R3,∧2)∗ and Y := BMO(R3,∧1)/Y0, and

‖L‖op ∼ ‖G + Y0‖Y ,

where L ∈ H1
d(R3,∧2)∗ is defined as in (3.1), ‖L‖op is the operator norm of L.

Define
ρ3 : G + Y0 7→ G + X0

from Y to BMOd(R3,∧1)/X0. We next show that ρ3 is well-defined and bounded. For
G ∈ BMO(R3,∧1), g ∈ Y0 and a ball B ⊂ R3, we have

inf
gB

(
1
|B|

∫

B

|G− gB |2 dx

)1/2

≤ inf
c∈∧1

(
1
|B|

∫

B

|G− g − c|2 dx

)1/2

,

where the infimum in the left-hand side is taken over all gB ∈ L2(B,∧1) with dgB = 0 in
B and that in the right-hand side is taken over all constant forms c ∈ ∧1. Hence

‖G‖BMOd(R3,∧1) ≤ inf
g∈Y0

‖G− g‖BMO(R3,∧1) = ‖G + Y0‖Y .

It is straightforward to check that

ρ3 ◦ ρ2 ◦ ρ1 = I, ρ1 ◦ ρ3 ◦ ρ2 = I,

where I denotes the identity map. Hence the theorem is proved. ¤

4. PROOF OF THE MAIN THEOREM.

Using the duality result in the previous section we next prove our main theorem of this
paper: the following “div-curl” type theorem on R3. The N−dimensional case is studied
in Section 6.
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Theorem 4.1. Let b ∈ L2
loc(R3,∧1). Then

sup
u,v∈W

∫

R3
b ∧ du ∧ dv ∼ ‖b‖BMOd(R3,∧1), (4.1)

where W = {w ∈ H1(R3) : ‖dw‖L2(R3,∧1) ≤ 1}. The implicit constants in (4.1) are
absolute constants.

Proof. Suppose b ∈ BMOd(R3,∧1). From Theorem II.1 in [CLMS] (see also Lemma 6.9 in
Section 6), du∧ dv ∈ H1(R3,∧2) for u, v ∈ H1(R3) and there exists an absolute constant
C such that

‖du ∧ dv‖H1(R3,∧2) ≤ C‖du‖L2(R3,∧1)‖dv‖L2(R3,∧1). (4.2)

Further, du∧ dv ∈ H1
d(R3,∧2). From (3.3), (4.2) and the assumption on u and v, we have

∣∣∣
∫

R3
b ∧ du ∧ dv

∣∣∣ ≤ ‖b‖BMOd(R3,∧1)‖du ∧ dv‖H1
d(R3,∧2)

≤ C‖b‖BMOd(R3,∧1).

On the other hand, we need to prove that there exists an absolute constant C such that
for all balls B ⊂ R3

inf
gB

(
1
|B|

∫

B

|b− gB |2 dx

)1/2

≤ C sup
u,v∈W

∣∣∣
∫

R3
b ∧ du ∧ dv

∣∣∣, (4.3)

where the infimum is taken over all gB ∈ L2(B,∧1) with dgB = 0 in B. Since the left-hand
side of (4.3) is invariant by scaling, to prove (4.3) we need only to show that for the unit
ball B0, there exist u0 ∈ H1

0 (B0), v0 ∈ H1
0 (2B0) with ‖du0‖L2(R3,∧1), ‖dv0‖L2(R3,∧1) ≤ 1

such that

inf
g0

(∫

B0

|b− g0|2 dx

)1/2

≤ C
∣∣∣
∫

B0

b ∧ du0 ∧ dv0

∣∣∣, (4.4)

where the infimum is taken over all g0 ∈ L2(B0,∧1) with dg0 = 0 in B0.
We now prove (4.4). Let

H = {h ∈ L2(B0,∧1) : δh = 0 in B0, n ∨ h|∂B0 = 0}.

Since H is a closed subspace of L2(B0,∧1), we have the decomposition:

L2(B0,∧1) = H ⊕H⊥, (4.5)

where H⊥ denotes the orthogonal complement of H in L2(B0,∧1) and

H⊥ = {dq : q ∈ H1(B0)}

(ref. [GR, Theorem 2.7]). Let b ∈ L2(B0,∧1), (4.5) gives that b = h + dq, where h ∈ H,
q ∈ H1(B0). Then we have

∫

B0

b ∧ du0 ∧ dv0 =
∫

B0

h ∧ du0 ∧ dv0
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and

inf
g0

(∫

B0

|b− g0|2 dx

)1/2

≤ ‖h‖L2(B0,∧1).

Therefore to prove (4.4) it is sufficient to prove that there exists an absolute constant C
such that

‖h‖L2(B0,∧1) ≤ C
∣∣∣
∫

B0

h ∧ du0 ∧ dv0

∣∣∣ (4.6)

for all h ∈ H.
Applying Proposition A.1 in Appendix A, for h ∈ H, there exists ϕ ∈ H1

0 (B0,∧1) and
an absolute constant C0 such that

∗h = dϕ

and
‖Dϕ‖L2(B0,∧1) ≤ C0‖h‖L2(B0,∧1) (4.7)

(∗ is the Hodge star operator). Thus we have

‖h‖2L2(B0,∧1) =
∫

B0

h ∧ dϕ

=
∫

B0

h ∧ d(ϕ1dx1 + ϕ2dx2 + ϕ3dx3)

≤ 3 max
1≤i≤3

∣∣∣
∫

B0

h ∧ dϕi ∧ dxi

∣∣∣

:= 3
∣∣∣
∫

B0

h ∧ dϕi0 ∧ dxi0

∣∣∣ (4.8)

for some choice of i0 (1 ≤ i0 ≤ 3). Define

u0 =
ϕi0

C0‖h‖L2(B0,∧1)
.

It is obvious that u0 ∈ H1
0 (B0) and ‖du0‖L2(R3,∧1) ≤ 1 by (4.7). We now construct v0.

Let ψ0 ∈ C∞0 (R3) such that

ψ0 =
{

1 in B0;
0 outside 2B0.

