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Abstract

Applying the atomic decomposition of the divergence-free Hardy space we characterize its
dual as a variant of BMO. Using the duality result we prove a “div-curl” type theorem:
For b in L? (R3,AY), sup [ b A du A dv is equivalent to the BMO-type norm of b, where

loc
the supremum is taken over all u,v € H'(R3) with ||dul|;2, ||/dv|| 2 < 1. This theorem

can be used to get some coercivity results for polyconvex quadratic forms which come from
the linearization of polyconvex variational integrals studied in nonlinear elasticity in R3. In
addition, we introduce Hardy spaces of exact forms on RY, study their atomic decompositions
and dual spaces, and establish a “div-curl” type theorem on R¥.
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1. STATEMENT OF THE MAIN THEOREM

In this paper, we consider the divergence-free Hardy space on R3, give its divergence-
free atomic decomposition and use this to characterize its dual space. Applying the duality
relationship between the Hardy space and the BM O-type space we prove our main result
of the paper, the following “div-curl” type theorem concerning an estimate of quadratic
forms on R3.

Theorem 4.1. Letbe L? (R3 A'). Then

loc

sup bAduAdv~ bl Brro,®s A, (1.1)
u,veW JR3

where W = {w € H'(R?) : |[dwl| r2gs 01) < 1} and

1/2
“b”BMOd(R3 AL) 1= suplnf (|B’ / |b—g’2 dx) , (1.2)

the supremum in (1.2) being taken over all balls B in R3, the infimum being taken over all
g € BMO(B,A\Y) with dg = 0 in B. The implicit constants in (1.1) are absolute constants.

Theorem 4.1 holds for N-dimensions and any form b. We are especially interested in the
three-dimensional case, because, as shown in Section 5, Theorem 4.1 can be used to give
some coercivity results of polyconvex quadratic forms which come from the linearization
of polyconvex variational integrals studied in nonlinear elasticity by Ball [B]. These results
answer questions of Kewei Zhang, who previously obtained analogous 2-dimensional results
in [Z].

Extensions of these results to the case of Lipschitz domains in R¥ is contained in the
sequels [LM1] and [LM2] to this paper.

The paper is organized as following. Section 2 provides the definition of the divergence-
free Hardy space on R? and the proof of its divergence-free atomic decomposition. Using
the atomic decomposition we characterize its dual in Section 3. The proof of the main
theorem is in Section 4. Section 5 is devoted to applications of the main theorem to
coercivity properties and Garding’s inequality of certain polyconvex quadratic forms. In
Section 6, we introduce Hardy spaces of exact forms on R¥, give their atomic decom-
positions, characterize their dual spaces and establish a “div-curl” theorem on RY. In
addition, we give a decomposition theorem of these Hardy spaces into “du A dv” quantities
which is a generalization of a similar decomposition theorem by Coifman, Lions, Meyer
and Semmes [CLMS].

In this paper, unless otherwise specified, C' denotes a constant independent of functions
and domains related to the inequalities. Such C' may differ at different occurrences.

2. DIVERGENCE-FREE ATOMIC DECOMPOSITION

In this section we introduce the divergence-free Hardy space and prove its divergence-
free atomic decomposition. A similar decomposition was obtained by Gilbert, Hogan and
Lakey in [GHL] by using a result of divergence-free wavelet decomposition of L?(IR3, R3)



HARDY SPACE OF EXACT FORMS ON RN 3

due to Lemarié-Rieusset [Le]. Our proof is different from that in [GHL] and is valid for
forms of all degrees as is shown in Section 6.

We first recall briefly some definitions and results of Hardy spaces and tent spaces which
are used in this paper.

The Hardy space H'(R?) is the space of locally integrable functions f for which

M(f)(x) =§1>118|<pt * f(x)]

belongs to L (R?), where ¢ € C§°(R?), ¢y(z) = 5¢(£), t >0, [ps () dz =1, supp ¢ C
B(0,1), a ball centered at the origin with radius 1. The norm of H!(R?) is defined by

[ f 1l ey = [IM (L1 ee)

where M is the maximal function. Among many characterizations of Hardy spaces, the
atomic decomposition is an important one. An L?(R3) function a is an H!(R3)-atom if
there is a cube or a ball B = B, in RY satisfying:

1) supp a C B;

2) lall L2 s g3y < [BI7V?;

3) [za(z) dz=0.
It is obvious that any H!(R3)-atom a is in H!'(R3). The basic result about atoms is the
following atomic decomposition theorem ([CW], [La]): A function f on R?® belongs to
H1(R3) if and only if f has a decomposition

f = Z Akakv
k=0

where the az’s are H!(R?)-atoms and >~ |A\x| < co. Furthermore,

| f[l#1 (r3) ~ inf (Z |/\k|> ;
k=0

where the infimum is taken over all such decompositions, the constants of the proportion-
ality are absolute constants. Here “A ~ B” means that there are constants C; and Cs
such that C1A < B < CyA.

Define the tent space NP(R%) (1 < p < 00) to consist of all measurable functions F' on
R% for which S(F) € LP(R?), where S(F) is the square function defined by

1/2
S(F) (@) = ( I \F(y,m?%) ,

P(@)={(y,t) e RY : |y — | <t}, [|Fllars) = I1S(F)llLe(s).
An NP(R%)-atom is a function « supported in a tent T'(B) = {(x,t) : |z — zo| < r —t}
of a ball B = B(zg,r) in R3, for which

dxdt
/ laz, t)2 P9 < g2,
T(B) t
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When 1 < p < oo, Coifman, Meyer and Stein proved the following atomic decomposition
theorem [CMS]: any F € NP(R%) can be written as

F = i )\kak,
k=0

where the ay, are NP(R%)-atoms and > po  [Ax] < ClFl prv(ra )-
In the proof of Theorem 2.3, we use the following two facts: one is that the operator

defined by
1/2
g Sulg) = (/ g% () )
I'(z)

is bounded from H!(R?) to L'(R3) for ¢ € S(R?) (the space of test functions) with
[ dx =0, and

dydt
t4

1Sy (|2 w2y < Cllgllre ey (2.1)
(see Theorems 3 and 4 in Chapter III of [St2]). The other is that the operator

> dt
mo(@ = [ altyev
0
is bounded from N?(R%) to L*(R?) and

Iy (@)l L2rs) < Cllall vz s ) (2.2)

([CMS, Theorem 6]).
Now we define the divergence-free Hardy space. Let H!(R3,R3) denote the space of
vector-valued functions with each component in H!(R?).

Definition 2.1. The divergence-free Hardy space on R? is defined as
M (R?,R?) = {f € H'(R*,R’) : div f =0 in R’}
with norm
1l ms mey = 11l me r2),
where div f is defined in the sense of distributions.

Definition 2.2. A function a € L?(R3,R?) is said to be an H}, (R, R?)-atom if there is
a cube or ball B = B, in R? satisfying

(i) supp a C B;

(i) llallp2ms rsy < [B]7Y2;

(iil) [ a(x) dz = 0;

(iv) diva =0 in R3.

