
THE MONOGENIC FUNCTIONAL CALCULUS

Brian Jefferies, Alan McIntosh, James Picton-Warlow

Abstract. A study is made of a symmetric functional calculus for a system of
bounded linear operators acting on a Banach space. Finite real linear combinations
of the operators have real spectra, but the operators do not necessarily commute
with each other. Analytic functions of the operators are formed by using functions
taking their values in a Cli�ord algebra.

1. Introduction.

The notion of a monogenic functional calculus of commuting n-tuples of bounded
operators was introduced by A. McIntosh and A. Pryde in order to give estimates
on the solution of systems of operator equations [8, 9]. This led to the study of
the monogenic functional calculus of noncommuting families by A. McIntosh and
J. Picton{Warlow utilising plane-wave decompositions. V. Kisil and E. Ram��rez de
Arellano have also introduced a functional calculus for an n-tuple A of bounded
selfadjoint elements of a C�-algebra [5, 6], and for monogenic functions de�ned on
a su�ciently large ball in Rn+1. In this paper, we make precise the idea of the
monogenic spectrum (A) of an n-tuple A of noncommuting bounded operators on
a Banach space. It is a compact subset of Rn characterised as being the smallest
set about which a symmetric analytic functional calculus is de�ned. In further
work we use the monogenic functional calculus to analyse the support of the Weyl
functional calculus [3, 4].

The central idea is a natural extension of the Riesz-Dunford functional calcu-
lus for a single operator, but with functions of a single complex variable replaced
by functions de�ned in Rn+1 and taking values in a Cli�ord algebra. With the
appropriate notion of the monogenic spectrum (A) � Rn of A, we �nd that the
monogenic functional calculus coincides with the Weyl functional calculus WA ap-
plied to functions of n real variables analytic in a neighbourhood of the support
suppWA of WA. Furthermore, the equality (A) = suppWA holds [3, Theorem
6.2]. The Weyl functional calculus is a symmetric C1-functional calculus.

A C1(Rn)-functional calculus for an n-tuple A of bounded operators acting on
a Banach space X exists whenever A satis�es an exponential bound. One would
expect a monogenic functional calculus to exist even when such an exponential
bound fails. In this case, it is not possible to identify the Cauchy kernel G!(A),
! 2 Rn+1 n (f0g � (A)) for A as the monogenic representation of a distribution
WA with compact support suppWA � R

n [3].
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For a single bounded operator T , the resolvent (�I � T )�1 of T has a Neumann
series expansion for all � 2 C with modulus j�j > kTk. If the spectrum �(T ) of T
is real (so that C n�(T ) is connected), then the resolvent function � 7! (�I �T )�1,
� 2 C n�(T ), is the unique analytic function with maximal domain coinciding with
the function de�ned by the Neumann series expansion for j�j > kTk. The resolvent
of a bounded linear operator T is the Cauchy kernel for the Riesz-Dunford functional
calculus and its set of singularities is precisely the spectrum �(T ) of T .

A similar strategy may be applied to an n-tuple A of bounded operators acting
on a Banach space. The Cauchy kernel G!(A) may be de�ned by a multiple power
series expansion for all ! 2 Rn+1 with j!j su�ciently large [5, De�nition 3.11].
However, we need to know that ! 7! G!(A) is the restriction of a monogenic
function with a maximal connected domain in R

n+1. In the case that A satis�es
an exponential bound, so that a Weyl functional calculus WA exists, the equality
(A) = suppWA guarantees the existence of a unique maximal monogenic extension
| the monogenic representation of the distribution WA. If the n-tuple A is a
commutative system of operators, then the monogenic spectrum (A) coincides
with the Cli�ord spectrum considered in [5,8,9].

The purpose of the present work is to establish the existence of a monogenic
functional calculus for an n-tuple A of bounded operators acting on a Banach
space X, just under the condition that the spectrum �(hA; �i) of the operator
hA; �i = Pn

j=1Aj�j is real for every � 2 Rn. This amounts to showing that there

exists a compact nonempty set (A) � Rn, the monogenic spectrum of A, and
a monogenic function ! 7! G!(A), ! 2 Rn+1 n (f0g � (A)), coinciding with
the multiple power series expansion for G!(A) de�ned for all ! 2 Rn+1 with j!j
su�ciently large.

The existence of the Cauchy kernel G!(A) for the n-tuple A and the set (A) is
proved in Theorem 2.2 and Theorem 2.6 by appealing to the plane wave decompo-
sition for the Cauchy kernel [12, p.111]. In e�ect, we replace the Fourier transform
in the de�nition of G!(A) via the Weyl functional calculus (if this makes sense) by
a plane wave decomposition; we can do this provided that �(hA; �i) is real for all
real � 2 Rn. This is the key algebraic condition guaranteeing that the `resolvent
set' Rn+1 n (f0g � (A)g is connected | most of the analysis depends only on this
topological property.

The veri�cation that the function f(A) of the n-tuple A by a real analytic func-
tion f de�ned in a neighbourhood in Rn of the monogenic spectrum (A) is indeed
a bounded linear operator on X is given in Theorem 3.5. The proof appeals to the
fact that the unique monogenic extension ~f of the real analytic function f may be
approximated uniformly on compact subsets of the domain of ~f in Rn+1 by the
monogenic extensions of scalar valued polynomials de�ned on Rn. This function
theory result is proved in Proposition 3.2.

In Theorem 3.6, we make precise the observation that the monogenic spectrum
(A) is the smallest set about which an analytic functional calculus is de�ned: if
there exists a `functional calculus' TA de�ned for all functions of n real variables
analytic in an open neighbourhood of a compact set K � R

n and with the property
that TA(p(h � ; �i)) = p(hA; �i) for all polynomials p : R ! R and � 2 Rn, then
necessarily �(hA; �i) is real for all � 2 Rn and (A) � K. Moreover, TA agrees with
the monogenic functional calculus for those analytic functions de�ned in an open
neighbourhood of K.
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Even in the case of commuting systems of operators, the use of Cli�ord analysis
leads to simpli�cations in the construction of functions of operators. In Theo-
rem 3.9, we show that Taylor's functional calculus [13] for commuting systems
(A1; : : : ; An) of operators acting on a Banach space coincides with the monogenic
functional calculus in the case that �(Aj ) is real for every j = 1; : : : ; n.