Define
v0 = γxi0ψ0, 1 ≤ i0 ≤ 3,

where γ > 0 is a constant so that ‖dv0‖L2(R3,∧1) ≤ 1. It is easy to check that v0 ∈ C∞0 (2B0)
and dv0 = γdxi0 in B0, So (4.8) and the construction of u0 and v0 give

‖h‖L2(B0,∧1) ≤ 3C0γ
−1

∣∣∣
∫

B0

h ∧ dϕi0

C0‖h‖L2(B0,∧1)
∧ γdxi0

∣∣∣

= 3C0γ
−1

∣∣∣
∫

B0

h ∧ du0 ∧ dv0

∣∣∣.

This proves (4.6). The proof of Theorem 4.1 is completed. ¤
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Remarks. (1) It is easy to check that the following estimate of the quadratic form det Du
can be derived from Theorems II.1 and III.2 in [CLMS]

‖b‖BMO(R2) ∼ sup
u

∫

R2
b det Du dx, (4.9)

where the supremum is taken over all u ∈ H1(R2,∧1) with ‖dui‖L2(R2,∧1) ≤ 1, i = 1, 2.
Theorem 4.1 is an extension of (4.9) to three-dimensions.

(2) We are especially interested in the three-dimensional case, because, as shown in the
following section, Theorem 4.1 can be used to give coercivity properties and G̊arding’s
inequality of some polyconvex quadratic forms.

5. APPLICATIONS

In the study of homogenization of linearized elasticity, Geymonat, Müller and Tri-
antafyllidis [GMT] considered the following system

divαAi,j
α,β(

x

ε
)∂βuj = f in Ω

u|∂Ω = 0,



 (5.1)

where Ai,j
α,β(x) is a periodic measurable function, 1 ≤ i, j, α, β ≤ N . A quantity Λ is

introduced which gives a criterion of whether an elliptic system satisfying the Legendre-
Hadamard condition can be homogenized, namely

Λ = inf

{∫
RN Ai,j

α,β(x)∂αui∂βujdx∫
RN |Du|2dx

: u ∈ C∞0 (RN ,∧1)

}
.

It was proved in [GMT] that if Λ > 0 some homogenization results can be obtained for
the system (5.1). If Λ < 0, the system cannot be homogenized. Zhang asked the following
question: what conditions on the coefficient Ai,j

α,β of the system imply that Λ ≥ 0?
For N = 2, this question was answered by Zhang in [Z]. Motivated by [Z] we answer

the question for N = 3. Suppose that Ai,j
α,β(x)∂αui∂βuj can be written in the form

Ai,j
α,β(x)∂αui∂βuj = Bi,j

α,β(x)∂αui∂βuj + bij(x)(adj Du)i,j , (5.2)

where Ai,j
α,β , Bi,j

α,β ∈ L∞(R3), Bi,j
α,β∂αui∂βuj ≥ C|Du|2, adj Du denotes the adjoint matrix

of Du for u ∈ H1(R3,∧1) (the summation convention is understood). We are interested in
forms of this type in three dimensions, because they arrive naturally from the linearization
of polyconvex variational integrals studied in nonlinear elasticity by Ball in [B].

When i = 1, the last term in (5.2) becomes
3∑

j=1

b1j(x)(adj Du)1,j

= b11(x)(adj Du)1,1 + b12(x)(adj Du)1,2 + b13(x)(adj Du)1,3

= det




b11 b12 b13

∂1u2 ∂2u2 ∂3u2

∂1u3 ∂2u3 ∂3u3




:= b1 ∧ du2 ∧ du3.
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For i = 2, 3, we have similarly
3∑

j=1

b2j(x)(adj Du)2,j = b2 ∧ du1 ∧ du3

and
3∑

j=1

b3j(x)(adj Du)3,j = b3 ∧ du1 ∧ du2,

where bi = (bi1, bi2, bi3). Let a(u) denote the following polyconvex quadratic form

a(u) = |Du|2 + b1 ∧ du2 ∧ du3 + b2 ∧ du1 ∧ du3 + b3 ∧ du1 ∧ du2, (5.3)

where b1, b2 and b3 are one-forms. So the question when Λ ≥ 0 becomes: find necessary
conditions of bi such that

∫
R3 a(u) dx ≥ 0 for all u ∈ H1(R3,∧1). In fact the conditions are

that ‖bi‖BMOd(R3,∧1) cannot be too large. We prove this by using Theorem 4.1. Another
application of Theorem 4.1 is to prove the weak coercivity property - G̊arding’s inequality.

5.1 Coercivity

For coercivity we give an “almost” necessary and sufficient condition on bi such that∫
R3 a(u) dx ≥ 0 for all u ∈ H1(R3,∧1).

Proposition 5.1. Let a(u) be the expression shown in (5.3).
(1) There exists an absolute constant C1 such that max1≤i≤3 ‖bi‖BMOd(R3,∧1) ≤ C1

implies that ∫

R3
a(u) dx ≥ 1

2
‖Du‖2L2(R3,∧1)

for all u ∈ H1(R3,∧1).
(2) If

∫
R3 a(u) dx ≥ 0 for all u ∈ H1(R3,∧1), then there exists an absolute constant C2

such that
max
1≤i≤3

‖bi‖BMOd(R3,∧1) ≤ C2. (5.4)

Proof. (1) Let bi ∈ BMOd(R3,∧1) and u ∈ H1(R3,∧1). From (3.3) and (4.2), we have
∫

R3
a(u) dx

≥ ‖Du‖2L2(R3,∧1) −
(
‖b1‖BMOd(R3,∧1)‖du2 ∧ du3‖H1

d(R3,∧2)

+ ‖b2‖BMOd(R3,∧1)‖du1 ∧ du3‖H1
d(R3,∧2)

+ ‖b3‖BMOd(R3,∧1)‖du1 ∧ du2‖H1
d(R3,∧2)

)

≥ ‖Du‖2L2(R3,∧1) − C max
1≤i≤3

‖bi‖BMOd(R3,∧1)

(
‖du2‖L2(R3,∧1)‖du3‖L2(R3,∧1)

+ ‖du1‖L2(R3,∧1)‖du3‖L2(R3,∧1)

+ ‖du1‖L2(R3,∧1)‖du2‖L2(R3,∧1)

)

≥
(
1− C max

1≤i≤3
‖bi‖BMOd(R3,∧1)

)
‖Du‖2L2(R3,∧1).
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So
max
1≤i≤3

‖bi‖BMOd(R3,∧1) ≤ C1 =
1

2C

implies that ∫

R3
a(u) dx ≥ 1

2
‖Du‖2L2(R3,∧1)

for all u ∈ H1(R3,∧1).
(2) From Theorem 4.1, there exist absolute constants C and C ′ such that

C‖b‖BMOd(R3,∧1) ≤ sup
u,v∈W

∫

R3
b ∧ du ∧ dv ≤ C ′‖b‖BMOd(R3,∧1).