The properties of tent spaces can be used to clarify various points in the theory of Hardy
spaces, for example, atomic decompositions. Combining this with an idea of Auscher we
prove a divergence-free atomic decomposition of the divergence-free Hardy space.

For simplicity, we prove the result by using the language of forms. Let us interpret
vector fields as two-forms. Then H!(R3 R?) and H}, (R? R3) become H!(R3 A?) and
H}l (R3, A?) respectively. Similarly we can define tent spaces and their atoms for forms. See
Appendix B for definitions of exterior operator d and its formal adjoint § and information
on forms.
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Theorem 2.3. A function f on R3 is in HL(R3, A?) if and only if it has a decomposition

0o
- E )\k:a/k7
k=0

where the ay,’s are Hy(R3, A?)-atoms and > p— |A\x| < 00. Furthermore,

[ £ 121 (8 A2y ~ inf (Z ’)\k|> ,
k=0

where the infimum is taken over all such decompositions. The constants of the proportion-
ality are absolute constants.

Proof. The easy part is the “if” part, that is, assuming f has such a decomposition in
D'(R3, A?) (the space of distributions). For then, if the sum is finite,

1F ey s a2y < D wlllanllr s pz) < C Y Il (2.3)
k k

where we used the fact that ||al|3 gz r2) < C when a is an H'(R?, A?)-atom.
We now prove the “only if” part. Suppose f = Zl<i<j<3 fij et Nel € HE(R3, A?).
Choose a function ¢ € C§°(R?) with support in the unit ball, which satisfies

/ S llelorte)? di = 1. (2.4)

Define
F(x,t) :t5<f>kg0t(f£)>, reR3 t>0

(see Appendix B for the definition of §). Then F(z,t) can be written as

Fla,)= > Z (fz-jwt)m pi(ei A ed)

1<i<j<3 1=1

= 2 wa (Gr0)1 () (drie? — dije’). (2.5)

1<i<j<3 I=1
Since fi; * (Oip)r € N1 (RY) by (2.1), then F € N*(R%, A') with
[Elarms any < Cllf I3 ,p2)-

By the atomic decomposition theorem for tent spaces, F' has a decomposition

F = Z)\kak (26)
k=0
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with .
> Il < CllF | art®a a1y
k=0

where the ay,’s are N1 (R%, A)-atoms, i.e. there exist balls By such that supp oy, C T'(By)
and

dydt 1
[ Jatwp 2 < 27)
T(Byx)

Define

Then (2.'6) gives F = > re o Akag, where ap = way. Let ap = Zg’zl al el azl =
—mo,0 (), where the o} ’s are N*(R%)-atoms, then

3
—_— /i7l
ap = ay e

il=1

It is easy to check that the function a; satisfies the following conditions 1) supp ax C 2B,
since Oy is supported in the unit ball and supp o C T(By); f ar dr = 0, since
e € S(R?) and JOp dz = 0; 3) dar, = 0 in R3. We now prove that a; also satisfies
the size condition: 4) f2Bk lax|? dr < C|2Bi|~t, where C is independent of a; and By.
Since «f are N''(R%)-atoms, then of € N?(R%). The boundedness of 7y in (2.2) and
(2.7) imply that aZ’l € L*(R3) and

il ;
lay, ||%2(2Bk) < C||Oz§€||j2\/2(R4)
dydt

—C'/ / y,t (:v—y/t) dx
R3 JRY
: 2 dydt
<c | az<y,t>) e
T(Bk)

< C‘QBk‘_17

where x denotes the characteristic function in the unit ball. We proved that aj are
HL(R3, A%)-atoms. Moreover we next show that

F=> Ak
k=0

is an atomic decomposition of f, where the A;’s are the same as those in (2.6). To see this

we only need to prove that
f=nF.

Applying the Fourier transform to Af = (dd + dd)f and the following two facts

df (&) =i A f(€), F(€) = —ieV f(©),
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we obtain

AJ(€) = i€ ASF(E)
= —ig A (i€ V £(€)
=EA(EV (9),

where we used the fact that df = 0. In addition &f(f) = —]5!2f(£), SO
N6V F(9) = —Iel*F(©)- (2.8)
The assumption (2.4) on ¢ and (2.8) give
G 5(f * 00)(©)p(t€)) d
7R == [ iten (8T e d
= [ it (iev fo)ste) )
0

:—/0 t2§/\(£vf

- / HEPp(€)2f(€) di = ().

The desired result follows. The proof of Theorem 2.3 is completed [

3. THE DUAL SPACE

We now characterize the dual space of H}(R3, A%). Recall that under the duality

(f,9)= [ [f(x)g(x) dx,
R3

when suitably defined, the dual of H!(R?) is the real-valued BMO(R?) space of functions
f of bounded mean oscillation, i.e.

1 1/2
I fll Baromsy = sup éleﬂ]g (E /B |f —c|? dx) < 00,

the supremum being taken over all balls B in R3. So we have H!(R3, A2)* = BMO(R3, A!)
under the pairing

(fho9)=[ fAg,

R3

when suitably defined [St2].
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Definition 3.1. Let BMOy4(R3, A!) be the space of measurable functions G for which

9B

' 1 1/2
IGllsrosEs 1) = supint (— / G- gal? dx> <o,
B |B| J5

where the supremum is taken over all balls B in R3, the infimum is taken over all functions
gp € L*(B,A\') with dgg = 0 in B.

Consider the Banach space BMO4(R3, A')/ X, with the norm
|G + XollBrroa®s,aty x, = Gl BrMO, RS A1)

where X = {G € BMO4(R*,A') : |G|l rmo, e a1y = 0}. We show that it is the dual of
HL(R3, A?). To prove this we first prove a lemma. Let D(R3, A?) denote the vector space
finitely generated by HJ(R?, A?)-atoms. By Theorem 2.3, one has that D(R3, A?) is dense
in HL(R3, A?).

Lemma 3.2. For g € BMO(R3, A,
/ gAh=0 forall he D(R?A?
RS

if and only if
dg=0 in RS

Proof. Note that dy is an Hy(R?, A?)-atom if ¢ € C§°(R3,AY). Then [p39 Adp = 0 if
ng gAh =0 for all h € D(R3, A?). Hence dg = 0 in R3.
Suppose h € D(R3, A?) and
h=>Aa,
k

where the ag’s are HY(R3, A?)-atoms, i.e. ar € L?(R3, A?) supported in balls By and
day = 0 in By. By Proposition A.1 in Appendix A, there exist functions ¢y, € HZ (By, Al)
such that ay = dipy, where HJ (B, A!) denotes the Sobolev space H'(By, Al) with zero
boundary values. From Green’s formula, for g € BMO(R3, Al) with dg = 0 in R3, we
have

/ g/\h:ZAk/ g ag

R3 . B

for all h € D(R3,A%). O

Now we are ready to prove our main result of this section.
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Theorem 3.3. If G+ Xq € BMO4(R3,AY)/Xq, then the linear functional L defined by
L(h) = G A h, (3.1)
RB

initially defined on D(R3, A?), has a unique bounded extension to H}3(R3 A?). Conversely,
if L is in HA(R3, A?)*, then there exists a unique G + Xo € BMO4(R3,A')/Xo such that
(3.1) holds. The map G + Xy — L given by (3.1) is a Banach isomorphism between
BMO4(R3,AY)/Xo and HL(R3, A%)*.

