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Abstract. Our aim is to prove that all non{degenerate second order elliptic operators
L with Dirichlet, Neumann, or other two{point boundary conditions on an interval 


satisfy the estimates

L1=2u



p
�



du
dx




p
+ k ukp when 1 < p <1 .

The study of the square root of L reduces to proving that the holomorphic functional
calculus of a related �rst order elliptic system is bounded. The interpolation theory which
is developed in [AMcN] is a major tool in proving the L2 theory. The Lp results follow
once we have derived bounds on the Green's functions of the systems.

x1. Introduction.

Let 
 denote an interval of R , and let V denote a subspace of the Sobolev space

H1(
) such that
o

H1(
) � V � H1(
) . De�ne the second order elliptic operator L in
L2(
) by

Lu(x) = a(x)
�� d

dx
f b(x)du

dx
(x) + �(x)u(x) g + �(x)du

dx
(x) + (x)u(x)

	
with domain arising from a sesquilinear form on V � V . For example, D(L) could be

fu 2
o

H1(
) : Lu 2 L2(
) g or fu 2 H1(
) : Lu 2 L2(
) and (bdu
dx

+ �u)j@
 = 0 g .

Here a; b; �; �;  2 L1(
) , and there exists � > 0 such that for almost all x 2 
 ,

Re
�
�1 �2

� � b(x) �(x)
�(x) (x)

� �
�1
�2

�
� � j�j2 ; � 2 C 2 ;

and Re a(x) � � .
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Under these conditions, L is a one{one operator of type 2! in L2(
) for some

! < �
2 . Such an operator has a unique square root L

1

2 which is an operator of type !

with the property that (L
1

2 )2 = L .

One aim is to prove that D(L 1

2 ) = V and kL 1

2 uk2 �
 du
dx


2
+ku k2 for all u 2 V .

In the case when a = 1 , this was derived previously by Auscher and Tchamitchian by
constructing suitable wavelets on 
 [AT1]. We achieve it by proving that a related �rst
order system T has a bounded holomorphic functional calculus in L2(
) .

We then derive bounds on the Green's function of T and use them, together with
a result of Duong and Robinson [DR], to prove the corresponding Lp estimates when

1 < p <1 . That is, we show that kL 1

2 u kp �
 du
dx


p
+ ku kp for all u 2 V \W 1

p (
) .

We also show that L has a bounded H1 functional calculus in L2(
) , and indeed
in Lp(
) when 1 < p <1 .

As a �rst step, we show how �rst order systems can be used to re-derive various
results about the homogeneous operator Lu = �a d

dx
(bdu
dx
) on R . In particular we prove

the homogeneous estimate jjL 1

2ujj2 � jjdudx jj2 for all u 2 H1(R) , which was �rst proved
by Kenig and Meyer [KM], and also the corresponding Lp estimate which is due to

Auscher and Tchamitchian [AT2]. They obtained it by proving that (�a d
dx
b d
dx
)
1

2 ( d
dx
)�1

is a Calder�on{Zygmund operator [AT2], whereas we apply Calder�on{Zygmund theory
to functions of the system T .

Note that for the inhomogeneous operator L on a bounded interval, we do not
claim that there is such a representation in terms of a Calder�on{Zygmund operator.

In the case when a = 1 , the L2 estimate was �rst obtained when 
 = R by
Coifman, McIntosh and Meyer in conjunction with the proof of the L2 boundedness of
the Cauchy integral on a Lipschitz curve [CMcM], which is essentially the case a = b .

This paper has had a gestation period of several years, during which time we have
had the bene�t of constructive comments from many people, to all of whom we express
our appreciation. In particular we thank Atsushi Yagi, from whom the second author
learned of the connections between quadratic norms and interpolation spaces during a
visit to Japan in 1989, and Jill Pipher who explained to us, during her visit to Australia

in 1993, her unpublished derivation of the estimate
 (�a d

dx
b d
dx
)
1

2u

2
� c du

dx


2
from

the quadratic estimates for the Cauchy integral on Lipschitz curves.