For any ε > 0, there exist uε, vε ∈ H1(R3) with ‖duε‖L2(R3,∧1), ‖dvε‖L2(R3,∧1) ≤ 1 such
that

C‖b‖BMOd(R3,∧1) − ε ≤
∫

R3
b ∧ duε ∧ dvε. (5.5)

For bi and ε = 1, (5.5) gives
∫

R3
bi ∧ d(−u1) ∧ dv1 ≤ − C‖bi‖BMOd(R3,∧1) + 1. (5.6)

Let w1 = (0,−u1, v1). Since
∫
R3 a(u) dx ≥ 0 for all u ∈ H1(R3,∧1), in particular∫

R3 a(w1) dx ≥ 0. Combining this with (5.6) we get

0 ≤
∫

R3
|Dw1|2 dx +

∫

R3
bi ∧ d(−u1) ∧ dv1

≤ ‖Dw1‖2L2(R3,∧1) − C‖bi‖BMOd(R3,∧1) + 1

≤ 3− C‖bi‖BMOd(R3,∧1).

Hence
max
1≤i≤3

‖bi‖BMOd(R3,∧1) ≤ C2 =
3
C

.

Proposition 5.1 is proved. ¤

5.2 G̊arding’s Inequality

The proof of Theorem 4.1 implies the following result

Lemma 5.2. Let Ω ⊂ R3 be an open domain and b ∈ L2
loc(Ω,∧1). Then there exists an

absolute constant C3 such that

sup
B

inf
g

(
1
|B|

∫

B

|b− g|2 dx

)1/2

≤ C3 sup
u,v∈W

∫

Ω

b ∧ du ∧ dv, (5.7)

where the supremum in the left-hand side is taken over all balls B with 2B ⊂ Ω, the
infimum is taken over all g ∈ L2(B,∧1) with dg = 0 in B, and W = {w ∈ H1

0 (Ω) :
‖dw‖L2(Ω,∧1) ≤ 1}.
Remark. The two sides of (5.7) are actually equivalent when Ω is a special Lipschitz
domain or a bounded strongly Lipschitz domain. See Theorem 6.1 of [LM1].

Let us denote the left-hand side of (5.7) by ‖b‖BMOH
d (Ω,∧1).
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Lemma 5.3. Let Ω ⊂ R3 be an open domain, a(u) be the expression shown in (5.3) and∫
Ω

a(u) dx ≥ 0 for all u ∈ H1
0 (Ω,∧1). Then there exists an absolute constant C4 such that

max
1≤i≤3

‖bi‖BMOH
d (Ω,∧1) ≤ C4.

Proof. Using Lemma 5.2, similar to the proof of Proposition 5.1 (2), we can prove the
proposition. The details are omitted. ¤

For b ∈ L2
loc(R3,∧1), define

‖b‖∗ = lim
l→0

sup
B

inf
g

(
1
|B|

∫

B

|b− g|2 dx

)1/2

, (5.8)

where the supremum is taken over all balls B ⊂ R3 with radius less than l > 0, the
infimum is taken over all g ∈ L2(B,∧1) with dg = 0 in B.

Proposition 5.4. Assuming G̊arding’s inequality holds for
∫
R3 a(u) dx, that is, there exist

constants λ0 > 0, λ1 ≥ 0 such that
∫

R3
a(u) dx ≥ λ0

∫

R3
|Du|2 dx− λ1

∫

R3
|u|2 dx (5.9)

for all u ∈ H1(R3,∧1). Then
max
1≤i≤3

‖bi‖∗ ≤ C4,

where C4 is the same constant in Lemma 5.3.

Proof. From (5.8), there exists a sequence of balls Brk
= B(xk, rk) ⊂ R3 with rk → 0 such

that

inf
g

(
1

|Brk
|
∫

Brk

|bi − g|2 dx

)1/2

→ ‖bi‖∗. (5.10)

Suppose that v := v1dx1 + v2dx2 + v3dx3 ∈ H1(R3,∧1) is supported in 2Brk
. By (5.9),

∫

2Brk

|Dv(x)|2 dx +
∫

2Brk

b1(x) ∧ dv2(x) ∧ dv3(x)

+ b2(x) ∧ dv1(x) ∧ dv3(x) + b3(x) ∧ dv1(x) ∧ dv2(x)

≥ λ0

∫

2Brk

|Dv(x)|2 dx− λ1

∫

2Brk

|v(x)|2 dx. (5.11)

Set x = xk + 2rky and let vk(y) = v(xk + 2rky), bk
i (y) = bi(xk + 2rky) in (5.11) we have

∫

B(0,1)

|Dvk(y)|2 dy +
∫

B(0,1)

bk
1(y) ∧ dvk

2 (y) ∧ dvk
3 (y)

+ bk
2(y) ∧ dvk

1 (y) ∧ dvk
3 (y) + bk

3(y) ∧ dvk
1 (y) ∧ dvk

2 (y)

≥ λ0

∫

B(0,1)

|Dvk(y)|2 dy − λ1

∫

B(0,1)

(2rk)2|vk(y)|2 dy
(5.12)
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for all vk ∈ H1
0

(
B(0, 1),∧1

)
. For rk sufficiently small, by Poincaré’s inequality the right-

hand side of (5.12) is non-negative, i.e.
∫

B(0,1)

a(vk) dy ≥ 0

for all vk ∈ H1
0

(
B(0, 1),∧1

)
. This yields

max
1≤i≤3

inf
g

(
1

|B(0, 1/2)|
∫

B(0,1/2)

|bk
i (y)− g(y)|2 dy

)1/2

≤ C4 (5.13)

by Lemma 5.3, where the infimum is taken over all g ∈ L2
(
B(0, 1/2),∧1

)
with dg = 0 in

B(0, 1/2). Let y = x−xk

2rk
, (5.13) gives

max
1≤i≤3

inf
g̃

(
1

|Brk
|
∫

Brk

|bi(x)− g̃(x)|2 dx

)1/2

≤ C4, (5.14)

where g̃(x) ∈ L2(Brk
,∧1) with dg̃ = 0. Combining (5.12) with (5.14) we have

max
1≤i≤3

‖bi‖∗ ≤ C4.