Proof. Let G € BMO4(R3,A!). Define
L(h)y= | GAh, hecD(R>A?).
R3

If |G| Brmoy®s,A1) = 0 then for any ball B,

inf G — qg|? dz = 0. 3.2
et /B G- gP do (3.2)

Since {g € L?(B,A') : dg = 0 in B} is a closed subspace of L?(B,A!) (see, for example,
[ISS, Corollary 5.2]), (3.2) implies that G € L?(B,A!) with dG = 0 in B for all B C R3.
Hence dG = 0 in R3. By Lemma 3.2 we have

Lhy= | GAh=0 forall hec D(R? A?).
R3

Therefore we can define p; : BMOg(R3,A')/Xo — D(R3,A%)* by
p1(G + Xo)(h) = / G Ah, he DR A?).
R3

The proof that, for every G € BMO4(R3, A), the linear functional (3.1) is defined and
bounded on H(R?, A?) depends on the inequality

| [, 6 A < ClGlasio, @ an 1B, (33)

for G € BMO4(R3?,A') and h in the dense subspace D(R3, A?) C HL(R3, A?).
Similar to the proof of Lemma 3.2, write h € D(R3, A?) as a finite sum of atoms a
supported in balls By,. For all g, € L?(By, A') with dgr = 0 in By, we have

(/RBG/\h‘S;MM)/Bk(G gk)/\ak‘
1/2
<> Al (/ G — gil” dfc> laklL2(B,.n2)
k Br
] , 1/2
<l (7 ), 16 -l )
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where we used the size condition of ag. This gives

1 1/2
G/\h’ﬁ A inf(—/ G- 2d;c)
/. S iulint (7 [, 16—

< Cllhllry®s a2y Gl Baros®s A1)

Then (3.3) is proved. Therefore each G € BMO4(R3, A1) gives a bounded linear functional
on the dense subspace D(R?, A?), and thus on H}(R3, A?).
Let
Yy :={g € BMOR? A" : dg = 0 in R?}.

Note that HL(R3,A?) is a closed subspace of H!'(R3,A?). Applying the Hahn-Banach
Theorem and Lemma 3.2, one finds that Yj is a closed subspace of BMO(R?, A!) and the
map

P2 L — G + YO

is a Banach isomorphism between H}(R? A?)* and Y := BMO(R?,A')/Y}, and
[Lllop ~ IG + Yolly,

where L € H}(R?, A?)* is defined as in (3.1), || L||op is the operator norm of L.
Define
pPs3 - G+Y0 — G—I—Xo

from Y to BMOy4(R3,A')/Xy. We next show that p3 is well-defined and bounded. For
G € BMO(R3,AY), g € Yy and a ball B C R3, we have

1/2 1 1/2
f G—qggpl*d < inf | — G—qg—cl*d
i (|Br/' 5| x) —cle“Al(rB|/B‘ 9= ‘””) ’

where the infimum in the left-hand side is taken over all gg € L?(B, A!) with dgg = 0 in
B and that in the right-hand side is taken over all constant forms ¢ € A!. Hence

|Gl Brro, @3 a1y < giélxﬁ |G — gllBmoms, A1y = |G+ Yoy
0
It is straightforward to check that

psopaopr =1, piropsopy =1,

where I denotes the identity map. Hence the theorem is proved. [

4. PROOF OF THE MAIN THEOREM.

Using the duality result in the previous section we next prove our main theorem of this
paper: the following “div-curl” type theorem on R3. The N —dimensional case is studied
in Section 6.
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Theorem 4.1. Letbe L2 (R3 A'). Then

loc

sup bAduAdv~ ”bHBMOd(R?’,/\l); (4.1)
u,veEW JR3

where W = {w € H'(R?) : |[dw||p2rs )y < 1}. The implicit constants in (4.1) are
absolute constants.

Proof. Suppose b € BMO4(R3, A'). From Theorem I1.1 in [CLMS] (see also Lemma 6.9 in
Section 6), du A dv € HY(R3, A?) for u, v € H*(R?) and there exists an absolute constant
C such that

||du A\ d’l)||7.[1(R37/\2) S C’||du||L2(R37,\1) ||dv||L2(R3’/\1). (42)

Further, du A dv € H}(R3, A?). From (3.3), (4.2) and the assumption on u and v, we have

‘/Sb/\du/\dv < 1bll 3 aroncrs py lds A dollyes o ney
R
< C||bl| Brroa®s,ary-

On the other hand, we need to prove that there exists an absolute constant C' such that
for all balls B C R3

1/2
1
inf (—/ b—gB|? d:z:) < C sup ‘/ b AduAdvl, (4.3)
1Bl /5 RS

9B u,veW

where the infimum is taken over all g € L?(B, A!) with dgp = 0 in B. Since the left-hand
side of (4.3) is invariant by scaling, to prove (4.3) we need only to show that for the unit
ball By, there exist ug € H&(BO), Vg € H&(QB()) with HdUOHLZ(Rf‘,/\l); |‘dU0HL2(R37/\1) <1

such that 1o
inf (/ b — gof? d:z:) < c( / b A dug A duo|, (4.4)
go Bo Bo

where the infimum is taken over all gy € L?(Bo, A') with dgo = 0 in By.
We now prove (4.4). Let

H ={h € L*(By,A") : 60h=0 in By, nV h|op, = 0}.
Since H is a closed subspace of L?(By, Al), we have the decomposition:
L*(Bog,\")=H o H*, (4.5)
where H+ denotes the orthogonal complement of H in L?(Bg, A') and
H* ={dq:q € H"(By)}

(ref. [GR, Theorem 2.7]). Let b € L?(Bo, A'), (4.5) gives that b = h + dq, where h € H,
q € H'(By). Then we have

/ b/\duO/\d?}():/ h/\dU0/\d?}0
BO BO
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1/2
inf (/ b — gol? d:]:) < IRl 22(Bo,A1)-
By

go

and

Therefore to prove (4.4) it is sufficient to prove that there exists an absolute constant C
such that

IIhIILz<BO,A1>§C\/B h A dug A dvg (4.6)
0

for all h € H.
Applying Proposition A.1 in Appendix A, for h € H, there exists ¢ € Hg(Bg, A') and
an absolute constant Cj such that
xh = dy

and
[Dellz2(By,n1) < CollhlL2(By A1) (4.7)

(* is the Hodge star operator). Thus we have

VA2 pt) = / hAdg
By

= / h A d(prdzy + padzy + p3drs)
By

< 3 max ‘/ h A dg; A da;
By

1<i<3

= 3‘/ h/\ngiO /\dZCZ'O
By

for some choice of ig (1 < iy < 3). Define

_ Pig
Collh]|L2(Bo,A1)

Uug

It is obvious that ug € Hy(Bg) and ||dugl[r2ms A1y < 1 by (4.7). We now construct vo.
Let ¢ € C§°(R3) such that
1 in Bo,
Yo =

0 outside 2B.