The notation of [3] concerning Cli�ord algebras is used. If F denotes the �eld
R or C , then F(n) denotes the Cli�ord algebra over F generated by e0; e1; : : : ; en.
Given a Banach space X, the family of sums T =

P
S TSeS for TS 2 L(X) and S �

f1; : : : ; ng forms a Banach module L(n)(X(n)) under left and right multiplication by

elements of F(n). The norm is given by kTk = �PS kTSk2L(X)

�1=2
. For each x 2 X

and � 2 X 0, the element hTx; �i of F(n) is de�ned by hTx; �i =PShTSx; �ieS .
Let D be the di�erential operator D =

Pn
j=0 ej@=@xj . A function f : U ! F(n)

is called left monogenic in an open set U if Df = 0 in U . It is right monogenic in
U if fD = 0 in U . The expression two-sided monogenic is used for functions which
are both left and right monogenic. For each ! 2 Rn+1, the function G! de�ned by

(1) G!(x) =
1

�n

! � x

j! � xjn+1 ; for each x 6= !

is two-sided monogenic. Here �n = 2�
n+1

2 =�
�
n+1
2

�
is the volume of the unit n-

sphere in Rn+1 and Rn+1 is identi�ed with a subspace of R(n). The notation
E(! � x) = G!(x) is used in [2].

Suppose that 
 � Rn+1 is a bounded open set with smooth boundary @
 and
exterior unit normal n(!) de�ned for all ! 2 @
. For any left monogenic function
f de�ned in a neighbourhood U of 
, the Cauchy integral formula

(2)

Z
@


G!(x)n(!)f(!) d�(!) =

�
f(x); if x 2 
;

0; if x 2 U n 
:
is valid. Here � is the surface measure of @
. The result is proved in [2, Corollary
9.6]. If g is right monogenic in U then

R
@


g(!)n(!)f(!) d�(!) = 0 [2, Corollary
9.3].

These results extend to the vector and operator valued setting in a routine fash-
ion. In this case, `monogenic' means that the partial derivatives are evaluated in the
underlying topology of the space. We shall quote them without further discussion.

In the monogenic functional calculus for a suitable n-tuple A of bounded oper-
ators acting on a Banach space X, the operator f(A) is de�ned for all F-valued
functions f of n-real variables analytic in an open neighbourhood U of the mono-
genic spectrum (A), see Section 3. The operator f(A) is de�ned analogously to
the Cauchy integral formula (2), where G! is replaced by a suitable element G!(A)
of L(n)(X(n)) for each ! 2 Rn+1n(A) and f is extended monogenically o� f0g�U
into Rn+1.

In [3], the Cauchy kernel ! 7! G!(A), ! 2 Rn+1n(A), is identi�ed by employing
the Weyl functional calculus. In the present context, it is constructed in Lemma
2.5 by using the plane wave decomposition of the Cauchy kernel (1).

2. The Cauchy kernel for an n-tuple of operators

It is a simple matter to write down an example of a pair A = (A1; A2) of bounded
linear operators acting on l2(N) for which the bound

(3) kei(�1A1+�2A2)k � C(1 + j�j)s; for all � 2 R2
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fails, but �(�1A1 + �2A2) � R for all � 2 R2.

2.1 Example. For each n = 1; 2; : : : ; let Un be the n � n matrix such that
(Un)j;j+1 = 1 for all j = 1; : : : ; n � 1, and (Un)k;j = 0 otherwise. Let In be the
n�n identity matrix. Let A1 : l2(N)! l2(N) be the direct sum of (�1)nIn for n =
2; 3; : : : and let A2 : l2(N) ! l2(N) be the direct sum of Un for n = 2; 3; : : : . There
exists no C > 0 and no s > 0 for which the commuting pair A = (A1; A2) of oper-
ators on l2(N) satis�es the bound (3). Nevertheless, the spectrum �(�1A1 + �2A2)
of the operator �1A1+ �2A2 is real for all � 2 R2 because it is real on each common
invariant subspace.

Let x 7! G!(x); x = (x0; x1; x2) 2 R3 be the Cauchy kernel on R3 for ! 6= x. The
natural de�nition of G!(A) suggested by the matrix functional calculus is obtained
by taking the direct sum of

nX
k=0

1

k!
@k2G!

�
(0; (�1)n+1; 0)�(Un+1)k

for n = 1; 2; : : : for each ! 2 R3 n (f0g � f�1; 1g � f0g).
The example above suggests adopting a power series expansion as the de�nition

of G!(A) for general n-tuples A.
For each ! 2 Rn+1 such that ! 6= 0, let

(4) G!(x) =
1X
k=0

0
@ X

(l1;:::;lk)

Wl1:::lk(!)Vl1:::lk(x)

1
A

be the monogenic power series expansion of G! in the region jxj < j!j [2, 11.4 pp.
77{81]. HereWl1:::lk(!) is given for each ! 2 Rn+1; ! 6= 0 by (�1)k@!l1 � � � @!lkG!(0)

and Vl1:::lk(x) is the monogenic extension of xl1 � � �xlk o� Rn [2, Proposition 11.2.3].
Let A be an n-tuple of bounded operators acting on a Banach space X. Let

Vl1:::lk(A) = 1=k!
X

j1;:::;jk

Aj1 � � �Ajk ;

the sum being over all distinguishable permutations of (l1; : : : ; lk). As in [5, De�-
nition 3.11], the Cauchy kernel G!(A) is given by the expansion

(5) G!(A) =

1X
k=0

0
@ X

(l1;:::;lk)

Wl1:::lk(!)Vl1:::lk(A)

1
A

in the case that ! 2 Rn+1 and j!j > (1 +
p
2)kPn

j=1Ajejk. The sum converges

in L(n)(X(n)) because
P1

k=0

P
(l1;:::;lk)

jWl1:::lk(!)j kVl1:::lk(A)k converges uniformly

for j!j � R;! 2 R
n+1, for each R > (1 +

p
2)kPn

j=1Ajejk [3, Lemma 6.1]. Each

functionWl1:::lk is left and right monogenic, so (5) de�nes a left and right monogenic

L(n)(X(n))-valued function for all ! 2 Rn+1 such that j!j > (1+
p
2)kPn

j=1Ajejk.
Although (5) makes sense for any n-tuple of bounded operators, the problem

remains of enlarging the domain of de�nition of the monogenic function de�ned by
(5) to be as large as possible in a unique way, such as in the case when the natural
domain is connected. The following assertion allows us to de�ne the monogenic
functional calculus.
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2.2 Theorem. Let A = (A1; : : : ; An) be an n-tuple of bounded operators acting
on a Banach space X. Suppose that �

�hA; �i� � R for all � 2 R
n. Then the

L(n)(X(n))-valued function ! 7! G!(A) is the restriction to the region j!j > (1 +p
2)kPn

j=1Ajejk of a function which is two-sided monogenic on the set Rn+1nRn.