The proof of Proposition 5.4 is finished. ¤

6. HARDY SPACES OF EXACT FORMS ON RN

In this section we introduce Hardy spaces of exact forms on RN and study their atomic
decompositions and dual spaces. Using duality results we prove that Theorem 4.1 holds
on RN when b, u, v are respectively k, m, l-forms with k + m + l + 2 = N .

6.1 Definitions

Definition 6.1. For 0 ≤ l ≤ N , the Hardy space of l-forms is defined as

H1(RN ,∧l) = {f : RN → ∧l : each component of f is in H1(RN )}
with the norm

‖f‖H1(RN ,∧l) =
∑

I

‖fI‖H1(RN )

for f =
∑

I fIdxI .

Definition 6.2. Let 1 ≤ l ≤ N . The Hardy space of exact l-forms is defined as

H1
d(RN ,∧l) = {f ∈ H1(RN ,∧l) : f = dg for some g ∈ D′(RN ,∧l−1)}

with the norm
‖f‖H1

d(RN ,∧l) = ‖f‖H1(RN ,∧l).

Remark. When l = N , H1
d(RN ,∧l) is isomorphic to the usual Hardy spaceH1(RN ). When

l = N − 1, H1
d(RN ,∧l) is isomorphic to the divergence-free Hardy space H1

div(RN ,RN ) :=
{f ∈ H1(RN ,RN ) : div f = 0 in RN}.
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Definition 6.3. We say that a is an H1
d(RN ,∧l)-atom if

(i) there exists b ∈ L2(RN ,∧l−1) supported in a cube Q in RN such that a = db;
(ii) a and b satisfy size conditions: ‖a‖L2(Q,∧l) ≤ |Q|−1/2, ‖b‖L2(Q,∧l−1) ≤ l(Q)|Q|−1/2,

where l(Q) denotes the side-length of Q.

6.2 Atomic Decompositions and Dual Spaces

The main result of this section is the following atomic decomposition theorem for
H1

d(RN ,∧l). We also characterize its dual by using this decomposition.

Theorem 6.4. Let 1 ≤ l ≤ N . An l−form f on RN is in H1
d(RN ,∧l) if and only if it

has a decomposition

f =
∞∑

k=0

λkak, (6.1)

where the ak’s are H1
d(RN ,∧l)-atoms and

∑∞
k=0 |λk| < ∞. Furthermore,

‖f‖H1
d(RN ,∧l) ∼ inf

( ∞∑

k=0

|λk|
)

,

where the infimum is taken over all such decompositions. The constants of the proportion-
ality depend only on the dimension N .

Proof. We first prove the “if” part. Suppose that f can be written as (6.1) with

∞∑

k=0

|λk| < ∞, (6.2)

where the ak’s are H1
d(RN ,∧l)-atoms, i.e. there exist bk ∈ L2(RN ,∧l−1) supported in

cubes Qk such that ak = dbk and ‖bk‖L2(RN ,∧l−1) ≤ l(Qk)|Qk|−1/2. We need to show that

g :=
∞∑

k=0

λkbk

exists in D′(RN ,∧l−1), for then f = dg ∈ H1
d(RN ,∧l).

To prove g ∈ D′(RN ,∧l−1), it is sufficient to show that the sum
∑∞

k=0 λkbk is convergent
in the sense of distributions. From (6.2),

n∑

k=m

|λk| → 0 as m, n →∞.

Combining this with the size condition of bk, for any ϕ ∈ C∞0 (RN ,∧N−l+1) with compact
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support Ω,

∣∣∣
∫

RN

(
n∑

k=m

λkbk

)
∧ ϕ

∣∣∣ ≤
n∑

k=m

|λk|
∣∣∣
∫

Qk∩Ω

bk ∧ ϕ
∣∣∣

≤ C

n∑

k=m

|λk|‖bk‖L2(Qk∩Ω,∧l−1)|Qk ∩ Ω|1/2

≤ C

n∑

k=m

|λk|l(Qk)|Qk|−1/2|Qk ∩ Ω|1/2

≤ C

n∑

k=m

|λk| → 0 as m, n →∞,

where the constant C depends only on ϕ. The convergence of
∑∞

k=0 λkbk is proved.
The proof of the “only if” part is similar to that of Theorem 2.3 in Section 2, so we

only give an outline of the proof. From the proof of Theorem 2.3, we know that any
f ∈ H1

d(RN ,∧l) can be written as

f = −
∫ ∞

0

td
(
tδ(f ∗ ϕt) ∗ ϕt

)dt

t
, (6.3)

where ϕ ∈ C∞0 (RN ) with support in the unit ball and
∫∞
0

t|ξ|2ϕ̂(tξ)2 dt = 1. For y ∈
RN , t > 0, define

F (y, t) = tδ(f ∗ ϕt)(y).

Let f =
∑

I fIeI ∈ ∧l, then

F (y, t) =
∑

i,I

t∂i(fI ∗ ϕt)(y)µ∗i (eI) =
∑

i,I

fI ∗ (∂iϕ)t(y)µ∗i (eI).

Applying (2.1), we get F ∈ N 1(RN+1
+ ,∧l−1) and

‖F‖N 1(RN+1
+ ,∧l−1) ≤ C‖f‖H1(RN ,∧l).

From atomic decompositions for tent spaces,

F =
∞∑

k=0

λkαk (6.4)

with ∞∑

k=0

|λk| ≤ C‖F‖N 1(RN+1
+ ,∧l−1),

where the αk’s are N 1(RN+1
+ ,∧l−1)-atoms. Define

ak = −
∫ ∞

0

td
(
αk(·, t) ∗ ϕt

)dt

t
.
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From (6.3) and (6.4), we have

f =
∞∑

k=0

λkak,

where ak is supported in a ball 2Bk and satisfies the size condition: ‖ak‖L2(2Bk,∧l) ≤
C|2Bk|−1/2 for a constant C independent of k. Applying Lemma 6.7 (1) in Section 6 to
ak, there exists bk ∈ L2(RN ,∧l−1) supported in 2Bk such that ak = dbk and

‖bk‖L2(2Bk,∧l−1) ≤ C r(2Bk)|2Bk|−1/2,

where r(2Bk) denotes the radius of the ball 2Bk and C is independent of k. Let Qk be a
smallest cube containing 2Bk. Then

‖ak‖L2(Qk,∧l) ≤ C|Qk|−1/2

and
‖bk‖L2(Qk,∧l−1) ≤ C l(Qk)|Qk|−1/2

for some constants C independent of k. We have proved that ak is an H1
d(RN ,∧l)-atom.

