
THE WEYL CALCULUS AND CLIFFORD ANALYSIS

Brian Jefferies and Alan McIntosh

Abstract. A note is made on the connection between Cli�ord analysis and the
Weyl functional calculus for an n-tuple of bounded selfadjoint operators which do
not necessarily commute with each other.

1. Introduction.

The spectral theorem for a selfadjoint operator T acting on a Hilbert space H
facilitates the expression of a function f(T ) of T in terms of an integral f(T ) =R
�(A) f(�) dP (�) with respect to a spectral measure P . In general, no such repre-

sentation is possible for an n-tuple A = (A1; : : : ; An) of non-commuting bounded
selfadjoint operators acting on a Hilbert space H. Nevertheless, the Weyl functional
calculus f 7! fW(A) for A is a means of constructing functions fW(A) of the system
A of operators, for suitable smooth functions f de�ned on Rn. It was proposed by
H. Weyl for the pair (P;Q) of unbounded self adjoint operators, where P is the
momentum operator and Q is the position operator in quantum mechanics. For
the case n = 2, the function x1x2 : (x1; x2) 7! x1x2, for all x1; x2 2 R, belongs to
the domain of the Weyl functional calculus and (x1x2)W (A) = 1

2
(A1A2 +A2A1).

In general, polynomials on Rn are mapped by the Weyl functional calculus into
the corresponding polynomials in the n-tuple A of operators, but with products
suitably symmetrised.

A similar phenomenon emerges in Cli�ord analysis. A monogenic function f
de�ned on Rn+1, and with values in a �nite dimensional Cli�ord algebra, is a
function lying in the kernel of the Dirac operator | a higher dimensional analogue
of the Cauchy-Riemann equations. Every analytic function in n real variables has
a unique monogenic extension to Rn+1. The monogenic extensions z1 and z2 of
the functions x1 : (x1; : : : ; xn) 7! x1 and x2 : (x1; : : : ; xn) 7! x2, respectively, are
easily written down. It turns out that for n = 2, the monogenic extension of the
real valued function x1x2 to R

3 is 1
2 (z1z2 + z2z1), and, in general, the monogenic

extension of polynomials on Rn are the corresponding polynomials in the n-tuple
(z1; : : : ; zn) of monogenic functions, but with products suitably symmetrised. The
purpose of the present note is to elaborate on this formal similarity between the
Weyl and Cli�ord calculi.

The present work may be formulated in terms of hermitian operators acting on
a Banach space in place of selfadjoint operators on a Hilbert space, along the lines
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of [A1], or in terms of bounded operators on a Banach space satisfying a growth
condition, as in [MP, Condition 8.1]. However, the essential features are already
present in the selfadjoint case addressed here.

At one point in section 5, some facts concerning the integration of vector valued
functions are needed. Suppose that (�;S; �) is a measure space and E is a sequen-
tially complete locally convex space. Let f : � ! E be a function for which there
exist E-valued �-integrable S-simple functions sn; n = 1; 2; : : : such that sn ! f �-
a.e., and for every continuous seminorm p on E,

R
�
p(sn�sm)d�! 0 as n;m!1.

Then the integral
R
A
f d� of f with respect to �, over a set A 2 S, is de�ned to be

the limit limn!1

R
A
sn d�. The limit is independent of the approximating sequence

sn; n = 1; 2; : : : ; such a function f is said to be Bochner �-integrable. It follows
immediately that for a continuous linear map T : E ! F between sequentially
complete locally convex spaces E and F , if f is Bochner �-integrable, then T � f is
Bochner �-integrable and T

�R
A
f d�

�
=
R
A
T � fd� for all A 2 S. A bounded con-

tinuous function with values in a Fr�echet space or LF -space is Bochner integrable
with respect to any �nite regular Borel measure.