This research was undertaken at Universit�e de Rennes I, Macquarie University in
Sydney, the Australian National University in Canberra, Brown University in Provi-
dence, the International Centre for Mathematical Sciences in Edinburgh, and the Uni-
versity of Texas at Austin, to all of whom we express our gratitude. Di�erent aspects
of this paper have been presented during various lectures, including those of McIntosh
in 1993 at the Conference on Boundary Value Problems and Integral Equations in Non-
smooth Domains, Centre International de Rencontres Math�ematiques, Luminy, and the
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Conference in Harmonic Analysis in Honour of Guido Weiss, Universidad Autonoma de
Madrid.

The space of all bounded linear transformations from a Banach space X to a
Banach space Y is denoted by L(X ;Y) , while the Banach algebra of all bounded linear
operators on X is denoted by L(X ) . We often write a statement such as \X � Y with
ku kY � c ku kX " concerning two normed spaces X and Y to mean that \X � Y and
there exists a constant c such that ku kY � c ku kX for all u 2 X ".

Contents.

x2. Operators of type !
x3. Homogeneous second order di�erential operators in L2(R)
x4. Hardy spaces and generalised Cauchy{Riemann systems
x5. Homogeneous second order di�erential operators in Lp(R)
x6. General second order di�erential operators in L2(
)
x7. General second order di�erential operators in Lp(
)
x8. The Green's function of L

x2. Operators of type ! .

Here is what we need to know about operators of type ! and their functional
calculi. See our previous paper [AMcN] for details.

For 0 � ! < � < � , de�ne the closed and open sectors

S!+ = f � 2 C : j arg �j � ! g ; S!� = S!+ ;

S0�+ = f � 2 C : � 6= 0; j arg �j < � g ; S0�� = �S0�+ ;

and, if 0 � ! < � < �
2 , de�ne the double sectors

S! = S!+ [ S!� and S0� = S0�+ [ S0�� :

As usual, H1(S0�+) denotes the Banach algebra consisting of all bounded holomorphic

functions de�ned on S0�+ , while H1(S0�) is de�ned similarly. In each case the norm is
given by k f k1 = sup jf(z)j .

A closed operator T in a Banach space X is said to be of type ! (or of type S! )
if its spectrum �(T ) � S!+ (or �(T ) � S! ) and for each � > ! there exists C� such
that  (T � �I)�1  � C�j�j�1 ; � 62 S�+ ( or � 62 S�) :

In this paper X is always of the form Lp(
; C N ) where 
 is a real interval and
1 < p < 1 , in which case every one{one operator of type ! (or type S! ) has dense
domain D(T ) and dense range R(T ) in X [CDMcY].
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A one{one operator T of type ! (or type S! ) in X has a bounded H1(S0�+) (or

H1(S0�) ) functional calculus in X provided there is a bounded algebra homomorphism

f 7! f(T ) from H1(S0�+) (or H1(S0�) ) to L(X ) which satis�es R�(T ) = (T ��I)�1
when � =2 S0�+ (or S0� ), where R�(�) = (� ��)�1 . If such a functional calculus exists,
then it is unique, provided D(T ) and R(T ) are dense in X .

The important thing is the boundedness of the mapping f 7! f(T ) , or in other
words, the estimate k f(T ) k � c� k f k1 .

In the case when X is a Hilbert space, then the existence of a bounded functional
calculus is independent of � . That is, if T is a one{one operator of type ! in a Hilbert
space H which has a bounded H1(S0�+) functional calculus in H for some � > ! ,

then it has a bounded H1(S0�+) functional calculus in H for all � > ! [Mc]. In this
case, we just say that T has a bounded H1 functional calculus. The same applies to
operators of type S! .