The proof of Theorem 6.4 is finished. ¤
Now we consider dual spaces of H1

d(RN ,∧l). Let BMOd(RN ,∧k) (0 ≤ k ≤ N) be the
space of all locally integrable functions G : RN → ∧k with

‖G‖BMOd(RN ,∧k) = sup
B

inf
gB

(
1
|B|

∫

B

|G− gB |2 dx

)1/2

< ∞,

where the supremum is taken over all balls B in RN and the infimum is taken over all
gB ∈ L2(B,∧k) with dgB = 0 in B. Consider BMOd(RN ,∧k)/X0 with the norm

‖G + X0‖BMOd(RN ,∧k)/X0 = ‖G‖BMOd(RN ,∧k),

where X0 = {G ∈ BMOd(RN ,∧k) : ‖G‖BMOd(RN ,∧k) = 0}. We see that when k = 0,
BMOd(RN ,∧0)/X0 reduces to the usual BMO-space on RN . The following theorem
is an analogue of Theorem 3.3, which reveals that the dual of H1

d(RN ,∧l) is the space
BMOd(RN ,∧N−l)/X0. Its proof is similar to that of Theorem 3.3, so we skip the details.
Let D(RN ,∧l) denote the vector space finitely generated by H1

d(RN ,∧l)-atoms. Theorem
6.4 implies that D(RN ,∧l) is dense in H1

d(RN ,∧l).

Theorem 6.5. Let 1 ≤ l ≤ N . If G + X0 ∈ BMOd(RN ,∧N−l)/X0, then the linear
functional L defined by

L(h) =
∫

RN

G ∧ h, (6.5)

initially defined in D(RN ,∧l), has a unique bounded extension to H1
d(RN ,∧l). Conversely,

if L ∈ H1
d(RN ,∧l)∗, then there exists a unique G + X0 ∈ BMOd(RN ,∧N−l)/X0 such that

(6.5) holds. The map G + X0 7→ L given by (6.5) is a Banach isomorphism between
BMOd(RN ,∧N−l)/X0 and H1

d(RN ,∧l)∗.

6.3 The “Div-Curl” Type Theorem on RN

We now prove the “div-curl” type theorem on RN , which is a generalization of Theorem
4.1 to N -dimensions and to forms of all degrees.
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Theorem 6.6. Let b ∈ L2
loc(RN ,∧l), l, m, n ≥ 0 and l + m + n + 2 = N . Then

sup
u,v

∫

RN

b ∧ du ∧ dv ∼ ‖b‖BMOd(RN ,∧l), (6.6)

where the supremum is taken over all u and v with

u ∈ H1(RN ,∧m), ‖du‖L2(RN ,∧m+1) ≤ 1;

v ∈ H1(RN ,∧n), ‖dv‖L2(RN ,∧n+1) ≤ 1.

}
(6.7)

The implicit constants in (6.6) depend only on N .

To prove Theorem 6.6 we need the following lemmas.

Lemma 6.7. Let B be a ball in RN .
(1) If u satisfies either of the following conditions:

1) u ∈ L2(B,∧l), du = 0 in B and n ∧ u|∂B = 0 when 0 < l < N ;
2) u ∈ L2(B,∧l) with

∫
u = 0, where l = N ,

then there exists ϕ ∈ H1
0 (B,∧l−1) and a constant C independent of u and B such that

u = dϕ,

‖Dϕ‖L2(B,∧l−1) ≤ C‖u‖L2(B,∧l) (6.8)

and
‖ϕ‖L2(B,∧l−1) ≤ C r(B)‖u‖L2(B,∧l). (6.9)

(2) If u satisfies either of the following conditions:
1) u ∈ L2(B,∧l), δu = 0 in B and n ∨ u|∂B = 0 when 0 < l < N ;
2) u ∈ L2(B,∧l) with

∫
u = 0, where l = 0,

then there exists ψ ∈ H1
0 (B,∧l+1) and a constant C independent of u and B such that

u = δψ

and
‖Dψ‖L2(B,∧l+1) ≤ C‖u‖L2(B,∧l).

Proof. (1) When u satisfies the conditions of 2), Lemma 6.7 (1) is a special case of Nečas’
result [N, Lemma 7.1, Chapter 3]. So we only prove 1). From Theorem 3.3.3 in Chapter
3 of [Sc], there exists ϕ ∈ H1(B,∧l−1) such that

u = dϕ, ϕ|∂B = 0

and
‖ϕ‖H1(B,∧l−1) ≤ C‖u‖L2(B,∧l)

for some constants C independent of u. So the only thing we need to check is that the
constants in (6.8) and (6.9) are independent of balls B. We only prove this for (6.9). Let
B = B(x0, r), x0 be the center of B, r = r(B). It is easy to check that u(x0+ry), y is in the
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unit ball B0, satisfies the conditions of 1) for B0. So there exists ϕ(x0+ry)
r ∈ H1

0 (B0,∧l−1)
and a constant C independent of u and r such that

u(x0 + ry) = d
ϕ(x0 + ry)

r

and
1
r
‖ϕ(x0 + ry)‖L2(B0,∧l−1) ≤ C ‖u(x0 + ry)‖L2(B0,∧l).

This is equivalent to (6.9) by a simple computation.
(2) can be derived from Corollary 3.3.4 of [Sc, Chapter 3], Nečas’ lemma and a similar

discussion to (1). ¤
Remark. Lemma 6.7 holds when B is replaced by any smooth and contractible domain in
RN , though with constants C which depend on the domain.

Lemma 6.8 [GR, Theorem 2.7]. For a ball B ⊂ RN and 0 ≤ l ≤ N , let H =
{u ∈ L2(B,∧l) : du = 0 in B, n ∧ u|∂B = 0} and H ′ = {u ∈ L2(B,∧l) : δu =
0 in B, n ∨ u|∂B = 0}. Then

L2(B,∧l) = H ⊕ {δw : w ∈ H1(B,∧l+1)}
= H ′ ⊕ {dw : w ∈ H1(B,∧l−1)}.

The following result is a generalized version of the “div-curl” lemma by Coifman, Lions,
Meyer and Semmes in [CLMS, Theorem II.1]. When m+l = N , it can be found in [HLMZ,
Proposition 4.1].