The basic notions of Cli�ord algebras are outlined in section 2. Notation concern-
ing Banach modules and Banach module homomorphisms is introduced in section
3. General information concerning Cli�ord analysis is presented in section 4. The
connection between the Weyl and the Cli�ord calculi appeals to Theorem 5.4 of
section 5, which is actually proved not just for the Weyl functional calculus, but for
any operator valued distribution with compact support. In section 6, we identify
the complement of the support of the Weyl functional calculus for an n-tuple A of
selfadjoints with a certain `resolvent set' where the Cauchy kernel for A is mono-
genic. Similar ideas have been advanced by V. Kisil [K], but Example 6.3 shows
that the domain of monogenicity of the Cauchy kernel for a pair T of Pauli matrices
cannot be calculated in the fashion of [K, De�nition 3.1], so [K, formulae (9), (10)]
as they stand are incorrect with the spectrum �(T) de�ned in [K, De�nition 3.1].

2. Clifford algebras.

Let F be either the �eld R of real numbers or the �eld C of complex numbers.
The Cli�ord algebra F(n) over F is a 2n-dimensional algebra with unit de�ned as

follows. Given the standard basis vectors e0; e1; : : : ; en of the vector space Fn+1,
the basis vectors eS of F(n) are indexed by all �nite subsets S of f1; 2; : : :; ng. The
basis vectors are determined by the following rules for multiplication on F(n):

e0 = 1;

e2j = �1; for 1 � j � n

ejek = �ekej = efj;kg; for 1 � j < k � n

ej1ej2 � � �ejs = eS ; if 1 � j1 < j2 < � � � < js � n and S = fj1; : : : ; jsg:
Here the identi�cations e0 = e; and ej = efjg for 1 � j � n have been made.

The product of two elements u =
P

S uSeS ; uS 2 F and v =
P

S vSeS ; vS 2 F is
uv =

P
S;R uSvReSeR. According to the rules for multiplication, eSeR is �1 times

a basis vector of F(n). The scalar part of u =
P

S uSeS ; uS 2 F is the term u;, also
denoted as u0.

The Cli�ord algebras R(0);R(1) and R(2) are the real, complex numbers and the
quaternions, respectively.
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The conjugate eS of a basis element eS is de�ned so that eSeS = eSeS = 1.
Denote the complex conjugate of a number c 2 F by c. Then the operation of
conjugation u 7! u de�ned by u =

P
S uS eS for every u =

P
S uSeS ; uS 2 F is an

involution of the Cli�ord algebra F(n). Then u v = uv for all elements u and v of
F(n).

An inner product is de�ned on F(n) by the formula (u; v) = [uv]0 =
P

uSvS for
every u =

P
S uSeS and v =

P
S vSeS belonging to F(n). The corresponding norm

is written as j � j.
Suppose that m � n are positive integers. The vector space Rm is identi�ed

with a subspace of F(n) by virtue of the embedding (x1; : : : ; xm) 7!
Pm

j=1 xjej .

On writing the coordinates of x 2 Rn+1 as x = (x0; x1; : : : ; xn), the space Rn+1 is
identi�ed with a subspace of F(n) with the embedding (x0; x1; : : : ; xn) 7!

Pn
j=0 xjej .

3. Banach modules.

A Banach space X with norm k � k over F with an operation of multiplication
by elements of F(n) turning it into a two-sided module over F(n) is called a Banach

module over F(n), if there exists a C � 1 such that

kxuk � Cjuj kxk and kuxk � Cjuj kxk
for all u 2 F(n) and x 2 X. The vector space of all continuous module homomor-
phisms from a Banach module X to a Banach module Y is denoted by L(n)(X;Y ).
Thus, a bounded linear map A : X ! Y belongs to L(n)(X;Y ) if (Ax)u = A(xu)
for all x 2 X and u 2 F(n). Both L(n)(X;Y ) and the space L(X;Y ) of continuous
linear operators from X to Y are considered as Banach spaces over F with the
uniform operator norm k � k.

