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1 Introduction, history, and statement of the

Main Theorem

Let A be an n × n matrix of complex, L∞ coefficients, defined on Rn, and
satisfying the ellipticity (or “accretivity”) condition

(1.1) λ|ξ|2 ≤ Re〈Aξ, ξ〉 ≡ Re
∑
i,j

Aij(x) ξj ξi , ‖A‖∞ ≤ Λ,

for ξ ∈ Cn and for some λ,Λ such that 0 < λ ≤ Λ < ∞. We define a
divergence form operator

(1.2) Lu ≡ − div(A(x)∇u),

which we interpret in the usual weak sense via a sesquilinear form.
The accretivity condition (1.1) enables one to define an accretive square

root
√
L ≡ L1/2 (see [13]), and a fundamental issue is to “solve the square

root problem”, i.e. to establish the estimate

(1.3) ‖
√
Lf‖L2(Rn) ≤ C‖∇f‖L2(Rn),

with C depending only on n, λ and Λ. The latter estimate is connected
with the question of the analyticity of the mapping A → L

1
2 , which in turn

has applications to the perturbation theory for certain classes of hyperbolic
equations (see [16]). We remark that (1.3) is equivalent to the opposite
inequality for the square root of the adjoint operator L∗.

In [13, 14], Kato conjectured that an abstract version of (1.3) might hold,
for “regularly accretive operators” (see [14, 18] for the details). A counter-
example to this abstract conjecture was obtained by McIntosh [17], who
then reformulated the conjecture in the following form, bearing in mind that
Kato’s interest in the problem had been motivated by the special case of
elliptic differential operators.

Conjecture 1.4. The estimate (1.3) holds, for L defined as in (1.2), for any
L∞, n× n matrix A with complex entries, for which (1.1) holds.

To establish the validity of Conjecture 1.4 has become known as the
“Kato Problem”, or “square root problem”. Until recently, it had been solved
completely only in one dimension [8], where it is essentially equivalent to the
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problem of proving the L2 boundedness of the Cauchy integral operator on
a Lipschitz curve (see also [15]).

For n > 1, a restricted version of Conjecture 1.4, also essentially posed by
Kato in [14], has recently been proved by one of us (Hofmann), along with
Auscher, Lewis, and Tchamitchian in [3]. The restricted version treats the
case that A is close, in the L∞ norm, to a real symmetric matrix of bounded,
measurable coefficients. It is this version that yields the perturbation results
for hyperbolic equations alluded to above (see [16]).

Prior to the latter result, Conjecture 1.4 had been proved in higher di-
mensions in the case that A is close to a constant matrix, in either the L∞

norm ([7], [10], [11], [12]), or the BMO norm ([9], [5]).
In the present paper, we solve the “Kato problem”, i.e. we establish the

validity of Conjecture 1.4, in the case that the heat kernel of the operator L
satisfies the “Gaussian” property, which we define as follows. Let Wt2(x, y)
denote the kernel of the operator e−t

2L. We say that L satisfies “property
(G)” if there exist positive constants α and β such that

(i) |Wt2(x, y)| ≤ βt−n exp

{
−|x− y|2

βt2

}
(G)

(ii) |Wt2(x+ h, y)−Wt2(x, y)|+ |Wt2(x, y + h)−Wt2(x, y)|

≤ β
|h|α

tα+n
exp

{
−|x− y|2

βt2

}
,

where the latter inequality holds whenever either |h| ≤ t, or |h| ≤ |x− y|/2.
We remark that by [4], property (G) always holds in two dimensions, and

also in an L∞ neighborhood of any real, symmetric matrix, by the classical
parabolic regularity theory of Nash-Moser-Aronson, combined with a per-
turbation result of [1] (or [5, Chapter 1.2, Theorem 6(ii)]). In each of these
cases, α and β may be taken to depend only on n, λ and Λ.

Our main result is the following:

Theorem 1.5. Suppose that A is an n×n matrix of L∞, complex coefficients,
defined on Rn, such that (1.1) holds, and let L ≡ − div(A(x)∇). We suppose
also that L satisfies property (G). Then the square root estimate (1.3) holds,
with C ≡ C(α, β, n, λ,Λ).