Lemma 6.9. If 1 < p < ∞, 1
p + 1

q = 1, 0 < m+ l ≤ N , u ∈ Lp(RN ,∧m), v ∈ Lq(RN ,∧l),
du = 0, dv = 0 in RN . Then u ∧ v ∈ H1(RN ,∧m+l) and there exists a constant C
independent of u and v such that

‖u ∧ v‖H1(RN ,∧m+l) ≤ C‖u‖Lp(RN ,∧m)‖v‖Lq(RN ,∧l).

Proof. Suppose m + l = N . When l = 1, Lemma 6.9 becomes Theorem II.1 of [CLMS].
The proof of the case l 6= 1 is completely similar to the case of l = 1.

If m+ l < N , we know that u∧ v ∈ H1(RN ,∧m+l) if and only if u∧ v∧ dxim+l+1 ∧ · · · ∧
dxiN

∈ H1(RN ,∧N ). Set
V = v ∧ dxim+l+1 ∧ · · · ∧ dxiN

.

Then v ∈ Lq(RN ,∧l) and dv = 0. This implies that V ∈ Lq(RN ,∧N−m) and dV = 0. For
u and V , applying the result when m + l = N , we have u ∧ V ∈ H1(RN ,∧N ) and

‖u ∧ V ‖H1(RN ,∧N ) ≤ C‖u‖Lp(RN ,∧m)‖V ‖Lq(RN ,∧N−m)

= C‖u‖Lp(RN ,∧m)‖v‖Lq(RN ,∧l).

This proves the result. ¤
We are now ready to prove Theorem 6.6. There are some similarities between its proof

and that of Theorem 4.1.
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Proof of Theorem 6.6. Suppose that u and v satisfy (6.7). Lemma 6.9 yields that du∧dv ∈
H1

d(RN ,∧m+n+2) and

‖du ∧ dv‖H1
d(RN ,∧N−l) = ‖du ∧ dv‖H1(RN ,∧m+n+2)

≤ C‖du‖L2(RN ,∧m+1)‖dv‖L2(RN ,∧n+1) ≤ C.

Let b ∈ BMOd(RN ,∧l) and h ∈ H1
d(RN ,∧N−l). By using a similar argument as in

Theorem 3.3, we have

∣∣∣
∫

RN

b ∧ h
∣∣∣ ≤ C‖b‖BMOd(RN ,∧l)‖h‖H1

d(RN ,∧N−l).

Therefore
∣∣∣
∫

RN

b ∧ du ∧ dv
∣∣∣ ≤ ‖b‖BMOd(RN ,∧l)‖du ∧ dv‖H1

d(RN ,∧N−l)

≤ C‖b‖BMOd(RN ,∧l).

We now prove the reversed inequality in (6.6). By scaling we need only to show that
for the unit ball B0, there exist u0 and v0 with

u0 ∈ H1
0 (B0,∧m), ‖du0‖L2(RN ,∧m+1) ≤ 1,

v0 ∈ H1
0 (2B0,∧n), ‖dv0‖L2(RN ,∧n+1) ≤ 1

}
(6.10)

such that

inf
g0

(∫

B0

|b− g0|2 dx

)1/2

≤ C
∣∣∣
∫

B0

b ∧ du0 ∧ dv0

∣∣∣, (6.11)

where the infimum is taken over all g0 ∈ L2(B0,∧l) with dg0 = 0 in B0 and C is a constant
independent of b, u0 and v0.

Let b ∈ L2(B0,∧l), Lemma 6.8 gives b = h + dq for h ∈ H ′ = {h ∈ L2(B0,∧l) : δh =
0, n ∨ h|∂B0 = 0} and q ∈ H1(B0,∧l−1). We have

∫

B0

b ∧ du0 ∧ dv0 =
∫

B0

h ∧ du0 ∧ dv0

and

inf
g0

(∫

B0

|b− g0|2 dx

)1/2

≤ ‖h‖L2(B0,∧l).

Thus to prove (6.11) it is sufficient to show that there exist u0 and v0 satisfying (6.10)
such that

‖h‖L2(B0,∧l) ≤ C
∣∣∣
∫

B0

h ∧ du0 ∧ dv0

∣∣∣ (6.12)

for all h ∈ H ′, where C does not depend on h, u0 and v0.
Applying Lemma 6.7 (2) to h ∈ H ′, there exists ϕ ∈ H1

0 (B0,∧l+1) and a constant C0

independent of h such that
h = δϕ
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and
‖Dϕ‖L2(B0,∧l+1) ≤ C0‖h‖L2(B0,∧l). (6.13)

Let ϕ =
∑

I ϕIdxI , where I = (i1, · · · , il+1), 1 ≤ i1 < · · · < il+1 ≤ N . Then

∗h = ∗δϕ = ±d ∗ ϕ = ±
∑

I

dϕI ∧ (∗dxI).

Denote ∗dxI by dxJ , where J = {j1, · · · , jm+n+1}, 1 ≤ j1 < · · · < jm+n+1 ≤ N . Thus

‖h‖2L2(B0,∧l) ≤
∑

I

∣∣∣
∫

B0

h ∧ dϕI ∧ dxJ

∣∣∣

≤ C max
I

∣∣∣
∫

B0

h ∧ dϕI ∧ dxJ

∣∣∣

:= C
∣∣∣
∫

B0

h ∧ dϕI0 ∧ dxJ0

∣∣∣ (6.14)

for some choice of I0, where dxJ0 = ∗dxI0 and C =
(

N
l+1

)
. Let J0 = {j01 , · · · , j0m+n+1}.

Define

u0 =
ϕI0dxj01

∧ · · · ∧ dxj0m

C0‖h‖L2(B0,∧l)

.

It is easy to check that u0 ∈ H1
0 (B0,∧m) and ‖du0‖L2(RN ,∧m+1) ≤ 1 by (6.13).

Now we construct v0. Let ψ0 ∈ C∞0 (RN ), ψ0 equals 1 in B0 and 0 outside 2B0. Setting

v0 = γψ0xj0m+1
dxj0m+2

∧ · · · ∧ dxj0m+n+1
,

where γ > 0 is a constant so that ‖dv0‖L2(RN ,∧n+1) ≤ 1. So v0 ∈ C∞0 (2B0,∧n) and

dv0 = γdxj0m+1
∧ · · · ∧ dxj0m+n+1

in B0.