To prove the theorem, we appeal to a series of key lemmas, in which we suppose
that the n-tuple A satis�es the conditions of the theorem. Let � be the surface
measure of the unit (n�1)-sphereS1 inRn. The following plane wave decomposition
is given in [12, p.111]. Further proofs appear in [11] and [7]. The latter uses a
general Fourier transform calculus for monogenic functions.

2.3 Proposition. Let ! = x0e0 + x be an element of Rn+1 with x 2 Rn. If
x0 > 0,then

!

�nj!jn+1 =
(n� 1)!

2

�
i

2�

�n Z
S1

(e0 + is) (hx; si � x0s)
�n

d�(s):

If x0 < 0, then

!

�nj!jn+1 = � (n� 1)!

2

��i
2�

�n Z
S1

(e0 + is) (hx; si � x0s)
�n

d�(s):

Remark. If n is odd, the integral of (hx; si � x0e0s)
�n over S1 is zero and as long

as (x1; : : : ; xn) 6= 0, the integral of the other term s (hx; si � x0e0s)
�n over S1 is

continuous at x0 = 0. If n is even, the integral of s (hx; si � x0e0s)
�n over S1 is

zero and the integral of (hx; si � x0e0s)
�n su�ers a jump as x0 passes through 0.

We view the n-tuple A = (A1; : : : ; An) of bounded linear operators acting on a
Banach space X as an element A =

Pn
j=1Ajej of the Banach module L(n)(X(n)).

In the following statement, Rn is identi�ed, as usual, with the set of all x 2 R
n+1

for which x = (0; x1; : : : ; xn), and in turn, Rn+1 is identi�ed with a subspace of the
Cli�ord algebra R(n).

2.4 Lemma. Let y =
Pn

j=1 yjej and y0 6= 0. Then for each s 2 S1, hyI �A; si �
y0sI is invertible in L(n)(X(n)).

Proof. The inverse of hyI �A; si � y0sI is given by

(hyI �A; si � y0sI)
�1 = (hyI �A; si + y0sI)(hyI �A; si2 + y20I)

�1:

We see that this makes sense as follows.
Let s 2 S1, y0 2 R; y0 6= 0 and y 2 Rn. Let f : R ! (0;1) be de�ned by

f(x) = (hy; si � x)2 + y20 for all x 2 R. Then applying the Spectral Mapping
Theorem to the bounded operator hA; si,

�(hyI �A; si2 + y20I) = f [�(hA; si)] � f(R) � (0;1):

Hence, the operator hyI�A; si2+y20I is invertible for y0 6= 0. Moreover, it commutes
with hyI�A; si�y0sI, since all three operators involve only multiples of the identity
I and the single operator hyI �A; si. By direct calculation,

(hyI �A; si + y0sI)(hyI �A; si � y0sI) = (hyI �A; si2 + y20I);
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because under Cli�ord multiplication, s2 = �1 for all s 2 S1. �

Thus, for each s 2 S1,
�hyI �A; si � y0s

��1
is an element of L(n)(X(n)) and so

�hyI �A; si � y0s
��n

=
��hyI �A; si � y0s

��1�n

is an element of L(n)(X(n)) too.
The following lemma completes the proof of Theorem 2.2.

2.5 Lemma. For each real number y0 6= 0, and each y 2 Rn, the L(n)(X(n))-valued

function s 7! (e0+is)
�hyI�A; si�y0s��n de�ned for s 2 S1 is Bochner �-integrable

on S1, and the function y + y0e0 7!
R
S1
(e0 + is)

�hyI �A; si � y0s
��n

d�(s) is left

and right monogenic on R
n+1 nRn.

Furthermore, if y0 > 0 and jyj > (1 +
p
2)kAk, then

(6) Gy+y0e0(A) =
(n� 1)!

2

�
i

2�

�n Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

d�(s):

If y0 < 0 and jyj > (1 +
p
2)kAk, then

Gy+y0e0(A) = � (n � 1)!

2

��i
2�

�n Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

d�(s):

Here the left-hand sides of the equations are de�ned by formula (5).

Proof. The function s 7! (e0 + is)
�hyI �A; si � y0s

��n
is continuous on S1, and so

Bochner �-integrable. The monogenicity of the function follows by di�erentiation
under the integral sign.

We shall establish the equality

(7) Gy+y0e0(tA) =
(n� 1)!

2

�
i

2�

�n Z
S1

(e0 + is) (hyI � tA; si � y0s)
�n

d�(s)

for all 0 � t � 1, y0 > 0 and jyj > (1 +
p
2)kAk. The case y0 < 0 is similar.

For t = 0, the left hand side of equation (7) is equal to Gy+y0e0(0). An appeal
to Proposition 2.3 ensures that the right hand side equals Gy+y0e0(0) at t = 0. By
di�erentiation under the integral sign, for y0 > 0, the right hand side of (7) is a
solution of the equation

(8) @tu(y; t) = �hA;ryiu(y; t)

in the Banach module L(n)(X(n)) with the initial condition u(y; 0) = Gy+y0e0(0)I.
Then

(9) u(y; t) = Gy+y0e0(0)I �
Z t

0

hA;ryiu(y; s) ds:

In the case that jy0j > jyj + kAk, a power series expansion shows that the right
hand side of (7) is analytic in t for all jtj � 1.
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Let y 2 Rn satisfy jyj > (1+
p
2)kAk and set ! = y0e0+ y. In the notation used

in formulae (4) and (5), the series

(10)

1X
k=0

tk

0
@ X

(l1;:::;lk)

Wl1:::lk(!)Vl1:::lk(A)

1
A

represents e�hA;ryitGy+y0e0(0) and iterating equation (9), we �nd that

u(y; t) = e�hA;ryitGy+y0e0(0);

that is, the solution of equation (8) with the initial condition u(y; 0) = Gy+y0e0(0)I
has the series representation (10).

In the region � � Rn+1 where jyj > (1+
p
2)kAk and jy0j > jyj+ kAk, the right-

hand side of equation (7) and the expression (10) are analytic in t for 0 � jtj � 1,
so equality follows for all 0 � jtj � 1 in the region � by the uniqueness of the Taylor
series expansion. Both sides of equation (7) are monogenic in their domains, so by
unique continuation, the equality (7) must be true for all 0 � jtj � 1 and all y0 > 0

and jyj > (1 +
p
2)kAk. �

The maximal monogenic extension of the function ! 7! G!(A) is denoted by the
same symbol, that is, let 
 be the union of all open sets containing the open set
� = fj!j > (1+

p
2)kAkg on which is de�ned a two-sided monogenic function equal

to ! 7! G!(A) on �. Then a two-sided monogenic function equal to ! 7! G!(A)
on � is de�ned on all of 
. It is unique because 
 is connected and contains � { a
compact subset of Rn cannot disconnect Rn+1.