In particular, this theorem solves Conjecture 1.4 completely in two di-
mensions, and also recaptures the result of [3], treating the restricted version
of the conjecture, in all dimensions.
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We further remark that the Gaussian hypothesis may be removed, thus
resulting in the complete solution to the Kato problem for second order
divergence form operators. We shall do this jointly with P. Auscher and P.
Tchamitchian, in a second paper [2].

Acknowledgments This collaboration began while the third author was at
Macquarie University, and the first author visited him there in 1996. It was
completed during the second author’s visit to ANU in Canberra. We thank
Pascal Auscher and Philippe Tchamitchian for numerous interesting and use-
ful conversations concerning the problem, and in particular, for describing to
us their joint work [5]. The first named author is grateful to T. Toro, and
the third author to M. Christ, for pointing out to us that the stopping time
construction which we employ in Section 3 is similar in spirit to that of [6].

2 Preliminary Arguments

We begin by introducing some notation that we shall use throughout the
sequel. The generic constant C, which may vary from one place to the
next, is allowed to depend upon α, β, n, λ and Λ, which five parameters we
shall henceforth refer to as “allowable”. When a constant depends on other
quantities, we shall note that dependence explicitly. Given a cube Q ∈ Rn,
let `(Q) denote the side length of Q, and let kQ denote the concentric dilate
of Q, having side length k`(Q). We also let RQ denote the Carleson box
RQ ≡ Q × (0, `(Q)). We set ϕ(x) = x. In the sequel, ϕ will always denote
this function.

We shall deduce Theorem 1.5 as a consequence of a modified version of
a “Tb Theorem for square roots” proved by Auscher and Tchamitchian [5].
To this end, we define a family {γt}∞t=0 of mappings γt : Rn → C

n by

(2.1) γt(x) ≡ e−t
2LtLϕ ≡ −e−t2Lt divA,

since the Jacobian matrix ∇ϕ ≡ 1, the n× n identity matrix. It is a routine
matter to deduce from property (G) that
(2.2)

C0 ≡ sup
t>0

(
‖γt(·)‖L∞(Rn) + tα sup

h 6=0
‖|h|−α (γt(·+ h)− γt(·)) ‖L∞(Rn)

)2

<∞,

and moreover C0 depends only on the allowable parameters. We omit the
details.
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Now let us describe the “Tb Theorem for square roots” of [5], or rather
our simple modification of it, to which we alluded above. Let J denote an
index set with finite cardinality N. Suppose that there exist constants C ′

and C ′′, such that for each cube Q ⊆ Rn, there is a family {Fν}, ν ∈ J, of
functions Fν ≡ Fν,Q : 5Q→ C, which satisfy

(i)

∫
5Q

|∇Fν |2 ≤ C ′|Q|(2.3)

(ii)

∫
5Q

|LFν |2 ≤ C ′′
|Q|

(`(Q))2

(iii) sup
Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)|2dt
t
dx ≤

C
∑
ν∈J

{
C0 + sup

Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)Pt(∇Fν)(x)|2dt
t
dx

}
,

where Pt denotes a nice approximate identity, given by convolution with
a function t−nP (x/t) ≡ Pt(x) ∈ C∞0 , with 0 ≤ P (x) ≤ 1, suppPt(x) ⊆
Bt(0) ≡ {x ∈ Rn : |x| < t}, and

∫
P (x)dx = 1. We then have the following

modification of a result of [5], Section 3.2.

Theorem 2.4. Suppose that A,L are as in Theorem 1.5, and that there is
a finite index set J, with cardinality N, such that for each cube Q ⊆ R

n,
there exist functions Fν ≡ Fν,Q : 5Q→ C, indexed by J, and satisfying (2.3).

Then the square root estimate (1.3) holds for L
1
2 , with a bound on the order

of C
(

1 +
√
N(C0 + C ′ + C ′′)

)
.

Thus, to prove Theorem 1.5, it suffices to construct, for each Q, a family
Fν ≡ Fν,Q, with ν ranging over some finite index set J of fixed cardinality,
satisfying (2.3). It is this construction which is the contribution of the present
work.