There are close connections between the boundedness of the H1 functional calculus
of an operator T in a Hilbert space, quadratic estimates associated with T , and the
interpolation of the domains of its fractional powers. See [AMcN] for more details,
including a proof of the following result which is basic to our purposes.

Theorem 2.1. Let S and T be one{one operators of type ! (or type S! ) in Hilbert
spaces H and K respectively, and suppose there exist E 2 L(K;H) and F 2 L(H;K)
such that FE = IK ,

ED(T ) � D(S) with kSEu k � c kTu k ; and
ER(T ) � R(S) with

S�1Eu  � c
T�1u ; and

FD(S) � D(T ) with kTFuk � c kSuk ; and
FR(S) � R(T ) with

T�1Fu � c
S�1u :

Suppose that S has a bounded H1 functional calculus in H . Then T has a bounded
H1 functional calculus in K .

Every maximal accretive operator in a Hilbert space H is type �
2 and has a

bounded H1 functional calculus. Another class of operators of type ! is given by
the following result. To say that A is a bounded invertible ! -accretive operator on H
means that A , A�1 2 L(H) and jarg(Au; u)j � ! for all u 2 H .

Proposition 2.2. (i) Let T = AS where S is a positive self{adjoint operator in H ,
and A is a bounded invertible ! -accretive operator on H , and let T = SA . Then T
and T are one{one operators of type ! . Here D(T ) = D(S) and D(T ) = A�1D(S) .
(ii) If the condition on S is relaxed to the statement that S is a one{one maximal
accretive operator with numerical range in S�+ where � < � � ! , then T and T are
one{one operators of type ! + � .
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(iii) If the condition on S is changed to the statement that S is a one{one self{adjoint
operator in H , then T and T are one{one operators of type S! .

Here are some results about T 2 and jT j� = (T 2)
1

2 . See [AMcN] for details.

Theorem 2.3. Let T be a one{one operator of type S! in H . Then T 2 is type 2!
and jT j� is type ! .

If in addition T has a bounded H1 functional calculus in H , then so does T 2 .
Moreover D(jT j�) = D(T ) with k jT j� u k � kTu k .

Let us see why the �nal result is valid. If T has a bounded H1 functional calculus
in H , then in particular, sgn(T ) 2 L(H) with k sgn(T )u k � c kuk where sgn is the
bounded holomorphic function on S0� de�ned by sgn(�) = 1 when � 2 S0�+ and

sgn(�) = �1 when � 2 S0�� . Now jT j� = sgn(T )T and T = sgn(T ) jT j� . Therefore
k jT j� u k = k sgn(T )Tu k � c kTu k and kTu k � c k jT j� u k as required.

x3. Homogeneous second order di�erential operators in L2(R) .

In this section 0 � ! < �=2 , and a and b denote bounded ! -accretive func-
tions on R with bounded reciprocals, meaning that a; b; 1

a
; 1
b
2 L1(R; C ) and

j arg aj; j arg bj � ! . The operator of multiplication by b is a bounded invertible ! -
accretive operator on L2(R) , as is multiplication by a .

The aim of this section is to show how Theorem 2.1 can be applied to derive the
following result of Kenig and Meyer [KM] from known results about �ib d

dx
. This

material appears in [AMcN], but is repeated here as the whole paper depends on it.

Theorem 3.1. Suppose that a and b are functions with the properties given above,
and let L denote the operator in L2(R) de�ned by Lw = �a d

dx
(bdw
dx
) with domain

D(L) = fw 2 H1(R) : bdw
dx
2 H1(R)g . Then L is one{one of type 2! in L2(R) ,

its square root L
1

2 has domain D(L 1

2 ) = H1(R) , and
L 1

2w

2
�  dw

dx


2

for all

w 2 H1(R) .