The algebraic tensor product X(n) = X 
 F(n) of a Banach space X over F
with F(n) is a Banach module. Elements of X(n) may be viewed as �nite sums
u =

P
S xS 
 eS of tensor products of elements xS of X with basis vectors eS of

F(n). Multiplication in X(n) by elements of � the Cli�ord algebra F(n) is de�ned by
u� =

P
S xS
(eS�) and �u =

P
S xS
(�eS ). The tensor product notation xS
eS

is written simply as xSeS . The norm on X(n) is taken to be kuk = �PS kxSk2X
�1=2

.
The analogous procedure applies to a locally convex space E to de�ne the module

E(n) with its induced locally convex topology. If E and F are two locally convex

spaces, then the spaces
�L(E;F )�

(n)
and L(n)(E(n); F(n)) are identi�ed by de�ning

the operation of T =
P

S TSeS on u =
P

S uSeS as T (u) =
P

S;S0 TS (uS0)eSeS0 .

Given x 2 E and � 2 F 0, the element hTx; �i 2 F(n) is de�ned for each T =
P

S TSeS
belonging to L(n)(E(n); F(n)) by hTx; �i =

P
ShTSx; �ieS

4. Clifford analysis.

What is usually called Cli�ord analysis is the study of functions of �nitely many
real variables, which take values in a Cli�ord algebra, and which satisfy higher
dimensional analogues of the Cauchy-Riemann equations.

A function f : Rn+1! F(n) has a unique representation f =
P

S fSeS in terms
of F-valued functions fS ; S � f1; : : : ; ng in the sense that f(x) =

P
S fS(x)eS

for all x 2 Rn+1. Then f is continuous, di�erentiable and so on, in the normed
space F(n), if and only if for all �nite subsets S of f1; : : : ; ng, its scalar compo-
nent functions fS have the corresponding property. Let @j be the operator of
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di�erentiation of a scalar function in the j'th coordinate in Rn+1|the coordi-
nates of x 2 Rn+1 are written as x = (x0; x1; : : : ; xn). For a continuously dif-
ferentiable function f : Rn+1 ! F(n) with f =

P
S fSeS , the function Df is

de�ned by setting Df =
P

S

�
@0fSeS +

Pn
j=1 @jfSejeS

�
and fD is speci�ed by

fD =
P

S

�
@0fSeS +

Pn
j=1 @jfSeSej

�
.

Now suppose that f is an F(n)-valued, continuously di�erentiable function de-

�ned in a neighbourhood of an open subset U of Rn+1. Then f is said to be left

monogenic in U if Df(x) = 0 for all x 2 U and right monogenic in U if fD(x) = 0
for all x 2 U . A function which is both left and right monogenic is simply said to
be monogenic.

For each z 2 Rn+1, the function Gz de�ned by Gz(x) = 1=�njz�xj�n�1(z � x),
for each x 6= z is monogenic. Here the volume of the unit n-sphere in Rn+1 has
been denoted by �n and we have used the identi�cation of Rn+1 with a subspace
of R(n) mentioned in section 2.

The function Gz; z 2 Rn+1 plays a special role in Cli�ord analysis. Suppose
that 
 � Rn+1 is a bounded open set with smooth boundary @
 and exterior unit
normal n(!) de�ned for all ! 2 @
. For any left monogenic function f de�ned in
a neighbourhood U of 
, the Cauchy integral formula

Z
@


G!(x)n(!)f(!) d�(!) =

�
f(x); if x 2 
;

0; if x 2 U n 
:

is valid. Here � is the surface measure of @
. The result is proved in [BDS, Corollary
9.6]. If g is right monogenic in U then

R
@
 g(!)n(!)f(!) d�(!) = 0 [BDS, Corollary

9.3].
The de�nition of monogenicity extends readily to other vector and operator

valued functions. We remark here that, as in the case of vector valued analytic
functions, a function is monogenic for the weak topology of a locally convex module
E(n) if and only if it is monogenic for the original topology. Moreover, for a Banach
space E, if g : U ! E(n) is right monogenic and f : U ! F(n) is left monogenic,
then the function ! 7! g(!)n(!)f(!), ! 2 @
, is Bochner �-integrable in E(n) andR
@


g(!)n(!)f(!) d�(!) = 0: In particular, this is valid in the case that X is a
Banach space and E = L(X) with the uniform operator norm. It follows from the
principle of uniform boundedness and the Cauchy integral formula that an L(X)-
valued function is norm monogenic when it is monogenic for the weak or strong
operator topologies.