We note that in [5], Theorem 2.4 is proved in the case that N = 1, and
for a Cn-valued version of F. The proof of our version is essentially identical
to that of [5], and we omit it. We remark that the original version does
yield a proof of Theorem 1.5 in 2 dimensions, by a variant of the methods of
the present paper, and this was actually done first. In extending matters to
dimensions n > 2, it is helpful to deal with scalar F. The present formulation
of Theorem 2.4 is useful for this purpose. In the next section, we construct
the family Fν,Q, and verify that it has the required properties.
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3 Proof of Theorem 1.5: construction of Fν

Given Q, with side length `(Q) ≡ ρ, we define a mapping F ≡ FQ : 5Q→ C
n,

from which we shall construct the functions Fν ≡ Fν,Q required by Theo-
rem 2.4. We recall that ϕ(x) ≡ x. Let ε > 0 be a small number to be chosen.
We define F ≡ FQ to be

(3.1) F ≡ e−ε
2ρ2Lϕ.

Given a family {ν} of unit vectors in Cn, we define

Fν ≡ F · ν.

Using “Property (G)”, the reader may readily verify that each Fν satisfies
(2.3)(i) and (ii), and we omit the routine details (although we do point out
that, to prove (i), one mimics the proof of Cacciopoli’s inequality; estimate
(ii) is even easier). We observe that the constant in (2.3)(ii) is on the order of
Cε−2, but as we shall eventually choose ε to depend only upon the allowable
parameters, this will be harmless. We emphasize, however, that the constant
in (2.3)(i) is independent of ε, and this fact is important. The main point,
of course, is to verify that (2.3)(iii) holds for some finite collection of unit
vectors {ν}, and it is to this task that we now turn our attention.

We consider cones

C = Cν ≡ {z ∈ Cn : |z − ν(z · ν)| < ε|z · ν|},

in which ν is a complex vector of modulus one. Clearly, we may select a
set of complex unit vectors ν, with cardinality N = N(ε, n), such that the
corresponding cones Cν cover Cn. It is then enough to show that the following
analogue of (2.3)(iii) holds in each cone separately:

sup
Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)1Cν (γt(x))|2dt
t
dx ≤

C

{
C0 + sup

Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)Pt(∇Fν)(x)|2dt
t
dx

}
.

Moreover, by a well known reduction (see, e.g., [3], Lemma 3.3), it suffices
to prove a version of the latter estimate on an appropriately ample sawtooth
domain. To be precise, it is enough to show that there is a positive number η,
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depending only on the allowable parameters, such that for each cube Q, and
each fixed unit vector ν ∈ Cn, we have a collection {Qk} of non-overlapping
dyadic subcubes of Q, and a decomposition Q = E ∪ B, with E ∩ B = ∅,
|E| ≥ η|Q|, and B = ∪Qk, for which∫ ∫

E∗
|γt(x)1Cν (γt(x))|2dt

t
dx ≤(3.2)

C

{
C0|Q|+

∫
Q

∫ `(Q)

0

|γt(x)Pt(∇Fν)(x)|2dt
t
dx

}
,

where E∗ ≡ RQ \ (∪RQk).
To this end, we shall employ a stopping time argument which, in retro-

spect, is similar in spirit to one which has appeared previously in work of M.
Christ [6]. We fix Q, and a unit vector ν ∈ Cn, and we define F as in (3.1).
We recall that Fν ≡ F · ν. We begin by observing that since ϕ is Lipschitz,
we have that

(3.3) ‖F − ϕ‖∞ ≤ Cερ.

Indeed, F −ϕ ≡ (e−ε
2ρ2L− I)ϕ, and we may then obtain estimate (3.3) as an

easy consequence of Property (G) and the fact that e−ε
2ρ2L1 = 1. We omit

the routine details. It follows immediately from (3.3) and an integration that

(3.4) |Q|−1 |
∫
Q

(∇F − 1) dx| ≤ Cε,

where 1 ≡ ∇ϕ is the n× n identity matrix. Consequently,

(3.5) |Q|−1 |
∫
Q

(ν · ∇Fν − 1) dx| ≤ Cε.