The fact that this result can be deduced from the same quadratic estimates as those
already known for �ib d

dx
, was �rst proved by Pipher using direct arguments involving

integration by parts. Her work led to Theorem 3.1 of [AMcN] (which is essentially
Theorem 2.1 with E = F = I ).

Our initial approach had been to show that bounded holomorphic functions of T are
Calder�on{Zygmund operators. As this is of independent interest, details are presented
in Section 5.

Let us record a related result of independent interest.
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Theorem 3.2. The operator L = �a d
dx
b d
dx

has a bounded H1 functional calculus
in L2(R) .

First consider the operator �ib d
dx

in L2(R) with domain D(�ib d
dx
) = H1(R) =

fw 2 L2(R) : dwdx 2 L2(R) g where the derivative is in the weak or distributional sense.

The operator �i d
dx

with domain H1(R) is a one{one self{adjoint operator in L2(R) .

Thus, by Proposition 2.2(iii), �ib d
dx

is a one{one operator of type S! in L2(R) .

It is known that �ib d
dx

has a bounded H1 functional calculus in L2(R) . This

is equivalent to the fact that the operator �i d
dz
j satis�es quadratic estimates on the

Lipschitz curve  in C parametrised by z = g(x) , where g0 = 1
b
. These results are

intimately connected with the L2 boundedness of the Cauchy integral C on L2()
which was �rst proved by Calder�on [C] when Re g(x) = x and k Im b k1 is small, and
by Coifman, McIntosh and Meyer [CMcM] in the general case. There are now many
proofs of this fact. Connections between such estimates and the holomorphic functional
calculus of D are treated in [CM], [McQ] and [ADMc].

Second, consider S = �ia d
dx
��ib d

dx
in H = L2(R; C2) � L2(R)�L2(R) . Clearly

S has a bounded H1 functional calculus in H .

Third, consider

T =

�
0 �a d

dx

b d
dx

0

�
=

�
a 0
0 b

� �
0 � d

dx
d
dx

0

�
= BD

with D(T ) = H1(R; C 2 ) . Now B =

�
a 0
0 b

�
is a bounded invertible ! -accretive

operator on H , while D is a one{one self{adjoint operator. So, by Proposition 2.2(iii),
T is a one{one operator of type S! . Clearly D(T ) = D(S) with k Tuk � kSuk
and R(T ) = R(S) with

T�1u � S�1u , where S is de�ned in the previous
paragraph. On applying Theorem 2.1 with E = F = I , we conclude that T has a
bounded H1 functional calculus in H .

Proof of Theorem 3.1. By Theorem 2.3, T 2 =

��a d
dx
b d
dx

0

0 �b d
dx
a d
dx

�
is type 2! in

H and

jT j� = (T 2)
1

2 =

�
(�a d

dx
b d
dx
)
1

2 0

0 (�b d
dx
a d
dx
)
1

2

�
:

Since T has a bounded H1 functional calculus in H , it follows that D(jT j�) = D(T )
and k jT j� u k � kTu k for all u 2 D(T ) .

Therefore �a d
dx
b d
dx

is type 2! in L2(R) , and
 (�a d

dx
b d
dx
)
1

2w
 �  dw

dx

 (and

of course
 (�b ddxa d

dx
)
1

2w
 �  dw

dx

 as well). �
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Proof of Theorem 3.2. This is a consequence of the diagonal nature of T 2 . �

x4. Hardy spaces and generalised Cauchy{Riemann systems.

There are intimate connections between functional calculi and quadratic estimates.
Let us illustrate this by proving the following consequence of the fact that the operator
T of the previous section has a bounded H1 functional calculus in H = L2(R; C 2) . It
concerns quadratic estimates for solutions of the generalised Cauchy{Riemann equations

(GCR � )

8>>><
>>>:

@w
@t
(x; t) � a(x) @v

@x
(x; t) = 0 � t > 0

@v
@t
(x; t) + b(x)@w

@x
(x; t) = 0 � t > 0

lim
t!0

�
w(x; t)
v(x; t)

�
= u(x) ; lim

t!�1

�
w(x; t)
v(x; t)

�
= 0

where a and b have the properties speci�ed in Section 3.