5. The Weyl functional calculus.

Let A1; : : : ; An be bounded selfadjoint operators acting on a Hilbert space H
with inner product h�; �i. The Weyl functional calculus [T],[A1] is a means of form-
ing functions fW(A1; : : : ; An) of the n-tuple A = (A1; : : : ; An) of operators. The
operators A1; : : : ; An do not necessarily commute with each other, so there is no
fundamentally unique way of forming such functions. However, the Weyl functional
calculus is determined by a few natural conditions, see [A1, Theorem 2.4].

For every � 2 R
n, hA; �i = h�; Ai denotes the selfadjoint operator

Pn
j=1Aj�j .

The operator eihA;�i is therefore unitary for each � 2 Rn. The Fourier transform f̂

of a function f integrable over Rn is de�ned by f̂ (�) = (2�)�n=2
R
Rn

e�ihx;�if(x) dx
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for all � 2 Rn. The integral fW(A) = (2�)�n=2
R
Rn

eihA;�if̂(�) d� is an operator
valued Bochner integral for each function f belonging to the space S(Rn) of rapidly
decreasing functions on Rn. Then the mapping f 7! fW(A), for all f 2 S(Rn) is
the Weyl functional calculus for the n-tuple A of selfadjoint operators.

The set Rn is identi�ed with the subspace fx 2 Rn+1 : x0 = 0g of Rn+1. It turns
out that there exists a unique operator valued distribution WA : f 7! fW(A), f 2
C1(Rn) de�ned over the test function space C1(Rn) of all in�nitely di�erentiable
functions, such that the restriction ofWA to S(Rn) is the Weyl calculus for A. The
support of this distribution is contained in the closed unit ball in Rn centred at

zero and with radius
�Pn

j=1 kAjk2
�1=2

[T, Theorem 1].

Suppose that U is an open neighbourhood of the support of WA in Rn. There
is no harm if we also call the distribution WA : f 7! fW(A) over C1(U ) the Weyl
functional calculus for A. Less transparently, perhaps, the algebraic tensor product
WA 
 I(n) : C

1(V )(n) ! L(n)(H(n)) of WA with the identity operator I(n) on F(n)
is also denoted just byWA. Here V is an open neighbourhood of suppWA in Rn+1

and C1(V )(n) is the locally convex module obtained by tensoring the locally convex
space C1(V ) with F(n), as mentioned in section 3. The mappingWA : C1(V )!
L(H) is de�ned by applying WA to the restriction of functions f 2 C1(V ) to the
open subset V \Rn of Rn. The map WA : C1(V )(n) ! L(n)(H(n)) is a module
homomorphism. The symbolsWA(f) and fW(A) are used interchangeably.

For any subset G of Rn+1, let M (G;F(n)) be the collection of all F(n)-valued
functions which are left monogenic in an open neighourhood of G in Rn+1. If G
is open in Rn+1, then M (G;F(n)) is given the compact-open topology (uniform
convergence on every compact subset of G). If K is a compact subset of Rn, then
M (K;F(n)) is the union of all spaces M (U;F(n)), as U ranges over the open sets

in Rn+1 containing K. Equipped with the inductive limit topology, M (K;F(n))
becomes an LF -space [BDS, Theorem 9.11].