The complement (A) of the domain 
 of ! 7! G!(A) is called the monogenic
spectrum of A. According to Lemma 2.4, (A) is contained in the closed ball of

radius (1 +
p
2)
�Pn

j=1 kAjk2
�1=2

about zero in Rn, so it is compact by the Heine-

Borel theorem. The following result was mentioned in [5, Lemma 3.13], but with a
di�erent de�nition of the spectrum.

2.6 Theorem. Let A be an n-tuple of bounded operators acting on a nonzero
Banach space X such that �

�hA; �i� � R for all � 2 Rn. Then (A) is a nonempty
compact subset of Rn.

Proof. It only remains to show that (A) is nonempty. The norms of the coe�cients
Wl1:::lk(!) of the expansion (5) decrease monotonically with j!j, so the function
! 7! G!(A) is bounded and monogenic outside a ball. If (A) = ;, then for
each x 2 X and � 2 X 0, the function ! 7! hG!(A)x; �i is two-sided monogenic
inside any ball, and so it is bounded and two-sided monogenic everywhere. By
Liouville's Theorem [2, 12.3.11], it is a constant function. However, by the Hahn-
Banach theorem we can obtain x 2 X and � 2 X 0 and !1; !2 2 Rn+1 such that
hG!1 (A)x; �i 6= hG!2 (A)x; �i, a contradiction. �

2.7 Proposition. Let A be an n-tuple of bounded operators acting on a Banach
space X such that �

�hA; �i� � R for all � 2 Rn. Then (A) � Rn is the complement

in Rn+1 of the set of all points ! 2 Rn+1 at which the function

(y + y0e0) 7! sgn(y0)
n�1

Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

d�(s)



8 BRIAN JEFFERIES, ALAN MCINTOSH, JAMES PICTON-WARLOW

is continuous in a neighbourhood of !.

Proof. Suppose that the function is continuous in a neighbourhood U � R
n+1 of

! 2 R
n+1. By Lemma 2.5 and Painlev�e's Theorem [2, Theorem 10.6, p. 64], the

function

y + y0e0 7! sgn(y0)
n�1

Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

x; �id�(s)

is two-sided monogenic for each x 2 X and � 2 X 0. The statement now follows
from the equality

Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

x; �id�(s)

=

��Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

d�(s)

�
x; �

�

and the observation that an L(n)(X(n))-valued function is left or right monogenic for
the norm topology if and only if it is left or right monogenic for the weak operator
topology. �

As a consequence of Proposition 2.7, the set (A) remains the same, if, in the
de�nition of (A), the term \two-sidedmonogenic" is replaced by either \left mono-
genic" or \right monogenic".

We have established the following representation for the Cauchy kernel G!(A),
! 2 Rn+1 n (A), of an n-tuple A of bounded linear operators on X with the
property that �(hA; �i) � R for all � 2 Rn. In the case ! 2 Rn+1 and ! = y + y0e0
with y 2 Rn and y0 a nonzero real number, we have
(11)

G!(A) =
(n � 1)!

2

�
i

2�

�n
sgn(y0)

n�1

Z
S1

(e0 + is) (hyI �A; si � y0s)
�n

d�(s):

If ! 2 Rn n (A), then

(12)

G!(A) =
(n� 1)!

2

�
i

2�

�n

lim
y0!0+

Z
S1

(e0 + is) (h!I �A; si � y0s)
�n

d�(s):

= � (n� 1)!

2

��i
2�

�n

lim
y0!0�

Z
S1

(e0 + is) (h!I �A; si � y0s)
�n

d�(s):

3. The Cauchy integral formula for an n-tuple of operators

Let A be an n-tuple of bounded operators acting on a Banach space X such that
�
�hA; �i� � R for all � 2 Rn. Let 
 be a bounded open neighbourhood of (A)

in Rn+1 with smooth boundary @
 and exterior unit normal n(!) de�ned for all
! 2 @
. Let � be the surface measure of 
. Suppose that f is left monogenic in a
neighbourhood of the closure 
 = 
 [ @
 of 
. Then we de�ne

(13) f(A) =

Z
@


G!(A)n(!)f(!) d�(!)
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Because ! 7! G!(A) is right monogenic, the element f(A) of L(n)(X(n)) is
de�ned independently of the set 
 with the properties mentioned above. This may
be seen by taking x 2 X and � 2 X 0. Then by the properties of Bochner integrals

hf(A)x; �i =
Z
@


hG!(A)x; �in(!)f(!) d�(!)

and the F(n)-valued function ! 7! hG!(A)x; �i is two-sidedmonogenic o� (A). The
analogue for monogenic functions of Cauchy's Theorem [2, Corollary 9.3] ensures
that the open set 
 can be changed as long as the boundary of the set 
 does
not cross (A). Because this is true for all x 2 X and � 2 X 0, the Hahn-Banach
theorem ensures that the values of the integrals (13) do not change when 
 is so
modi�ed.

Moreover, a similar argument shows that if f : V ! C is a function analytic
in a neighbourhood V of (A) in Rn and ~f1 : U1 ! C (n) and ~f2 : U2 ! C (n)

are left monogenic functions de�ned in neigbourhoods U1; U2 of (A) in Rn+1 such

that ~f1(x) = f(x) for all x 2 U1 \ V and ~f2(x) = f(x) for all x 2 U2 \ V , then
~f1(A) = ~f2(A). It therefore makes sense to de�ne f(A) = ~f1(A). In Theorem 3.5
(iv), we show that f(A) actually belongs to the closed linear subspace L(X) of the
Banach module L(n)(X(n)).

For any open subset U of Rn+1, let M(U;F(n)) be the collection of all F(n)-
valued functions which are left monogenic in U . It is a right F(n)-module. The
spaceM(U;F(n)) is given the compact-open topology (uniform convergence on every
compact subset of U). If K is a closed subset of Rn, then M(K;F(n)) is the union

of all spacesM(U;F(n)), as U ranges over the open sets in Rn+1 containingK. The
space M(K;F(n)) is equipped with the inductive limit topology.

Equipped with the C-K product [2, p. 113], M(K;F(n)) becomes a topolog-
ical algebra and the closed linear subspace M(K;F) of M(K;F(n)) consisting of
left monogenic extensions of F-valued functions on K is a commutative topologi-
cal algebra. Then the topological algebra M(K;F) is isomorphic, via monogenic
extension, to the topological algebra H(K;F) of F-valued functions analytic in an
open neighbourhood of K in Rn with pointwise multiplication. We write just H(K)
for H(K; C ). The induced topology on H(K) is convergence of the left (or right)
monogenic extensions on compact subsets of a neighbourhood of K in Rn+1, rather
than the usual topology of convergence on compact subsets of a neighbourhood of
K in Rn|formula (13) forces us into this somewhat unusual terminology.