Let S1 denote the set of maximal dyadic subcubes Q′ ⊆ Q for which

(3.6) |Q′|−1 Re

∫
Q′
ν · ∇Fν dx ≤ 3/4,

and let B1 denote the union of these cubes. Take S2 to be the set of maximal
dyadic subcubes Q′ ⊆ Q such that

(3.7) |Q′|−1

∫
Q′
|∇Fν | dx > (8ε)−1,
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and let B2 denote the union of the cubes in S2. We set B ≡ B1 ∪ B2, and
E ≡ Q \B.

Let us verify that E contains at least some fixed proportion of Q. By
(3.5), we have in particular that

(1− Cε)|Q| ≤ Re

∫
Q

ν · ∇Fν dx = Re

(∫
E

+

∫
B1

+

∫
B\B1

)
.

By (2.3)(i), we have that

|
∫
E

ν · ∇Fν dx| ≤ C|E|1/2 |Q|1/2.

We wish to show that for ε chosen sufficiently small, and depending only on
the allowable parameters, we have that |E| ≥ η|Q|, for some fixed η also
having allowable dependence. We claim that it is enough to prove that

(3.8) Re

∫
B1

ν · ∇Fν dx ≤
3

4
|Q|,

and that

(3.9)

∫
B2

|∇Fν | dx ≤ Cε|Q|.

Indeed, given these last two estimates, and taking ε small enough, we obtain
the desired lower bound for |E|, since B \ B1 ⊆ B2. We may establish (3.8)
immediately: (3.6) implies that

Re

∫
B1

ν · ∇Fν dx = Re
∑
Q′∈S1

∫
Q′
ν · ∇Fν dx ≤

3

4

∑
Q′∈S1

|Q′| ≤ 3

4
|Q|.

Next, we note that by the definition of B2, and the weak type (2, 2) estimate
for the dyadic maximal operator (restricted to averages over dyadic subcubes
of Q), along with (2.3)(i), we have that |B2| ≤ Cε2|Q|. Thus, the Cauchy-
Schwarz inequality and another application of (2.3)(i) yield (3.9).

It remains only to establish (3.2). We begin by defining, for f ∈ L1
loc(R

n),
the dyadic averages

Atf(x) ≡ |Q(x, t)|−1

∫
Q(x,t)

f(y) dy,
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where Q(x, t) denotes the minimal dyadic subcube of Q containing x, with
side length at least t. We set

V = V (x, t) ≡ At(∇Fν)(x).

By the geometry of E∗, and the maximality of the cubes comprising the set
B, we have that on E∗,

Re ν · V ≥ 3/4,

and
|V | ≤ (8ε)−1.

We note that in E∗, it then follows that

|(z · ν)(ν · V )| ≥ 3

4
|z · ν|,

for every z ∈ Cn. Moreover, if in addition z ∈ Cν , we have that

|z · V | ≥ |(z · ν)(ν · V )| − | (z − ν(z · ν)) · V | ≥ |z · ν|
(

3

4
− 1

8

)
≥ 1

2
|z|,

where we have used first the triangle inequality, then the definition of the
cone Cν combined with the upper bound for |V | in E∗, and finally the fact
that |z| ≤ (1 + ε)|z · ν| in Cν . Consequently,∫ ∫

E∗
|γt(x)1Cν (γt(x))|2dt

t
dx ≤ 4

∫ ∫
RQ

|γt(x) · At(∇Fν)(x)|2dt
t
dx.

To obtain (3.2), we need only replace the dyadic averaging operator At by a
nice approximate identity Pt. But we may do this easily using the uniform
boundedness of γt ( see (2.2)), (2.3)(i), and the square function estimate∫ ∫

RQ

|(At − Pt)(f)(x)|2dt
t
dx ≤ C

∫
5Q

|f |2 dx.

The latter inequality follows readily from standard orthogonality considera-
tions (see, e.g., [5], Appendix C). We omit the routine details. This concludes
the proof of our theorem.
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