The support suppWA of the distribution WA, which is independent of the par-
ticular meaning attached to it above, is a compact subset of Rn. Let U be an open
neighbourhood of suppWA in Rn and suppose that the function f : U ! C is ana-
lytic. Let ~f be a monogenic extension of f to an open neighbourhood of U in Rn+1.
Then according to the de�nition of ( ~f )W(A), the equality ( ~f )W(A) = fW(A)
 I(n)
is valid. The Weierstrass convergence theorem for monogenic functions [BDS, The-
orem 9.11] ensures that the Weyl calculus WA : M (K;F(n)) ! L(n)

�
H(n)

�
is a

continuous module homomorphism. Then M (K;F(n)) becomes a topological al-
gebra under the C-K product [BDS, p113], and the closed subspace M (K;F) of
M (K;F(n)) consisting of left monogenic extensions of F-valued functions on K is a
commutative topological algebra. The topological algebra M (K;F) is isomorphic,
via monogenic extension, to the topological algebra H(K;F) of F-valued functions
analytic in an open neighbourhood of K with pointwise multiplication. The Weyl
calculus is also continuous on this space.

Let X be a Banach space. A sequence ffkg1k=1 of X-valued functions fk : 
 !
X is normally summable in X if there exists a summable sequence fMkg1k=1 of
nonnegative real numbers Mk such that kfk(!)k � Mk, for all ! 2 
 and all
k = 1; 2; : : : . Thus, a normally summable sequence ffkg1k=1 of X-valued functions
on 
 is absolutely and uniformly summable on 
.

Suppose that f is an analytic F-valued function de�ned on an open neighbour-
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hood of zero in of Rn and the Taylor series of f is given by

(1) f(x) =
1X
k=0

1

k!

nX
l1=1

� � �
nX

lk=1

al1:::lkxl1 � � �xlk ;

for all x 2 R
n in a neighbourhood of zero. The coe�cients al1:::lk are assumed to

be symmetric in l1; : : : lk. Then the unique monogenic extension ~f of f is

(2) ~f (x) =
1X
k=0

0
@ X
(l1;:::;lk)

al1:::lkVl1:::lk (x)

1
A

for all x belonging to some neighbourhood of zero inRn+1. Here, the sum
P

(l1;:::;lk)
: : :

is over the set f1 � l1 � � � � � lk � ng, and for (l1; : : : ; lk) 2 f1; 2; : : : ; ngk, the func-
tion Vl1:::lk : Rn+1! F(n) is de�ned as follows. For each j = 1; : : : ; n, the monogenic
extension of the function xj : x 7! xj; x 2 Rn is given by zj : x 7! xje0 � x0ej ; x 2
R
n+1. Then V0(x) = e0; x 2 Rn+1 and Vl1:::lk = 1=k!

P
j1;:::;jk

zj1 � � �zjk ; where the
sum is over all distinguishable permutations of all of (l1; : : : ; lk); and products are

in the sense of pointwise multiplication in F(n). If ~f is monogenic in the open ball

BR(0) of radius R about zero in Rn+1, then (2) converges normally in BR(0) [BDS,
p82].

Set Vl1:::lk(A) = 1=k!
P

j1;:::;jk
Aj1 � � �Ajk for the same ranges of indices. The

product is understood as the composition of operators. Then, it follows easily from
the observation of Nelson [N] and Anderson [A1, Theorem 2.4 (c)], that the equality

(3) fW(A) =
1X
k=0

0
@ X
(l1;:::;lk)

al1:::lkVl1 :::lk(A)

1
A

holds if (1) converges in a suitable neighbourhood of suppWA:
In the case in which the monogenic expansion of a function about a point does

not converge over all of suppWA, the Cauchy integral formula is useful, as for the
Dunford-Riesz functional calculus for a single operator.

For any z 2 Rn+1 not belonging to suppWA, there exists an open neighbourhood
Uz of suppWA in Rn+1 such that the F(n)-valued function

x 7! Gz(x) = 1=�njz � xj�n�1(z � x);

for each x 6= z belongs to C1(Uz)(n). Then WA(Gz) = (Gz)W(A) may be viewed
as an element of L(n)(H(n)).