We shall need a result on the approximation of a special class of Fn+1-valued
monogenic functions by monogenic polynomials in the same class. Let f =

Pn
j=0 fjej

be an Fn+1-valued function de�ned in an open subset U of Rn+1. The equation
Df = 0 implies that the one-form � = f0dx0 � f1dx1 � � � � � fndxn is closed in
U . The left monogenic function f is called conservative if

R

� = 0 for every closed

contour  in U , that is, � is exact in U .
Let L be a compact subset of Rn+1. The closed linear subspace of M(L;F(n))

consisting of all conservative left monogenic functions de�ned in a neighbourhood
of L in Rn+1 and with values in the linear span Fn+1 over F of the basis vectors
e0; : : : ; en is denoted by M(L;Fn+1). Note that if L is the closure of a disjoint
union of �nitely many simply connected domains, thenM(L;Fn+1) =M(L;Fn+1).

3.1 Lemma. Let L be a compact subset of Rn+1 with connected complement. Then
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the linear space of all Fn+1-valued left monogenic polynomials is dense in the space
M(L;Fn+1) for the topology of uniform convergence on L.

Proof. The result is a version of the Runge approximation theorem for left mono-
genic functions [2, Corollary 18.5]. We shall describe where the proof of [2, Theorem
18.4] needs to be adapted to the present context.

The topology on the space M(L;Fn+1) of uniform convergence on L is induced
by the uniform norm of the space C(L;Fn+1) of Fn+1-valued continuous functions
de�ned on the compact set L. According to the Riesz representation theorem, the
dual space of C(L;Fn+1) is identi�able with the space of all Fn+1-valued Borel
measures on L equipped with the total variation norm.

Let B be an open ball in Rn+1 such that L � B. An argument analogous
to the proof of [2, Theorem 18.4] works once we establish that every element of
M(L;Fn+1) may be approximated uniformly on L by elements of M(B;Fn+1) =
M(B;Fn+1). By means of the usual Hahn-Banach theorem (rather than the left
module version [2, Theorem 2.10]), it su�ces to establish that every Fn+1-valued
measure which annihilatesM(B;Fn+1) is also zero onM(L;Fn+1). The remainder
of this proof is devoted to establishing this fact.

If � is an Fn+1-valued Borel measure on L, we set

hf; �i =
Z
L

hf; d�i =
nX

j=0

Z
L

fj d�j

for all functions f =
Pn

j=0 fjej belonging to C(L;F
n+1). Suppose that � annihilates

M(B;Fn+1), that is, hf; �i = 0 for all f 2M(B;Fn+1). Then for all ! 2 Rn+1 nB,
the function G! belongs to M(B;Fn+1), so we have hG!; �i = 0. The function
! 7! hG! ; �i is an F-valued harmonic function de�ned in Rn+1 o� the support L of
�. Since Rn+1nL is connected, unique continuation for harmonic functions implies
that hG!; �i = 0 for all ! 2 Rn+1 n L.

If we can represent any function f belonging to the space M(L;Fn+1) as

(14) f(x) =

Z
Rn+1

G!(x)�(!) d!; x 2 L;

for a smooth scalar valued function � with compact support in Rn+1 n L, then by
Fubini's theorem, we have

hf; �i =
Z
L

�Z
Rn+1

G!(x)�(!) d!; d�(x)

�

=

Z
Rn+1nL

�Z
L

hG! ; d�i
�
�(!) d! = 0:

It remains to show that the representation (14) is valid for all f 2 M(L;Fn+1).
A closed one-form � such that

R
 � = 0 for all closed contours  in U is exact,

so there exists a scalar valued function F : U 7! C such that � = dF , that is, the
equality f = DF holds. The function F is harmonic in U because �F = DDF =
Df = 0 in U .

Let u be a smooth function with compact support in U and equal to F on the
open neighbourhood 
 of L in Rn+1. Let w = �u. Because u = F in 
 and F is
harmonic, w vanishes in 
 and is supported in U .
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If g denotes the fundamental solution of the Laplacian in Rn+1, then �g = � in
the sense of distributions and we have u = g�w. But u = F in 
, so F (x) = g�w(x)
for all x 2 
. From the identity G!(x) = (Dg)(! � x) for all !; x 2 R

n+1 with
! 6= x, we have

f(x) = DF (x) = �
Z
Rn+1

G!(x)w(!) d!; x 2 
:

Hence, the representation (14) is valid with � = �w.
The remainder of the proof [2, Theorem 18.4] works in the present context, so

that f may be approximated uniformly on L by elements g of M(Rn+1;Fn+1).
The Taylor series of g converges uniformly on compact subsets of Rn+1 [2, Sec-
tion 11.5.2]. Comparison with the Taylor series of t 7! g(tx) shows that g may
be approximated in M(Rn+1;Fn+1) by Fn+1-valued left monogenic polynomials.
Alternatively, we can see this directly from the representation (14) by expanding
G! in its Taylor series (4). �

Remark. It is easily checked that a left monogenic function with values in Fn+1

is automatically right monogenic.

The next statement would follow from the Stone-Weierstrass approximation
theorem if H(K) had the topology of uniform convergence on K. The point is
that H(K) has the topology, inherited fromM(K;F(n)), of uniform convergence of

monogenic extensions on compact subsets of Rn+1.

3.2 Proposition. Let K be a compact subset of Rn. The linear space of all scalar
valued polynomials is dense in H(K).

Proof. It su�ces to prove the result for real valued functions f 2 H(K) de�ned
in a neighbourhood of K, otherwise f can be decomposed into real and imaginary
parts. Let U be a bounded open neighbourhood of K in Rn+1 for which f has a
left monogenic extension ~f to U . According to [2, Theorem 11.3.4, Remark 11.2.7

(ii)], the left monogenic extension ~f of f into Rn+1 takes its values in the real

linear subspace Rn+1 of R(n) spanned by e0; : : : ; en. The function ! 7! ~f (�!)
is left monogenic and the equality ~f (�!) = ~f (!) holds for all ! 2 U by unique
continuation from points of K.

Let L be a compact subset of U such that Rn+1nL is connected and L is invariant
under the mapping J : ! 7! �!. According to [2, Theorem 14.8], the open set U in

which ~f is monogenic may be chosen to be a J-invariant set in which every closed
contour  in U is homotopic to a closed contour in U \ Rn. Here we are allowing
the possibility that U may not be a simply connected domain. Then every compact
subset of U is contained in such a set L.