Define
vo = YTiyYo, 1< <3,

where v > 0 is a constant so that ||dvgl|z2rs, A1) < 1. It is easy to check that vy € C§°(2By)
and dvy = ydx;, in By, So (4.8) and the construction of ug and vy give

dp;
Bl 125 any < 3C —1]/h/\ »
1Rl z2(5o,n1) < 3C0y By CollhllL2so.an

A ydzi,
- 3007—1‘ / h A dug A dvg ).
By

This proves (4.6). The proof of Theorem 4.1 is completed. [



HARDY SPACE OF EXACT FORMS ON RY 13

Remarks. (1) It is easy to check that the following estimate of the quadratic form det Du
can be derived from Theorems II.1 and III.2 in [CLMS]

16/l Bamo(r2) ~ sup/ b det Du dzx, (4.9)
u R2

where the supremum is taken over all u € H'(R* A') with |du;|| 2@z, A1) < 1,7 = 1,2.
Theorem 4.1 is an extension of (4.9) to three-dimensions.

(2) We are especially interested in the three-dimensional case, because, as shown in the
following section, Theorem 4.1 can be used to give coercivity properties and Garding’s
inequality of some polyconvex quadratic forms.

5. APPLICATIONS

In the study of homogenization of linearized elasticity, Geymonat, Miiller and Tri-
antafyllidis [GMT] considered the following system
X
diva A (=)0su; = f in Q
a2 = I (5.1)
uloq = 0,

where A;Jﬁ(x) is a periodic measurable function, 1 <, j, a, 8 < N. A quantity A is
introduced which gives a criterion of whether an elliptic system satisfying the Legendre-
Hadamard condition can be homogenized, namely

Jn A” 1) 0pu; Ogu;dx -
Ao { e DuPdr U EGTEYAY
RN

It was proved in [GMT] that if A > 0 some homogenization results can be obtained for
the system (5.1). If A < 0, the system cannot be homogenized. Zhang asked the following
question: what conditions on the coefficient A’ ’Jﬁ of the system imply that A > 07

For N = 2, this question was answered by Zhang in [Z]. Motivated by [Z] we answer
the question for NV = 3. Suppose that Aofﬁ( )0qu;Ogu; can be written in the form

Aifﬁ ()0qu;Opu; = Bgfb(x)ﬁauiﬁguj + b;j(z)(adj Du), 5, (5.2)

where Ag‘jﬂ, B;’B € L>°(R3), Bé’{@,@auiaguj > C|Dul?, adj Du denotes the adjoint matrix
of Du for u € HY(R3, A!) (the summation convention is understood). We are interested in
forms of this type in three dimensions, because they arrive naturally from the linearization

of polyconvex variational integrals studied in nonlinear elasticity by Ball in [B].
When i = 1, the last term in (5.2) becomes

3
> bij(z)(adj Du)y
j=1

= by1(x)(adj Du)11 + bi2(x)(adj Du)q 2 + bis(x)(adj Du)q 3
bll b12 b13

= det 81UQ 82U2 83UQ
81U3 82%3 83U3

= bl N dUQ N dU3.
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For ¢« = 2, 3, we have similarly
3" boj(2)(adj Du)aj = by A duy A dug

and

3
Z bs;(x)(adj Du)s,; = bs A duy A dug,

where b; = (b;1, bi2, b;3). Let a(u) denote the following polyconvex quadratic form
a(u) = |Dul? 4+ by A dug A dus + by A duy A dus + b3 A dug A dus, (5.3)

where by, by and b3 are one- forms So the question when A > 0 becomes: find necessary
conditions of b; such that [p; a(u) de > 0 for all u € H'(R?, A'). In fact the conditions are
that ||b;|| paro,®s,A1) cannot be too large. We prove this by using Theorem 4.1. Another
application of Theorem 4.1 is to prove the weak coercivity property - Garding’s inequality.

5.1 Coercivity

For coercivity we give an “almost” necessary and sufficient condition on b; such that
Jgs a(u) dz > 0 for all u € H'(R?, Al).

Proposition 5.1. Let a(u) be the expression shown in (5.3).
(1) There exists an absolute constant Cy such that maxi<;<s ||bi||ro,ms Ay < Ch
implies that

1
[ atw dz = J1DulR e
R3

for all u € Hl(R?’ Ab).
(2) If [gs a(u) dz >0 for allu € H'(R?, AY), then there exists an absolute constant Cy
such that

max [|bill paros ey < Co. (5.4)

Proof. (1) Let b; € BMO4(R3,A') and u € HY(R3, A1), From (3.3) and (4.2), we have

/]R a(u) dr

> || Dullfe e n) = (161l mar0u3,00) iz A dats g e ey
+ b2l Brrogr2 A1) [[dur A dus || s a2y

113l 3ar0,s 2 0 s A duzlags e ) )

> || Dull72 s a1y — legax 163 BrO L (3 AL <||du2||L2(R3 anylldus || L2 ms Ay

+ || dur || 2 (r3 A1) || dus || L2(r3 A1)

+ lldua |2 o iz 2w ) )

> (1 —-C max, Hbz’”BMOd(R?’,/\l)) [ Dull72 (g3 ar)-



HARDY SPACE OF EXACT FORMS ON RY 15

So

1%??3 16ill BrroL(R3, A1) < C1 = 20

implies that
1
[ alw do = 51Dul o
R3

for all u € H'(R3, AL).
(2) From Theorem 4.1, there exist absolute constants C' and C’ such that

C||b||BMOd(R3,/\1) < sup bAduNdv < C/HbHBMOd(RS,/\l)‘
u,veEW JR3

For any & > 0, there exist u®, v® € H'(R?®) with ||du|| 2z A1), [|[dv°|| 2R3 A1) < 1 such
that

CHbHBMod(RB’/\I) —e< / b A du® A dv®. (55)
R3
For b; and € = 1, (5.5) gives
/ bi Ad(—u') Adv' < — C|bi|| Baro, e ary + 1. (5.6)
R3

Let w' = (0,—u',v'). Since [psa(u) de > 0 for all u € H'(R? A'), in particular
Jgs a(w') dz > 0. Combining this with (5.6) we get

0< [ |Dw'|? d:c+/
R3 R

< IDw![72@s a1y = Cllbill Brrog e,y + 1

bi Ad(—u') A dv?
3

<3 = C||bs|| Brrogms,ary-
Hence

1@?53 ||bz‘||BMOd(R3,/\1) <Cy = ok

Proposition 5.1 is proved. [

5.2 Garding’s Inequality

The proof of Theorem 4.1 implies the following result

Lemma 5.2. Let Q C R? be an open domain and b € L?, (2, AY). Then there exists an
absolute constant Cs such that

1 1/2
sup inf <—/ b — g? dx) < (5 sup bAduA dv, (5.7)
B 9 |B| B u,veW JQO

where the supremum in the left-hand side is taken over all balls B with 2B C (), the
infimum is taken over all g € L*(B,A) with dg = 0 in B, and W = {w € H}(Q) :
Iduwll s < 1}

Remark. The two sides of (5.7) are actually equivalent when  is a special Lipschitz
domain or a bounded strongly Lipschitz domain. See Theorem 6.1 of [LM1].