5.1 Example. Let n = 3 and consider the simplest non-commuting example of
the Pauli matrices,

J1 =

�
0 1
1 0

�
; J2 =

�
0 �i
i 0

�
; J3 =

�
1 0
0 �1

�
;

viewed as linear transformations acting on H = C 2 . Set J = (J1; J2; J3). A
calculation [A1, Theorem 4.1] shows that for all f 2 C1(R3), the matrixWJ (f) is
given by

WJ (f) = I

Z
S1

(f + n � rf) d�1 +
Z
S1

J � rf d�1:
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Here St = fx 2 R3 : jxj = tg is the sphere of radius t > 0 centred at zero in R3, �1
is the unit surface measure on S1 and n(x) is the outward unit normal at x 2 S1.
Thus, suppWJ = S1.

For all ! 2 R4 such that ! =2 S1 � R
3, WJ (G!) 2 L(3)(C 2(3)) is given by

WJ (G!) = I

Z
S1

(G! + n � rG!) d�1 +

Z
S1

J � rG!d�1:

Let v1; v2 be the standard basis vectors of C 2 . For each x0 2 R, the function
(x; t) 7! WtJ (G(x+x0e0))vj is the solution of the Weyl equation

@tut = �J � rut; t > 0

with initial datum u0(x) = �vj 
G0(x + x0e0) = 1=�3vj 
 (x0e0 � x)=jx+ x0e0j4
for all x 2 R3; x+x0e0 6= 0. The function ! 7! WtJ (G!)vj is monogenic on the set
R4 n St.

The following statements are formulated in a context more general than that of
the Weyl functional calculus.

Suppose that H is a Hilbert space over the �eld F and T : C1(Rn)! L(H) is a
distribution with compact support K. We use the same symbol T to denote the map
which sends the element f =

P
S fSeS of C1(K)(n) to the element

P
S T (fS )eS

of L(n)(H(n)), rather than the more descriptive notation T 
 I(n). In particular,
T (f) 2 L(n)(H(n)) is de�ned for all f 2M (K;F(n)).

5.2 Proposition. Let U be an open subset of Rn+1 containing K = supp T . Sup-
pose that z 7! Fz is a continuous map from U nK into C1(K)(n). If for each open

set V with V � U nK, there exists a neighbourhood NV of K, such that for each

x 2 NV , the F(n)-valued function z 7! Fz(x) is monogenic in V , then z 7! T (Fz)
is monogenic in U nK.

Proof. By Cauchy's theorem for monogenic functions [BDS, Theorem 9.6], for all
intervals I contained in U n K,

R
@I
n(!)F!(x) d�(!) = 0 for each x belonging to

some neighbourhood of K. The function z 7! Fz; z 2 U nK is continuous, and so
Bochner integrable in C1(K)(n) on all boundaries @I of intervals I contained in

U nK. Moreover, the function
R
@I n(!)F! d�(!) belongs to C

1(K)(n) and vanishes
in a neighbourhood of the support K of T .

The distribution T : C1(K)(n) ! L(n)(H(n)) is a continuous linear map, so as
observed in the introduction, the equalities

Z
@I

n(!)T (F!) d�(!) = T

�Z
@I

n(!)F! d�(!)