To check that ~f is conservative in U , let  be a closed contour in U and let 0

be a closed contour in U \ Rn homotopic to . The one form � associated with ~f
is closed in U , so

R
 � =

R
0 � = 0, because � = fdx0 on 0 � U \ Rn. By Lemma

3.1, ~f can be approximated uniformly on L by polynomials p 2M(L;Rn+1) and so

by polynomials ! 7! (p(!)+p(�!))=2. The coe�cients of the expansion of p in left

inner spherical monogenics lie in Rn+1, so p(!) + p(�!) 2 R for all ! 2 Rn. Hence

the polynomial ! 7! (p(!) + p(�!))=2 is scalar valued on Rn and approximates ~f
uniformly on L. �



12 BRIAN JEFFERIES, ALAN MCINTOSH, JAMES PICTON-WARLOW

The operation f 7! f(A) de�ned on H((A)) extends to analytic functions
with values in a �nite dimensional vector space V over C by application to the
component functions of f . In particular, if f : U ! C (n) is an analytic function
de�ned on a neighbourhood U of (A) in R

n and f =
P

S fSeS for the scalar
component functions fS de�ned for S � f1; : : : ; ng, then f(A) =

P
S fS(A)eS . If

the term `analytic' is replaced by `C1', then this property is shared with the Weyl
functional calculus, see [3].

The following statement follows from formula (13) and the estimate

(15) kf(A)k � 2n=2�(@
) sup
!2@


kG!(A)k sup
!2@


jf(!)j:

3.3 Proposition. Let A be an n-tuple of bounded operators acting on a Banach
space X. Suppose that �

�hA; �i� � R for all � 2 Rn. Then the mapping f 7! f(A)
is continuous from M((A);F(n)) to L(n)(X(n)).

3.4 Proposition. Let A be an n-tuple of bounded operators acting on a Banach
space X such that �

�hA; �i� � R for all � 2 Rn. Suppose that f : U ! C (n) is left

monogenic in an open neighbourhood U in R
n+1 of the closed unit ball of radius

(1 +
p
2)
�Pn

j=1 kAjk2
�1=2

about zero.
If the Taylor series of f restricted to U \Rn is given by

(16) f(x) =
1X
k=0

1

k!

nX
l1=1

� � �
nX

lk=1

al1:::lkxl1 � � �xlk ;

with al1:::lk 2 C (n), then

(17) f(A) =
1X
k=0

0
@ X
(l1;:::;lk)

Vl1:::lk(A)

1
A al1:::lk :

Proof. Let 
 be an open set in Rn+1 with smooth boundary @
 such that 
 �
Br(0) � U and 
 contains the closed unit ball of radius (1 +

p
2)
�Pn

j=1 kAjk2
�1=2

in Rn+1. The series

f(x) =

1X
k=0

1

k!

nX
l1=1

� � �
nX

lk=1

Vl1:::lk(x)al1 :::lk;

representing the left monogenic extension of (16), converges normally in 
 [2,
11.5.2], so

f(A) =

1X
k=0

X
(l1;:::;lk)

�Z
@


G!(A)n(!)Vl1 :::lk(!) d�(!)

�
al1:::lk :

It follows from the expansion (5) and formula (12.2) of [2, p. 86] that
Z
@


G!(A)n(!)Vl1:::lk(!) d�(!) = Vl1:::lk(A)

for all l1; : : : ; lk = 1; : : : ; n and k = 1; 2; : : : . The equality (17) follows. �
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3.5 Theorem. Let A be an n-tuple of bounded operators acting on a Banach space
X such that �

�hA; �i� � R for all � 2 Rn.

(i) Suppose that k1; : : : ; kn = 0; 1; 2; : : : ; k = k1+� � �+kn and f(x) = xk11 � � � xknn
for all x = (x1; : : : ; xn) 2 Rn. Then

f(A) =
k1! � � � kn!

k!

X
�

A�(1) � � �A�(k);

where the sum is taken over every map � of the set f1; : : : ; kg into f1; : : : ; ng
which assumes the value j exactly kj times, for each j = 1; : : : ; n.

(ii) Let p : C ! C be a polynomial and � 2 C n . Set f(z) = p(hz; �i), for all
z 2 C n . Then f(A) = p(hA; �i):

(iii) Let 
 be an open set in Rn+1 containing (A) with a smooth boundary @
.
Then for all ! =2 
,

G!(A) =

Z
@


G�(A)n(�)G!(�) d�(�):

(iv) Suppose that U is an open neighbourhood of (A) in Rn and f : U ! C is
an analytic function. Then f(A) 2 L(X).

Proof. (i) Let � be the set of all k-tuples (l1; : : : ; lk) in f1; : : : ; ngk for which j ap-
pears exactly kj times, for each j = 1; : : : ; n. Let a = k1! � � � kn! for all  2 � and

a = 0 for all  2 f1; : : : ; ngkn�. Then xk11 � � � xknn = 1
k!

Pn
l1=1

� � �Pn
lk=1

a(l1;:::;lk)xl1 � � �xlk ;
so by the proposition above,

f(A) =
X

(l1;:::;lk)

a(l1:::lk)Vl1:::lk(A) =
k1! � � � kn!

k!

X
�

A�(1) � � �A�(k):

Statement (ii) follows from (i) because only symmetric products of the hAj i
appear in both f(A) and p(hA; �i):

(iii) On appealing to equations (4), (5), the equality follows directly from Propo-

sition 3.3 for all ! =2 
 such that j!j > (1 +
p
2)kAk. Both sides of the equation

are right monogenic in ! in the complement of the set 
, so equality follows there
by unique continuation.

(iv) According to (i), p(A) 2 L(X) for any scalar valued polynomial p on Rn.
By Proposition 3.2, there exists an open neighbourhood V of U in Rn+1 such that
the left monogenic extension ~f of f can be approximated on compact subsets of V
by monogenic extensions of scalar polynomials on R

n. An appeal to Proposition
3.3 shows that f(A) belongs to the closed linear subspace L(X) of L(n)(X(n)). �

As follows from [1], the Weyl functional calculusWA for an n-tuple A of bounded
operators acting on a Banach spaceX is determined by the following two properties:

a) WA : C1(Rn)! L(X) is a continuous linear map for the operator norm;
b) WA(p(h � ; �i)) = p(hA; �i) for every polynomial p : R! R and � 2 Rn.

The Paley-Wiener Theorem ensures that the inverse Fourier transform (WA)� of
WA extends to an entire analytic function on C n satisfying an exponential bound
and b) guarantees that that (WA)�(�) = (2�)�n=2eihA;�i for all � 2 Rn. Hence
WA = (2�)�n=2(eihA;�i )̂. In particular, �(hA; �i) � R for all � 2 Rn (see, for
example, [9, Corollary 7.5]).