Combining (6.14) with the construction of u0 and v0, we obtain

‖h‖L2(B0,∧l) ≤ C
∣∣∣
∫

B0

h ∧ du0 ∧ dv0

∣∣∣,

where C = γ−1
(

N
l+1

)
C0. This proves (6.12). The proof of Theorem 6.6 is completed. ¤

Remarks. (1) From the proof of Theorem 6.6, we see that the equivalence in (6.7) is
also true if the supremum is taken over all u ∈ H1(RN ,∧m), v ∈ H1(RN ,∧n) with
‖Du‖L2(RN ,∧m+1), ‖Dv‖L2(RN ,∧n+1) ≤ 1.

(2) The case l = m = n = 0 and N = 2 in Theorem 6.6 yields the Jacobian determinant
estimate (4.9).

Let l = m = 0, n = N − 2. Theorem 6.6 becomes
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Corollary 6.10. For b ∈ L2
loc(RN ),

‖b‖BMO(RN ) ∼ sup
α,β

∫

RN

b α ∧ β,

where the supremum is taken over all α ∈ L2(RN ,∧1), β ∈ L2(RN ,∧N−1) with dα = dβ =
0 and ‖α‖L2(RN ,∧1), ‖β‖L2(RN ,∧N−1) ≤ 1.

It is easy to see that Corollary 6.10 is equivalent to the following result by Coifman,
Lions, Meyer and Semmes in [CLMS, page 262] (“Div-Curl” Lemma): for b ∈ L2

loc(RN )

‖b‖BMO(RN ) ∼ sup
E,F

∫

RN

b E · F dx,

the supremum being taken over all E, F ∈ L2(RN ,RN ) with div E = 0, curl F = 0 and
‖E‖L2(RN ,RN ), ‖F‖L2(RN ,RN ) ≤ 1.

6.4 A Decomposition Theorem

In [CLMS, Theorem III.2], Coifman, Lions, Meyer and Semmes proved a decomposition
of H1(RN ) into “div-curl” quantities. We now give a similar decomposition for Hardy
spaces H1

d(RN ,∧l).

Theorem 6.11. Let 1 ≤ l ≤ N and 0 ≤ m ≤ l − 2. Then any f ∈ H1
d(RN ,∧l) can be

written as

f =
∞∑

k=0

λk duk ∧ dvk

with ∞∑

k=0

|λk| ≤ C‖f‖H1
d(RN ,∧l)

for some constants C depend only on N , where uk ∈ H1(RN ,∧m) and vk ∈ H1(RN ,∧l−m−2)
with ‖duk‖L2(RN ,∧m+1), ‖dvk‖L2(RN ,∧l−m−1) ≤ 1.

Proof. By Theorem 6.4, any f ∈ H1
d(RN ,∧l) has a decomposition

f =
∞∑

i=0

µiai, (6.15)

where the ai’s are H1
d(RN ,∧l)-atoms and

∞∑

i=0

|µi| ≤ C‖f‖H1
d(RN ,∧l)

for constants C depending only on N . For simplicity we drop the subscript i of ai tem-
porarily. Since a := ai is anH1

d(RN ,∧l)-atom, i.e. there exists b ∈ L2(RN ,∧l−1) supported
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in a ball B such that a = db and ‖a‖L2(B,∧l) ≤ |B|−1/2. Applying Lemma 6.7 (1), there
exists ϕ ∈ H1

0 (B,∧l−1) and a constant C0 independent of a and B such that

a = dϕ (6.16)

and
‖Dϕ‖L2(B,∧l−1) ≤ C0‖a‖L2(B,∧l).

Let ϕ =
∑

I ϕIdxI , I = (i1, · · · , il−1), 1 ≤ i1 < · · · < il−1 ≤ N . From (6.26) the atom a
can be written as

a =
∑

I

dϕI ∧ dxi1 ∧ · · · ∧ dxil−1

=
∑

I

d(C−1
0 |B|1/2ϕI) ∧ dxi1 ∧ · · · ∧ dxim ∧ d(C0|B|−1/2xim+1) ∧ · · · ∧ dxil−1 .

For any I, define
u(I) = C−1

0 |B|1/2ϕIdxi1 ∧ · · · ∧ dxim .

Then u(I) ∈ H1
0 (B,∧m) and ‖du(I)‖L2(B,∧m+1) ≤ 1. As in the proof of Theorem 6.6, define

ψ0 ∈ C∞0 (RN ). Let

v(I) = γC0|B|−1/2ψB(xim+1 − x0
im+1

)dxim+2 ∧ · · · ∧ dxil−1 ,

where ψB(x) = ψ0

(
x−x0

r

)
, x0 denotes the center of the ball B, r = r(B), γ is a con-

stant independent of x0 and r such that ‖dv(I)‖L2(B,∧l−m−1) ≤ 1. We see that v(I) ∈
C∞0 (2B,∧l−m−2) and

dv(I) = γC0|B|−1/2dxim+1 ∧ · · · ∧ dxil−1 in B.

Thus any atom a can be written as

a = γ−1
∑

I

du(I) ∧ dv(I).

Combining this with the atomic decomposition of f in (6.15). We proved Theorem
6.11. ¤

Let l = N , m = 0 in Theorem 6.11 we get

Corollary 6.12 ([CLMS, Theorem III.2]). Any f ∈ H1(RN ) can be written as

f =
∞∑

k=0

λk Ek · Fk

with ∞∑

k=0

|λk| ≤ C‖f‖H1(RN )
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for a constant C depending only on N , where Ek, Fk ∈ L2(RN ,RN ) with div Ek =
curl Fk = 0 and ‖Ek‖L2(RN ,RN ), ‖Fk‖L2(RN ,RN ) ≤ 1.

The proof of Corollary 6.12 in [CLMS] is based on two results from functional analysis
([CLMS, Lemmas III.1 and III.2]). The proof we have given is more natural in the context
of the theory of Hardy spaces.

APPENDIX A. SURJECTIVITY OF THE curl OPERATOR

In this appendix we present an unpublished result of Costabel [C], that in three dimen-
sions, the operator curl is surjective from H1

0 (Ω,R3) to a closed subspace of L2(Ω) when
Ω is a bounded contractible strongly Lipschitz domain in R3. For ψ ∈ D′(Ω), we adopt
the notation Dψ = (∂1ψ, ∂2ψ, ∂3ψ), while for v = (v1, v2, v3) ∈ D′(Ω,R3), we define the
divergence and curl operators by

div v =
3∑

i=1

∂ivi

and
curl v = (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1) .