Let us denote the left-hand side of (5.7) by [|bl| paros (o,a1)-
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Lemma 5.3. Let Q C R? be an open domain, a(u) be the expression shown in (5.3) and
Joa(u) de >0 for allu € Hy(Q,A'). Then there exists an absolute constant Cy such that

ax, 16l Brros @,n1) < Ca

Proof. Using Lemma 5.2, similar to the proof of Proposition 5.1 (2), we can prove the
proposition. The details are omitted. [

For b € L? (R3 Al), define

loc

1 1/2
bl = 1i inf (— [ |b—g|*d , 5.8
Il = supint (7 [ = a ) 5.9
where the supremum is taken over all balls B C R? with radius less than [ > 0, the
infimum is taken over all g € L?(B, Al) with dg = 0 in B.

Proposition 5.4. Assuming Gdrding’s inequality holds for [5s a(u) dx, that is, there exist
constants A\g > 0, Ay > 0 such that

/ a(u) dr > Ao |Du|? dx — )\1/ lu|? dx (5.9)
R3 R3 R3

for allu € HY(R3, AY). Then
max |[|b;[|. < C4,
1<:<3

where Cy 1s the same constant in Lemma 5.5.

Proof. From (5.8), there exists a sequence of balls B,, = B(z,r;) C R3 with r, — 0 such

that
| 1/2
inf / bi—gldz| - [bil.. (5.10)
9 ‘Brk’ BTk

Suppose that v := vidz; + vadze + v3dzz € HY(R3, A1) is supported in 2B,,. By (5.9),

/23 |Dv(x)|? dx —I—/ bi(z) A dva(x) A dvs(z)

Tk 2B,
+ ba(z) A dvi(x) A dvg(x) + bg(x) A dvy (z) A dva(x)
>\ /23 Du(@)? dz — M /ZB (@) da. (5.11)

Tk "k

Set © =z, + 2rpy and let v*(y) = v(xy, + 2rpy), b¥(y) = bi(zx + 2rky) in (5.11) we have

/ P / B () A dul () A dok ()
B(0,1

B(0,1)
+ b5 (y) A dvf(y) A dok(y) + b5 (y) A dof (y) A dvs (y)

>0 [ D@ Ay -n [ PP dy
B(0,1) B(0,1) (5.12)
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for all v* € Hg(B(0,1), A'). For ry sufficiently small, by Poincaré’s inequality the right-
hand side of (5.12) is non-negative, i.e.

/ a(v®) dy >0
B(0,1)

for all v* € HJ(B(0,1), A'). This yields
1 1/2
max inf | ——— bfy—gy 2dy <C 513
12153 g (lB(0,1/2)| B(0,1/2)| (¥) —9(v)] 4 (5.13)

by Lemma 5.3, where the infimum is taken over all g € L?(B(0,1/2), A') with dg = 0 in
B(0,1/2). Let y = %5™, (5.13) gives

1<i<3 §

1/2
1
max inf / bi(z) — §(2)|? de | < Cu, (5.14)
|lgrk‘ lBTk

where §(z) € L?(B,,,A!) with dg = 0. Combining (5.12) with (5.14) we have

max |[b;[l. < Cj.
1<:<3

The proof of Proposition 5.4 is finished. [

6. HARDY SPACES OF EXACT FORMS ON R¥

In this section we introduce Hardy spaces of exact forms on RY and study their atomic
decompositions and dual spaces. Using duality results we prove that Theorem 4.1 holds
on RN when b, u, v are respectively k, m, I-forms with k +m 41+ 2= N.

6.1 Definitions

Definition 6.1. For 0 <[ < N, the Hardy space of I-forms is defined as
HY RN, A = {f : RY — Al: each component of fisin H'(RY)}

with the norm

£l e oary = > el ey
I

for f =", frdzr.

Definition 6.2. Let 1 <[ < N. The Hardy space of exact l-forms is defined as
HLRY, AN = {f e HYRY, A : f =dg for some g € D'(RY, A7)}

with the norm

[l v ey = 1l @ ay-

Remark. Whenl = N, HL(RY, Al) is isomorphic to the usual Hardy space H*(R"). When
[ =N —1, HY(RY Al is isomorphic to the divergence-free Hardy space HJ,, (RN, RY) :=
{f e HYRN,RN) : div f =0 in RN},
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Definition 6.3. We say that a is an HL(RN, Al)-atom if

(i) there exists b € L2(RY, Al=1) supported in a cube @ in R such that a = db;

(ii) @ and b satisfy size conditions: [|a||p2(g ) < 1Q|~1/2, 16/ L2, at-1) < 1(Q)|Q~Y/2,
where [(Q) denotes the side-length of Q.

6.2 Atomic Decompositions and Dual Spaces

The main result of this section is the following atomic decomposition theorem for
HL(RN,AY). We also characterize its dual by using this decomposition.

Theorem 6.4. Let 1 <1 < N. An l—form f on RY is in Hcll(RN,/\l) if and only if it
has a decomposition

k=0

where the ay,’s are HY(RYN, AY)-atoms and > p- | A\k| < 0o. Furthermore,

1l v Aty ~ inf (Z P\k’) ,
k=0

where the infimum is taken over all such decompositions. The constants of the proportion-
ality depend only on the dimension N.

Proof. We first prove the “if” part. Suppose that f can be written as (6.1) with
Dl < oo, (6.2)
k=0

where the ay’s are HL(RN, Al)-atoms, i.e. there exist by € L2(RN, A'"1) supported in
cubes Q) such that ay = dby and ||bg|| 2@y At-1) < l(Qk)|Qk|_1/2. We need to show that

g = Z )\kbk
k=0

exists in D/ (RY, Al71), for then f = dg € HL(RN, Al).
To prove g € D'(RN, Al=1), it is sufficient to show that the sum >~ Agby is convergent
in the sense of distributions. From (6.2),

n
Z|)\k|—>0 as  m, n — o00.

k=m

Combining this with the size condition of by, for any ¢ € C5°(RY, AN=1+1) with compact
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support 2,

‘/ (Z )\kbk> /\cp‘ < Z |Ak|(/mekw)

<C Z N1kl 22 @rnant-1)| Q@ N Q2

k=m

<O M l@r)|QKI T2 IQe N QM

k=m

n
SCZ|)\k|—>O as m, n — 0o,

k=m
where the constant C' depends only on ¢. The convergence of Z;O:o Aibi is proved.
The proof of the “only if” part is similar to that of Theorem 2.3 in Section 2, so we

only give an outline of the proof. From the proof of Theorem 2.3, we know that any
f € HLRN, A can be written as

> dt
f== [ ta(tsre e o) 5 (63)
0
where ¢ € C§°(RY) with support in the unit ball and [;° t|¢|?¢(t£)? dt = 1. For y €

RN, ¢t > 0, define
F(y,t) = to(f * 1) ().