The analogous statement for the monogenic functional calculus follows.
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3.6 Theorem. Let A be an n-tuple of bounded linear operators acting on a Banach
space X. Suppose that there exists a compact subset K of Rn and a map T such
that

a) T : H(K) ! L(X) is a continuous linear map;
b) T (p(h � ; �i)) = p(hA; �i) for every polynomial p : R! R and � 2 Rn.

Then �(hA; �i) is real for each � 2 Rn, (A) � K and T (f) = f(A) for every
f 2 H(K).

Proof. Denote the tensor product T 
 I(n) of T with the identity I(n) on F(n)

by T again and de�ne T : M(K;F(n)) ! L(n)(X(n)) by T (f) = T (f � U), f 2
M(K;F(n)), for an open neighbourhood U of K in Rn in which f is de�ned.

Let � 2 Rn and hK; �i := fhx; �i : x 2 Kg � R. For all � 2 C n hK; �i, the
function x 7! (� � hx; �i)�1 belongs to H(K) and the function � 7! (� � h � ; �i)�1
is an H(K)-valued analytic function on C n hK; �i, so R

�
(� � h � ; �i)�1 d� = 0 in

H(K) for all closed contours � contained in C n hK; �i. The integral converges as a
Bochner integral, so thatZ

�

T
�
(�� h � ; �i)�1� d� = T

Z
�

(� � h � ; �i)�1 d� = 0:

By Morera's Theorem, � 7! T
�
(� � h � ; �i)�1� is an L(X)-valued analytic function

de�ned in C n hK; �i. By b) and the continuity of T , the equality

(�� hA; �i)�1 = T
�
(� � h � ; �i)�1�

holds for all � 2 C such that j�j > sup jhK; �ij. It follows that the resolvent set of
the operator hA; �i contains the set C n hK; �i, that is, �(hA; �i) � hK; �i � R.

As in the proof of [1, Theorem 2.4], property b) and the continuity of T onH(K)
guarantee that T (f) is equal to (17) for all complex valued analytic functions f with
a power series given by (16) in an open neighbourhood of K with al1:::lk 2 C .

Let R > (1 +
p
2)kAk be so large that K is contained in the open ball BR(0)

of radius R in Rn+1. According to equations (4) and (5), it follows that G!(A) =
T (G!) for all ! 2 Rn+1 with j!j � R.

Now the function ! 7! G! is monogenic from Rn+1nK intoM(K;F(n)), because

for each � 2 Rn+1 n K there exist disjoint open sets U and V in Rn+1 such that
� 2 U , K � V and r!G!(x) is uniformly bounded and uniformly continuous for
all ! 2 U and x 2 V . Consequently, ! 7! T (G!) is monogenic from Rn+1 nK into
L(n)(X(n)) and the function de�ned by equation (5) has a monogenic extension o�

K, that is, (A) � K and G!(A) = T (G!) for all ! 2 Rn+1 nK.

Let f 2 H(K) and suppose that ~f is a left monogenic extension of f to an

open neighbourhood of K in Rn+1. We may suppose further that ~f is de�ned in a
neighbourhood of the closure 
 of a bounded open set 
 � K in Rn+1, for which
the Cauchy integral formula (2) holds for ~f . Then by formula (2), we have

T (f) = T

�Z
@


G!( � )n(!) ~f (!) d�(!)
�

=

Z
@


T (G!)n(!) ~f (!) d�(!)

=

Z
@


G!(A)n(!) ~f (!) d�(!)

= f(A): �
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The monogenic functional calculus, when it exists, is therefore the richest an-
alytic functional calculus satisfying b) that can be de�ned over a compact sub-
set of Rn. Suppose that L : Rn ! R

m is an a�ne transformation given by
(Lx)k =

Pn
j=1 ckjxj + dk for all x 2 R

n and k = 1; : : : ;m. The m-tuple LA is

given by (LA)k =
Pn

j=1 ckjAj + dkI and Lf = f � L for a function de�ned on a
subset of Rm.

The following properties of the Weyl functional calculus [1, Theorem 2.9], suit-
ably interpreted, are also enjoyed by the monogenic functional calculus.

Let �j : Rn! R be the j'th projection �j(x) = xj for all x = (x1; : : : ; xn) 2 Rn.

3.7 Theorem. Let A be an n-tuple of bounded operators acting on a Banach space
X such that �

�hA; �i� � R for all � 2 Rn.

(a) A�ne covariance: if L : Rn! R
m is an a�ne map, then (LA) � L(A)

and for any function f analytic in a neighbourhood in Rm of L(A), the
equality f(LA) = (f � L)(A) holds.

(b) Consistency with the one-dimensional calculus: if g : R ! C is
analytic in a neighbourhood of the projection �1(A) of (A) onto the �rst
ordinate, and f = g � �1, then f(A) = g(A1). We also have consistency
with the k-dimensional calculus, 1 < k < n.

(c) Continuity: The mapping (T; f) 7! f(T ) is continuous for T =
Pn

j=1 Tjej
from L(n)(X(n))�M(Rn+1; C (n+1)) to L(n)(X(n)) and from L(X)�H(Rn)
to L(X).

(d) Covariance of the Range: If T is an invertible continuous linear map
on X and TAT�1 denotes the n-tuple with entries TAjT

�1 for j = 1; : : : n,
then (TAT�1) = (A) and f(TAT�1) = Tf(A)T�1 for all functions f
analytic in a neighbourhood of (A) in R

n.

Proof. (a) The mapping f 7! f � L(A) de�ned for all f 2 H(L(A)) satis�es the
conditions of Theorem 3.5 for the m-tuple LA, so (LA) � L(A) and f � L(A) =
f(LA) for all f 2 H(L(A)).

(b) Set L = �1 and apply (a).
(c) Let A =

Pn
j=1Ajej and choose R > (

p
2+1)kAk. Let UR be the intersection

of the open unit ball of radius R in L(n)(X(n)) with the subspace fPn
j=1 Sjej : Sj 2

L(X)g. According to equation (5), the mapping (!; T ) 7! G!(T ) is continuous from
Rn+1�UR into L(n)(X(n)) for all j!j > R.

Let Br(0) be the open ball of radius r > R in Rn+1. Then from (16) we have

kf1(T1)� f2(T2)k �
Z
@Br(0)

kG!(T1)n(!)f1(!)�G!(T2)n(!)f2(!)k d�(!)