�
= 0

hold. By Morera's theorem for monogenic functions [BDS, Theorem 10.4], z 7!
T (Fz) is monogenic in U nK. �

5.3 Corollary. The L(n)
�
H(n)

�
-valued function z 7! WA(Gz) is monogenic in

R
n+1 n suppWA.
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5.4 Theorem. Let T be an L(H)-valued distribution with compact support. Let 

be a bounded open neighbourhood of supp T in Rn+1 with smooth boundary @
 and

exterior unit normal n(!) de�ned for all ! 2 @
. Let � be the surface measure of


. Suppose that f is left monogenic and g is right monogenic in a neighbourhood

of the closure 
 = 
 [ @
 of 
. Then T (f) =
R
@
 T (G!)n(!)f(!) d�(!) and

T (g) =
R
@
 g(!)n(!)T (G!) d�(!):

Proof. We consider only the case where f is left monogenic. The case where g is
right monogenic is similar. The space C1(
)(n) of smooth F(n)-valued functions
de�ned on 
 is a separable Fr�echet space with the topology of uniform conver-
gence of functions, and their derivatives, on compact subsets of 
. The continuous
function ! 7! G!n(!)f(!); ! 2 @
 takes its values in C1(
)(n) and satis�esR
@
 p(G!n(!))jf(!)j d�(!) < 1 for each continuous seminorm p on C1(
)(n),
that is, it is Bochner integrable in C1(
)(n).

By the Cauchy integral theorem mentioned in section 4, the equality

f(x) =

Z
@


G!(x)n(!)f(!) d�(!)

holds for all x belonging to the open set 
. Combining this equation with the
observation made in the introduction, and the fact that the distribution T de�nes
a continuous linear map (denoted by the same symbol) from C1(
)(n) into the
space L(n)(H(n)) with the uniform operator norm, it follows that the function ! 7!
T (G!)n(!)f(!); ! 2 @
 is Bochner integrable in the space L(n)(H(n)), with the
uniform norm, and the equality

T

�Z
@


G!n(!)f(!) d�(!)

�
=

Z
@


T (G!)n(!)f(!) d�(!)

obtains. The stated equality T (f) =
R
@
 T (G!)n(!)f(!) d�(!) therefore holds. �

5.5 Corollary. Let 
 be a bounded open neighbourhood of suppWA in Rn+1 with

smooth boundary @
 and exterior unit normal n(!) de�ned for all ! 2 @
. Let

� be the surface measure of 
. Suppose that f is left monogenic and g is right

monogenic in a neighbourhood of the closure 
 = 
 [ @
 of 
. Then fW(A) =R
@
WA(G!)n(!)f(!) d�(!) and gW(A) =

R
@
 g(!)n(!)WA(G!) d�(!):

We mention here that the extension of these results to H-valued functions is
straightforward. First, if f =

Pn
j=1 fjhj for monogenic functions fj and vectors

hj 2 H, then T (f) =
P

j T (fj)hj and the above equality holds. In the limit, both

sides of the equation converge because C1(suppT )
H is dense in C1(suppT ;H).

6. The Monogenic Spectrum

Let A be an n-tuple of bounded selfadjoint operators acting on a Hilbert space
H. For each ! 2 Rn+1 such that ! 6= 0, let

(4) G!(x) =
1X
k=0

0
@ X
(l1;:::;lk)

Wl1:::lk(!)Vl1 :::lk (x)

1
A
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be the monogenic power series expansion of G! in the region jxj < j!j [BDS, 11.4
pp77-81]. HereWl1:::lk (!) is given for each ! 2 Rn+1; ! 6= 0 by (�1)k@!l1 � � �@!lkG!(0):
With Vl1:::lk de�ned as in section 5.

It follows from formula (3) that

(5) (G!)W(A) =
1X
k=0

0
@ X
(l1;:::;lk)

Wl1:::lk(!)Vl1 :::lk(A)

1
A

for all ! 2 R
n+1 such that j!j > (1 +

p
2)kPn

j=1Ajejk. Formula (5) is adopted

as a de�nition of the Cauchy kernel in [K, De�nition 3.11]. The sum converges in
L(n)(H(n)) because of the following result.

6.1 Lemma. The sum

1X
k=0

X
(l1;:::;lk)

jWl1:::lk(!)j kVl1 :::lk(A)k

converges uniformly for j!j � R;! 2 Rn+1, for each R > (1 +
p
2)kPn

j=1Ajejk.
Proof. The norm kVl1:::lk(A)k of Vl1:::lk (A) is bounded by

1

k!