Let f = ZI frer € /\l, then

Zta fr* o) (y)u; (er) fo* 0s0)¢(y) i (er).

Applying (2.1), we get F € NY(RY T A1) and
||F||/\/1(Rf+1,/\lfl) < C||f||H1(RN,Al)-

From atomic decompositions for tent spaces,

k=0
with .
Z x| < C||F||N1(Rf+1,/\l—1)’
k=0

where the ay’s are N2(RY ™! Al71)-atoms. Define

ap = _/000 td(ak(-,t) * got>%.
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From (6.3) and (6.4), we have
f = Z )\kalm
k=0

where ay is supported in a ball 2B; and satisfies the size condition: |lag||r22p, Aty <

C|2By,|~'/? for a constant C independent of k. Applying Lemma 6.7 (1) in Section 6 to
ay, there exists by € L2(RY, Al=1) supported in 2By, such that aj = db; and

68|l L2 23, a1-1) < C 7(2By) |28 72,

where r(2By,) denotes the radius of the ball 2By, and C' is independent of k. Let Qf be a
smallest cube containing 2B;. Then

lak |l z2(gpny < ClQk|Y?
and

1051|220 n1-1) < C U(Q1)| Qx| ™2

for some constants C' independent of k. We have proved that a; is an H}Z(RN , AY)-atom.
The proof of Theorem 6.4 is finished. [

Now we consider dual spaces of HL(RN, Al). Let BMO4(RY,AF) (0 < k < N) be the
space of all locally integrable functions G : RV — AF with

' 1 1/2
|Gl BrroL @Y Ax) = Sléplgr}af ("7' /B |G — gB|? da:) < 00,

where the supremum is taken over all balls B in RY and the infimum is taken over all
g € L*(B, \F) with dgg = 0 in B. Consider BMO4(R™, AF) /X with the norm

|G + Xoll Brmro. @y ax)/x0 = Gl BMOL@N AF)S

where Xo = {G € BMO4RN,A*) : |G|l grvogry axy = 0}. We see that when k = 0,
BMO4 (RN, A% /Xy reduces to the usual BMO-space on RY. The following theorem
is an analogue of Theorem 3.3, which reveals that the dual of H}i(RN ,Al) is the space
BMO4(RN , AN=1)/Xq. Tts proof is similar to that of Theorem 3.3, so we skip the details.
Let D(RY, Al) denote the vector space finitely generated by HY(RY, Al)-atoms. Theorem
6.4 implies that D(RY, A!) is dense in HL (RN, Al).

Theorem 6.5. Let 1 <1 < N. If G+ Xqg € BMO4RYN AN=1)/X,, then the linear
functional L defined by

L(h) = G A\ h, (6.5)

RN

initially defined in D(RYN, A!), has a unique bounded extension to H3 (RN, Al). Conversely,
if L € HY(RN AN, then there exists a unique G+ Xo € BMOg(RYN ,AN=Y) /Xy such that
(6.5) holds. The map G + Xy — L given by (6.5) is a Banach isomorphism between
BMOg(RN , AN=H /Xy and HL (RN, Ab*.

6.3 The “Div-Curl” Type Theorem on RY

We now prove the “div-curl” type theorem on R, which is a generalization of Theorem
4.1 to N-dimensions and to forms of all degrees.
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Theorem 6.6. Letbc L2 (RN A, I, m, n>0andl+m+n-+2=N. Then

loc

sup /]RN bAduAdv~ bl prro, @y Aty (6.6)

u,v
where the supremum is taken over all u and v with

u < HlGRNJ/\m)a ||du||L2(RN,/\m+1) <1
NS Hl(RN,/\n), ||dU||L2(RN’/\n+1) <1

The implicit constants in (6.6) depend only on N.
To prove Theorem 6.6 we need the following lemmas.

Lemma 6.7. Let B be a ball in RY.
(1) If u satisfies either of the following conditions:
1)ue L?(B,AY), du=0in B and n Aulsgp =0 when 0 <1 < N;
2) uw € L*(B,AY) with [u =0, where | = N,
then there exists ¢ € HE(B,A'"1) and a constant C independent of u and B such that

u = dop,
Dl L2 (5,a-1y < CllullL2(B, A1 (6.8)
and
lellz(, a1y < C r(B)|lullL2(p Aty (6.9)

(2) If u satisfies either of the following conditions:
1)ue L?(B,AY), 5u=01in B andnV ulspp =0 when 0 <1 < N;
2) uw € L*(B,AY) with [u =0, where | =0,
then there exists ¢ € H} (B, ALY and a constant C' independent of u and B such that

u = 6y

and
DY L2, a1y < Cllullp2(,a1)-

Proof. (1) When u satisfies the conditions of 2), Lemma 6.7 (1) is a special case of Necas’
result [N, Lemma 7.1, Chapter 3]. So we only prove 1). From Theorem 3.3.3 in Chapter
3 of [Sc], there exists ¢ € H*(B, A'1) such that

u=dp, vlop =0
and

lellm (s a1y < Cllullpzcsan

for some constants C' independent of u. So the only thing we need to check is that the
constants in (6.8) and (6.9) are independent of balls B. We only prove this for (6.9). Let
B = B(xg,r), xg be the center of B, r = r(B). It is easy to check that u(zo+ry), y is in the
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unit ball By, satisfies the conditions of 1) for By. So there exists w € Hi(By, ANI71)
and a constant C' independent of u and r such that

u(ao + ry) = a2

and .
etz +ry)liee s, a1y < C llulzo +1y)l L2 (8o,n1)-
This is equivalent to (6.9) by a simple computation.

(2) can be derived from Corollary 3.3.4 of [Sc, Chapter 3|, Necas’ lemma and a similar
discussion to (1). O

Remark. Lemma 6.7 holds when B is replaced by any smooth and contractible domain in
RY, though with constants C' which depend on the domain.

Lemma 6.8 [GR, Theorem 2.7]. For a ball B C RY and 0 < | < N, let H =
{u € L3(B,AY) : du =0in B, nAulpp = 0} and H = {u € L*(B,A!) : 6u =
0in B, nVulsg =0}. Then

L*(B,A" = H® {6w:w e HY(B,AN"™)}
= H @ {dw:we H (B,AN""}.
The following result is a generalized version of the “div-curl” lemma by Coifman, Lions,

Meyer and Semmes in [CLMS, Theorem II.1]. When m+[ = N it can be found in [HLMZ,
Proposition 4.1].