� 2n=2�(@Br(0))

�
sup

!2@Br(0)

kG!(T1) �G!(T2)kmaxf sup
!2@Br(0)

jf1(!)j; sup
!2@Br(0)

jf2(!)jg

+ sup
!2@Br(0)

kf1(!) � f2(!)kmaxf sup
!2@Br(0)

jG!(T1)j; sup
!2@Br (0)

jG!(T2)jg
�

for all T1; T2 2 UR. The spaces M(Rn; C (n)) and M(Rn+1; C (n)) are isomorphic [2,
Corollary 14.6]. Combined with Corollary 3.4 (iii), this completes the proof of (c).

(d) follows from the identity G!(TAT�1) = TG!(A)T�1 valid from (5) for j!j
large enough. Then (TAT�1) � (A). The reverse inclusion comes from writing
G!(A) = T�1G!(TAT�1)T for j!j large enough. �
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The inclusion in (a) may be proper, as may be seen from the equality (�1A) =
�(A1). The next assertion shows that property b) of Theorem 3.5 can be extended
from polynomials to analytic functions.

3.8 Proposition. Let A be an n-tuple of bounded operators acting on a Banach
space X such that �

�hA; �i� � R for all � 2 R
n. Let � 2 C

n and set h(A); �i :=
fhx; �i : x 2 (A)g: Then �(hA; �i) � h(A); �i.

Suppose that U � C is a bounded open set with connected complement containing
the set h(A); �i. Suppose that g : U ! C is analytic. Set f(z) = g(hz; �i), for all
z 2 C n such that hz; �i 2 U . Then f(A) = g(hA; �i):
Proof. The proof of the inclusion �(hA; �i) � h(A); �i follows the argument of
Theorem 3.6. By Runge's Theorem for functions of a single complex variable, g
can be approximated uniformly on compact subsets of U by polynomials hpnin on
C . Hence f can be approximated by fpn � �gn uniformly on sets h � ; �i�1K for
K � U compact.

Now take K to be a compact subset of U whose interior K� contains h(A); �i.
Let V be an open subset of Rn+1 such that (A) � V and V is contained in
h � ; �i�1K�. Then f can be approximated uniformly on V by functions fpn � �gn
with fpngn a sequence of polynomials on C . The equality f(A) = g(hA; �i) is a
consequence of Corollary 3.4 (ii) and Proposition 3.3. �

In the case that A is a commuting n-tuple of bounded operators acting on a
Banach space X, it is shown in [9, Corollary 3.4] that for � 2 Rn, the operatorPn

j=1(�jI�Aj)2 is invertible in L(X) if and only if
Pn

j=1(�jI�Aj)ej is an invertible

element of L(n)(X(n)).
The following result was announced in [5, Lemma 3.2, Corollary 3.17] for com-

muting selfadjoint operators.

3.9 Theorem. Let A be a commuting n-tuple of bounded operators acting on a
Banach space X such that �(Aj ) � R for all j = 1; : : : ; n.

Then (A) is the complement in Rn of the set of all � 2 Rn for which the operatorPn
j=1(�jI �Aj)2 is invertible in L(X).

Moreover, (A) is the Taylor spectrum of A. If the complex valued function
f is analytic in a neighbourhood of (A) in R

n, then the operator f(A) 2 L(X)
coincides with the operator obtained from Taylor's functional calculus [13].

Proof. Let �(n)(A) be the set of all � 2 Rn+1 such that either �0 6= 0 or if �0 = 0,

then the operator
Pn

j=1(�jI�Aj)2 is invertible in L(X). Set �(n)(A) = Rnn�(n)(A).
Each of the operators Aj has real spectrum, so �(hA; �i) � R [9, Proposition

10.1]. Suppose �rst that n is odd. In this case, the Cauchy kernel G!(A) for A can
be written down directly. The element

(18) 1=�nj!I �Aj�n�1(!I �A)

of L(n)(X(n)) has the power series expansion (5) for j!j large enough. Here

j!I �Aj�m =

��
!20I +

nX
j=1

(!jI �Aj)
2
��1�m=2

for an even integer m and !I �A = !0I �
Pn

j=1(!jI �Aj )ej .
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The operator !20I +
Pn

j=1(!jI �Aj)2 is invertible for each ! 2 �(n)(A) because

Aj has real spectrum for each j = 1; : : : ; n [9, Proposition 10.1]. As stated in [9,

Example 5.4], it is easily veri�ed that the function ! 7! 1=�nj!I �Aj�n�1!I �A,
! 2 �(n)(A); is monogenic in L(n)(X(n)). Hence (A) � �(n)(A) and G!(A) is given
by the expression (18) for all ! 2 �(n)(A).

Now suppose that x 2 R
n n (A). Then ! 7! G!(A) is norm-continuous in a

neighbourhood U of x in Rn+1 and it is given by (18) for !0 6= 0. The function

! 7! �nj!I �Ajn�1G!(A)

is also continuous in U . For !0 6= 0, �nj!I�Ajn�1G!(A) = j!I�Aj�2!I �A and
the equality (!I�A)�1 = j!I�Aj�2!I �A holds in L(n)(X(n)), so the L(n)(X(n))-

valued function ! 7! (!I � A)�1 has a continuous extension J from U n Rn to U .
Continuity ensures that the equalities J(!)(!I�A) = (!I�A)J(!) = Ie0 hold for
all ! 2 U , so xI�A is invertible in L(n)(X(n)), that is, x 2 �(n)(A). This completes
the proof that (A) = �(n)(A) for the case in which n is odd.

For n even, we have to de�ne (!20I+
Pn

j=1(!jI�Aj)2)�(n+1)=2 in some fashion.

A convenient way is to use the plane wave decomposition formula (6) to de�ne
G!(A). To identify the set (A), we use Taylor's functional calculus [13].

That �(n)(A) is the Taylor spectrum of A is proved in [10, Theorem 1]. A
continuous linear map T : H(�(n)(A)) ! L(X) such that T (p) = p(A) for all
polynomials p : Rn! C is constructed in [13].

The function ! 7! j! � � j�n�1 is analytic from �(n)(A) into H(�(n)(A)), so on

application of the mapping T , it follows that ! 7! T
�j! � � j�n�1� is analytic from

�(n)(A) into L(X). The analytic functional calculus ensures that the function

(19) ! 7! 1=�nT
�j! � � j�n�1�!I �A

has the power series expansion (5) for j!j large enough and is monogenic in �(n)(A).
Hence (A) � �(n)(A) and G!(A) is given by formula (19) for all ! 2 �(n)(A). The
proof that �(n)(A) � (A) follows the case for n odd.

Equality of the monogenic functional calculus and Taylor's functional calculus
T [13] is a consequence of Theorem 3.6. �
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