X
j1;:::;jk

kAj1k � � �kAjkk;

where the sum is over all distinguishable permutations of (l1; : : : ; lk). Suppose that
for each j = 1; : : : ; n, the index j appears exactly kj = 0; � � � ; n times in the k-tuple
(l1; : : : ; lk). Then k = k1 + � � �+ kn and there are k!

k1!���kn!
distinguishable permu-

tations of (l1; : : : ; lk). Thus, kVl1:::lk (A)k � 1
k1!���kn!

kA1kk1 � � � kAnkkn : It su�ces to

show that for each R > (1 +
p
2)kPn

j=1Ajejk, the sum
1X

k1;:::;kn=0

1

k1! � � �kn! j@
k1
!1 � � �@kn!nG!(0)j kA1kk1 � � � kAnkkn

converges uniformly for all j!j � R;! 2 R
n+1. However, this follows from the

normal convergence of the multiple power series

1

jy � xjn�1 =
1X
k=0

(�1)k
k!

< x;ry >
k 1

jyjn�1

for jxj < (
p
2� 1)jyj [BDS, p83] and the equality G!(x) =

1
�n
Dx

1
j!�xjn�1 ; valid for

all ! 6= x. �

We know from Corollary 5.3 that the function de�ned by formula (5) for all

j!j > (1 +
p
2)kPn

j=1Ajejk is actually the restriction of an L(n)(H(n))-valued

function monogenic in Rn+1 n suppWA. The question remains as to whether there
is a larger open set on which this function has a monogenic extension.

The spectrum of a single operator T is the set of `singularities' of the resolvent
function � 7! (�I � T )�1. Similarly, the monogenic spectrum (A) of the n-tuple
A of bounded selfadjoints is the complement of the largest open set U � R

n+1 in
which the function ! 7! (G!)W(A) is the restriction of a monogenic function with
domain U .
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6.2 Theorem. Let A be an n-tuple of bounded selfadjoint operators acting on a

Hilbert space H. Then (A) = suppWA.

Proof. We have established in Corollary 5.3 that (A) � suppWA. Let x 2 (A)c,
let U � (A)c be an open neighbourhood of x in Rn and suppose that � is a smooth
function with compact support in U .

Let g; h 2 H. A comparison with [BDS, De�nition 27.6] shows that the F(n)-

valued monogenic function ! 7! h(G!)W(A)g; hi, ! 2 Rn+1 n suppWA, is actually
the monogenic representation of the distribution hWAg; hi : f 7! hWA(f)g; hi, for
all smooth f de�ned in an open neighbourhood of suppWA. Then hWAg; hi(G!) =
h(G!)W(A)g; hi and by [BDS Theorem 27.7],

hWAg; hi(�) = lim
y0!0+

Z
U

[h(Gy+y0e0)W(A)g; hi � h(Gy�y0e0)W(A)g; hi]�(y) dy:

Because ! 7! (G!)W(A) is monogenic (hence continuous) for all ! in U , the limit
is zero, that is, hWAg; hi(�) = 0 for all g; h 2 H and all smooth � supported by U .
Hence x 2 suppWA

c, as was to be proved. �

Remark. The signi�cance of the Cauchy kernel ! 7! (G!)W(A) is that it is the
monogenic representation of the distribution WA o� suppWA | the distribu-
tion WA represents the `boundary values' on Rn of the monogenic function ! 7!
(G!)W(A).

6.3 Example. Let A = (J3; J1). It follows by applying [A1, Theorem 2.9 (a)] to
Example 5.1 that the support ofWA is the closed unit disk D � R

2 centred at zero,
so (A) = D. An explicit calculation is given in [GR, Example 2]. The Cli�ord

spectrum �(T) of [K, De�nition 3.1] is �(T) = f(0; 0)g.
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