Lemma 6.9. If1 < p < oo, %—i—% =1,0<m+I<N,uec LP(RVN,A™), v € LI(RN A,
du = 0, dv = 0 in RYN. Then u Av € HY RN, A™) and there exists a constant C
independent of u and v such that

|u A vl @y amtry < Cllullpe @y amyl|v]lLa@y Aty

Proof. Suppose m +1 = N. When [ = 1, Lemma 6.9 becomes Theorem II.1 of [CLMS].
The proof of the case [ # 1 is completely similar to the case of [ = 1.
If m+1 < N, we know that u Av € HY (RN, A™*!) if and only if u AvAdz;, ,, , A A
dz;, € HY (RN AN). Set
V:?}/\dl'im+l+l /\"'/\dl’iN.
Then v € LY(RY, Al) and dv = 0. This implies that V € LI(RY, AN=™) and dV = 0. For
u and V, applying the result when m +1 = N, we have u A V € H!(RY,AN) and

Ju AVl wy anvy < Cllull o @y am) |V | Loy anv—m)
= CllullLr @~ am)ll0l| La@y At)-
This proves the result. [

We are now ready to prove Theorem 6.6. There are some similarities between its proof
and that of Theorem 4.1.
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Proof of Theorem 6.6. Suppose that u and v satisfy (6.7). Lemma 6.9 yields that duAdv €
HL(RN AmHn+2) and

||du A dUHH}l(RN’/\Nfl) = ||du A dU||H1(RN7/\m+n+2)

S C”duHL?(RN’/\m«f»l)”d’UHL2(RN,/\n+1) S C.

Let b € BMO4(RY,AY) and h € HYRY AN7Y). By using a similar argument as in
Theorem 3.3, we have

| [ 5] < Clblsasoums mollbleycam. v,
R
Therefore

< |16l Brrog @y A1 lldu A deH}i(RN,/\N*l)

’/ b A du A dv
RN

< Olbll Brrog @ Al

We now prove the reversed inequality in (6.6). By scaling we need only to show that
for the unit ball By, there exist ug and vy with

Ug € Hé(BO,/\m), ||du0||L2(RN,/\7n+1) <1, (6 10)
Vo € H&(ZB(),/\”), HdU0||L2(RN7/\n+1) < 1 '
such that
1/2
inf (/ Ib— gol? dx) gc’/ b A duo A du|, (6.11)
go Bo By

where the infimum is taken over all gy € LQ(BO, /\l) with dgg = 0 in By and C' is a constant
independent of b, ug and vy.

Let b € L?(By, A!), Lemma 6.8 gives b = h + dq for h € H' = {h € L?(Bo,\!) : 6h =
0, nV hl|og, = 0} and ¢ € H'(By, A'"1). We have

/ b/\duO/\d?}():/ hAdUo/\dUO
BO BO

1/2
inf (/ |b—go|2 dac) < ||h||L2(BO,/\l).
go By

Thus to prove (6.11) it is sufficient to show that there exist ug and vy satisfying (6.10)
such that

and

||h||L2(Bo,/\l) < C‘/B h/\dU()/\d’U() (6.12)

for all h € H', where C does not depend on h, ug and vy.
Applying Lemma 6.7 (2) to h € H', there exists ¢ € H(By, A1) and a constant Cj
independent of h such that
h=2dp
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and
1Dl 2By, nt+1y < Collhll 2(By,A1)- (6.13)

Let ¢ = >, prdxy, where I = (i1, ,i141), 1 < iy < -+ <41 < N. Then

xh = *xdp = d* p = ingpI A (xdz).
I

Denote *dxy by dxy, where J = {j1,- -+, jmins1}, 1 < J1 < - < jmynt1 < N. Thus

HhH%Z(BO’/\l) SZ‘/B h/\d(p[/\dflfj‘
T )

§Cmax‘/ h/\dgpf/\dxj‘
I Bo

= C( / h A dor, Adzy, (6.14)
Bo
for some choice of Iy, where dxj, = *dzy, and C = (141\-[1)' Let Jo = {Jo1s " > J0minsr )

Define
Sofodxjol /\ e /\ dxj()?n
ug =

CollPllz2(5y,a1)

It is easy to check that ug € Hj(Bo, A™) and ||dugl|p2gx am+1y < 1 by (6.13).
Now we construct vg. Let 99 € C5°(RY), 1) equals 1 in By and 0 outside 2By. Setting

/UO - 7¢0xj0m+1 dxj0m+2 /\ e /\ dxj0m+n+1 )

where v > 0 is a constant so that ||dvo|[r2@ny ant1y < 1. So vy € C§°(2By, A™) and
dvy = ’yala:jomJrl /ARERWA d;13j0m+n+1 in By.

Combining (6.14) with the construction of uy and vy, we obtain
Hh||L2(BO,/\l) < C”/ h A dug A dvgl,
Bo

where C' = =1 (lfl)C’O. This proves (6.12). The proof of Theorem 6.6 is completed. [

Remarks. (1) From the proof of Theorem 6.6, we see that the equivalence in (6.7) is
also true if the supremum is taken over all v € HYRN A™), v € HY (RN A") with
HDUHLZ(RN7/\m+1), ||D'UHL2(RN’/\n+1) <1

(2) The case l = m =n =0 and N = 2 in Theorem 6.6 yields the Jacobian determinant
estimate (4.9).

Let l=m =0,n= N — 2. Theorem 6.6 becomes
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Corollary 6.10. Forbe L? (RV),

loc
16l Baro@®NY ~ Sup/ baAp,
o, JRN

where the supremum is taken over all « € L?>(RN A, B € L2(RN , AN =Y with da = dff =
0 and ||(X||L2(RN7/\1), ||6||L2(RN7/\N—1) <1.

It is easy to see that Corollary 6.10 is equivalent to the following result by Coifman,
Lions, Meyer and Semmes in [CLMS, page 262] (“Div-Curl” Lemma): for b € L? (RY)

loc

16l Brro@~y ~ SUP/ bE-F dx,
E,F JRN

the supremum being taken over all E, F € L*(RY,R¥) with div E = 0, curl F = 0 and
HEHL2(RN,RN)7 HFHLQ(RN,]RN) <1.

6.4 A Decomposition Theorem

In [CLMS, Theorem III.2], Coifman, Lions, Meyer and Semmes proved a decomposition
of HY(RY) into “div-curl” quantities. We now give a similar decomposition for Hardy
spaces HL (RN, Al).

Theorem 6.11. Let 1 <1 < N and 0 < m <[1—2. Then any f € H;(RN,/\Z) can be
written as

= A dug Advy
k=0

with

& 9]

Z Akl < Cllfllr ey Ay

k=0

for some constants C depend only on N, where uy, € HY (RN, A™) and v, € HY (RN, Al=m=2)
with ||dUk||L2(]RN7/\m+l), ||d/Uk||L2(RN7/\l7m71) < 1.

Proof. By Theorem 6.4, any f € H:(RM, Al) has a decomposition
i=0
where the a;’s are H3(RY, Al)-atoms and

D il < CllFllrer ey ay

=0

for constants C' depending only on N. For simplicity we drop the subscript ¢ of a; tem-
porarily. Since a := a; is an H}: (RN, Al)-atom, i.e. there exists b € L?(RY, Al=1) supported
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in a ball B such that a = db and ||al[z2(p A1) < |B|~'/2. Applying Lemma 6.7 (1), there
exists ¢ € HY (B, A'"1) and a constant Cy independent of a and B such that

a=dy (6.16)

and
D¢l 25 a-1) < Collall 2B Aty

Let o =Y ;prder, I = (i1, ,i1-1), 1 <3 <--- <41 < N. From (6.26) the atom a
can be written as

a:ngol/\dxil A ANdzy,

I
= Zdwo_l\B\l/Zw) Adxi, A--- Adx /\d(CoyB’—l/zximH) Ao Adas
I
For any I, define
uery = Cg MBI Prdwi, A+ Adai,.