For a bounded Lipschitz domain Ω ⊂ RN , the divergence operator is a continuous map
from H1

0 (Ω,RN ) onto L2
0(Ω), where H1

0 (Ω,RN ) denotes the Sobolev space H1(Ω,RN ) with
zero boundary values, and L2

0(Ω) = {f ∈ L2(Ω) :
∫
Ω

f dx = 0}. This is a result by Nečas in
[N, Lemma 7.1, Chapter 3]. We now consider the operator curl : H1

0 (Ω,R3) → L2(Ω,R3).
The next proposition shows that the operator curl is surjective from H1

0 (Ω,R3) to a closed
subspace of L2(Ω,R3).

Proposition A.1. Let Ω be a bounded contractible strongly Lipschitz domain in R3, b ∈
L2(Ω,R3), div b = 0 in Ω and n · b|∂Ω = 0. Then there exists u ∈ H1

0 (Ω,R3) such that

curl u = b

and
‖u‖H1(Ω,R3) ≤ C‖b‖L2(Ω,R3),

where the constant C depends only on the domain Ω.

Proof. Let F denote the extension by zero of b to R3. Then div F = 0 on all of R3.
Therefore there exists V ∈ H1

loc(R3,R3) such that F = curl V . On letting B be a large
ball containing Ω, then F ∈ H1(B). In the simply connected domain B\Ω, curl V = 0, so
there exists ψ ∈ H2(B\Ω) such that Dψ = V .

Let E : H2(B\Ω) → H2(B) be a bounded extension operator [St1]. The vector field
U = V − D(Eψ) ∈ H1(B,R3) has support in Ω and satisfies curl U = F . Thus the
restriction u = U |Ω ∈ H1

0 (Ω,R3) solves the equation curl u = b as required.
The mapping b 7→ u is a bounded linear mapping depending only on E. ¤

Remark. In N dimensions, this result applies to solving du = b for u ∈ H1
0 (Ω, Λ1) when

b is a 2–form satisfying db = 0 and n ∧ b|Ω = 0. The proof does not apply to general
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k–forms. However when the boundary of Ω is smooth, a slight adaptation of the above
argument gives an alternative proof of Lemma 6.7.

APPENDIX B. REVIEW OF DIFFERENTIAL FORMS

The setting of this section is that of forms on open domain Ω ⊂ RN . We give a brief
outline of the basic formalism.

Let {e1, · · · , eN} denote the basis of Euclidean space RN and l = 1, · · · , N . The space
of all l−linear, alternating functions ξ : (RN )l → R is denoted by ∧l(RN ), or just ∧l

where there is no possibility of confusion. In particular ∧1(RN ) is the dual of RN and
∧0(RN ) = R. The dual base to {e1, · · · , eN} will be denoted by e1, · · · , eN and referred
to as the standard base for ∧1(RN ). The vector space of all forms ∧(RN ) = ⊕N

l=0 ∧l (RN )
is equipped with the inner product

< α, β >=
∑

αi1···il
βi1···il

for α =
∑

αi1···il
ei1∧· · ·∧eil and β =

∑
βi1···il

ei1∧· · ·∧eil . For w ∈ ∧(RN ) the associated
norm is denoted by |w| =< w, w >1/2. The inner product induces a dual pairing between
∧l(RN ) and ∧N−l(RN ) which results from the action of the Hodge star operator ∗ defined
by

∗1 = e1 ∧ · · · ∧ eN ;

α ∧ ∗β =< α, β > e1 ∧ · · · ∧ eN

for all α, β ∈ ∧l(RN ). The exterior and interior multiplication operators on ∧(RN ) are
linear operators defined by

µk : ∧l → ∧l+1; µk(1) = ek, µk(ei) = ek ∧ ei, · · ·
and

µ∗k : ∧l → ∧l−1; µ∗k(ei) = δki, µ∗k(ei ∧ el) = δkie
l − δkle

i, · · ·
respectively. The exterior and interior operators can be written as ([GHL])

d =
N∑

k=1

µk
∂

∂xk
, δ =

N∑

k=1

µ∗k
∂

∂xk
.

We define the interior product between a 1-form α and an l−form u by setting

α ∨ u = (−1)(l−1)N ∗ (α ∧ ∗u).

Suppose Ω is a bounded Lipschitz domain in RN . We denote by L2(Ω,∧l) the space of
square integrable l−forms on Ω.

Definition B.1. Let 0 ≤ l ≤ N. For u ∈ L2(Ω,∧l), we say that du = 0 on Ω if
∫

Ω

u ∧ dϕ = 0

for all ϕ ∈ C∞0 (Ω,∧N−l−1).
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Definition B.2. For u ∈ L2(Ω,∧l) with du = 0 on Ω, we define n∧u|∂Ω ∈ H−1/2(∂Ω,∧l+1)
by

< n ∧ u|∂Ω, ψ >∂Ω= (−1)l

∫

Ω

u ∧ dΨ,

where Ψ ∈ C1(Ω̄,∧N−l−1) and ψ = Ψ|∂Ω, H−1/2(∂Ω,∧l+1) is the space of (l + 1)-forms f
each of whose components is in H−1/2(∂Ω).

Remark. It is easy to show that the definition of < n ∧ u|∂Ω, ψ >∂Ω is independent of the
choice of the extension Ψ. Note that

‖n ∧ u|∂Ω‖H−1/2(∂Ω,∧l+1) ≤ C‖u‖L2(Ω,∧l)

for all u ∈ L2(Ω,∧l) such that du = 0 (see, for example, [HLMZ]).
The Green’s formula is as follows: if u ∈ L2(Ω,∧l) with du ∈ L2(Ω,∧l+1) and ϕ ∈

H1(Ω,∧N−l−1) then

∫

Ω

du ∧ ϕ + (−1)l

∫

Ω

u ∧ dϕ =< n ∧ u|∂Ω, ϕ >∂Ω .

The formula follows from Stokes’ theorem and the facts that C∞0 (Ω̄,∧l) is dense in the
space {u ∈ L2(Ω,∧l) : du ∈ L2(Ω,∧l+1)} (see, for example, [ISS, Corollary 3.6]) and in
the Sobolev space H1(Ω,∧k).

Acknowledgment: The authors would like to thank Martin Costabel, Tom ter Elst
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