Then upy € Hy(B,A™) and ||du(r)| 2(p,am+1) < 1. As in the proof of Theorem 6.6, define
Yy € OgO(RN). Let

V() = VCO‘B‘_1/2wB(ZCim+1 - x(i)m+1)dxim+2 ARRRNA dxil—l’

0

where ¥p(z) = g (u), 2% denotes the center of the ball B, r = r(B), 7 is a con-

stant independent of 20 and r such that ||dv(p|p2(p ai-m-1) < 1. We see that vy €
C3°(2B, A-2) and

dv(py = vCo|B|"*?dx;, ,, A---Adx;, , in B.

Thus any atom a can be written as

a = ’y_lZdU([) /\dU(I).
I

Combining this with the atomic decomposition of f in (6.15). We proved Theorem
6.11. O

Let I = N, m =0 in Theorem 6.11 we get
Corollary 6.12 ([CLMS, Theorem III.2]). Any f € HY(RY) can be written as

f:Z)\k Ey - Fy,
k=0

with -
Z Akl < Ol fllr e
k=0
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for a constant C depending only on N, where Ey, Fj, € L?*(RN,RY) with div By =
curl Fk =0 and ”EkHLQ(RN’RN), ’leHLQ(RN’RN) < 1.

The proof of Corollary 6.12 in [CLMS] is based on two results from functional analysis
([CLMS, Lemmas III.1 and I11.2]). The proof we have given is more natural in the context
of the theory of Hardy spaces.

APPENDIX A. SURJECTIVITY OF THE curl OPERATOR

In this appendix we present an unpublished result of Costabel [C], that in three dimen-
sions, the operator curl is surjective from H} (2, R3) to a closed subspace of L?({2) when
Q) is a bounded contractible strongly Lipschitz domain in R3. For ¢ € D’'(), we adopt
the notation D) = (011, a1, D31)), while for v = (vy,ve,v3) € D'(2,R3), we define the
divergence and curl operators by

3
divo = E ai?]z'
i=1

and
curl v = (821]3 — 831)2, 831)1 — 811)3, 811}2 — 621)1) .

For a bounded Lipschitz domain  C R, the divergence operator is a continuous map
from Hg (Q,RY) onto LZ(Q), where H} (2, RYY) denotes the Sobolev space H' (2, RY) with
zero boundary values, and L3(Q) = {f € L*(Q) : [, f dz = 0}. This is a result by Necas in
[N, Lemma 7.1, Chapter 3]. We now consider the operator curl : Hg (2, R3) — L?(Q2,R3).
The next proposition shows that the operator curl is surjective from HE (€2, R?) to a closed
subspace of L?(£,R3).

Proposition A.1. Let Q be a bounded contractible strongly Lipschitz domain in R3, b €
L2(Q,R3), div b =0 in Q and n - blsq = 0. Then there exists u € Hi (Q,R3) such that

curl u =">

and
[ull 71 (,r3) < Clbl|L2(0,r3),

where the constant C' depends only on the domain €.

Proof. Let F denote the extension by zero of b to R®. Then div ' = 0 on all of R3.
Therefore there exists V € H_(R3 R3) such that F = curl V. On letting B be a large
ball containing 2, then F € H'(B). In the simply connected domain B\, curl V = 0, so
there exists ¢ € H?(B\Q) such that Dy = V.

Let E : H?(B\Q) — H?(B) be a bounded extension operator [St1]. The vector field
U=V — D(Ey) € H'(B,R?) has support in  and satisfies curl U = F. Thus the
restriction u = Ul € H (9, R?) solves the equation curl u = b as required.

The mapping b — w is a bounded linear mapping depending only on E. [J

Remark. In N dimensions, this result applies to solving du = b for u € H}(Q, A') when
b is a 2—form satisfying db = 0 and n A b|g = 0. The proof does not apply to general
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k—forms. However when the boundary of €2 is smooth, a slight adaptation of the above
argument gives an alternative proof of Lemma 6.7.

APPENDIX B. REVIEW OF DIFFERENTIAL FORMS

The setting of this section is that of forms on open domain  C RY. We give a brief
outline of the basic formalism.

Let {e1,---,en} denote the basis of Euclidean space RY and [ = 1,--- , N. The space
of all [—linear, alternating functions ¢ : (R¥)! — R is denoted by A/(RY), or just A
where there is no possibility of confusion. In particular A'(RY) is the dual of RV and
AY(RY) = R. The dual base to {e1,--- ,ex} will be denoted by e!,--- eV and referred
to as the standard base for A'(RY). The vector space of all forms A(RY) = &, Al (RY)
is equipped with the inner product

< Oé,ﬁ >= Zair”izﬁir"iz

for oo = > .. A Aet and B =Y B, A- - - Aet. For w € A(RY) the associated
norm is denoted by |w| =< w,w >1/2 The inner product induces a dual pairing between
AYRN) and AN =HRY) which results from the action of the Hodge star operator * defined
by

*1:61/\'--/\€N;

aNsf=<a,B>e' AN Nel

for all o, 3 € AY(RY). The exterior and interior multiplication operators on A(RY) are
linear operators defined by

pu t A — AT (1) = e*, p(e) = e ne, -

and . . .
pr, A — AL purn(e') = ogi, pr(e’ A el) = il — Opet, -

respectively. The exterior and interior operators can be written as ([GHL])

9 L0
dz;uka—xk, 52;#28—%-
We define the interior product between a 1-form o and an [—form u by setting
aVu=(—1)""DN (A xu).

Suppose € is a bounded Lipschitz domain in RY. We denote by L?(2, A!) the space of
square integrable [—forms on ().

Definition B.1. Let 0 < < N. For u € L%(9, Al), we say that du = 0 on § if

/u/\dgon
Q

for all ¢ € C§°(Q, AN 11,
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Definition B.2. For u € L?(Q, A!) with du = 0 on Q, we define nAu|pq € H~1/2(9Q, A1)
by
<nAulan, ¥ >a0= (—1>l/ uN\dV,
Q
where ¥ € CH(Q, AN=I71) and o = V|0, H1/2(09, A1) is the space of (I + 1)-forms f
each of whose components is in H~/2(99).

Remark. 1t is easy to show that the definition of < n A ulaq, 1) >0 is independent of the
choice of the extension W. Note that

In A uloallg-17200,n41) < CllullL2o,a

for all u € L?(2, Al) such that du = 0 (see, for example, [HLMZ]).
The Green’s formula is as follows: if u € L%(Q, Al) with du € L2(Q,AH1) and ¢ €
H(Q, AN=I=1) then

/du/\go—f—(—l)l/u/\dgoz<n/\u|ag,g0>ag.
Q Q

The formula follows from Stokes’ theorem and the facts that C$°(Q, A!) is dense in the
space {u € L2(Q,AY) : du € L?(Q, A'T1)} (see, for example, [ISS, Corollary 3.6]) and in
the Sobolev space H!(Q, AF).
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