Theorem 4.1. There is a Hardy decomposition H = H+ � H� of H into closed
subspaces H� with the following property. For every u 2 H+ there exists a solution
w; v of (GCR + ) which satis�es the quadratic estimates

�Z 1

0

Z
R

n��@w
@t
(x; t)

��2 +
��@v
@t
(x; t)

��2o t dxdt

� 1

2

� k uk2 :

Similarly, for every u 2 H� , there exists a solution (w; v) of (GCR � ) which satis�es
the corresponding estimates with the integral in t taken from �1 to 0.

Note that the decomposition is typically not orthogonal. Note also that we are
thinking of the solution w( : ; t) , v( : ; t) 2 L2(R) for each t and are taking derivatives
and limits with respect to t in the sense of L2 convergence. We leave the consideration
of other kinds of limits, and of the uniqueness of the solution, to the interested reader.

Let us construct the Hardy spaces H� by considering the spectral projections E�
associated with the parts of �(T ) in each sector S!� .

For some � > ! , de�ne the functions �+ ; �� 2 H1(S0�) by �+(�) = 1 if
Re � > 0 and �+(�) = 0 if Re � < 0 , ��(�) = 1 � �+(�) , so that sgn(�) =
�+(�) � ��(�) . On using the fact that T has a bounded H1 functional calculus,
E+ = �+(T ) 2 L(H) and E� = ��(T ) 2 L(H) . Moreover, by the identities of the
functional calculus, E+

2 = E+ ; E�2 = E� ; E+E� = 0 = E�E+ ; E++E� = I and
E+ �E� = sgn(T ) .

The operators E+ and E� form a pair of bounded spectral projections correspond-
ing to the parts of the spectra in S!+ and S!� respectively. Therefore H = H+�H� ,
where H+ = E+(H) and H� = E�(H) are the corresponding spectral subspaces.
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We now consider quadratic estimates. It is fundamental to our purposes that an
operator T of type S! in a Hilbert space H has a bounded H1 functional calculus if
and only if T satis�es quadratic estimates in the sense that the norm ku k is equivalent
to the quadratic norm

jjujjT =

�Z 1

0

jj (tT )ujj2 dt
t

� 1

2

where  2 H1(S0�) satis�es j (�)j � Cj�js(1 + j�j2s)�1 for some C , s > 0 , and is
not identically zero on either sector [Mc]. See [ADMc] for further details.

Proof of Theorem 4.1. We saw in Section 3 that the operator

T =

�
0 �a d

dx

b d
dx

0

�

is type S! in H = L2(R; C2 ) with a bounded H1 functional calculus. Therefore, as
shown above, H = H+ �H� where H� = E�(H) = R( ��(T )) , and�Z 1

0

jj (tT )ujj2 dt
t

� 1

2

� ku k

with, for example,  (�) = �e�� �+(�) + �e� ��(�) . Hence, making this choice of  ,
we see that for u 2 H+ ,�Z 1

0

jj d
dt
e�tTujj2 t dt

� 1

2

=

�Z 1

0

jjtT e�tTujj2 dt
t

� 1

2

=

�Z 1

0

jj (tT )ujj2 dt
t

� 1

2

� ku k :

Suppose that u 2 H+ . For all t > 0 , de�ne

�
w(x; t)
v(x; t)

�
= e�tTu(x) , so that

(Z 1

0

Z
R

(����@w@t (x; t)
����
2

+

����@v@t (x; t)
����
2
)
t dxdt

) 1

2

=

�Z 1

0

jj d
dt
e�tTujj2 t dt

� 1

2

� ku k2 :

Let us check that w; v is a solution of (GCR + ). First, note that"
@w
@t
(x; t)

@v
@t
(x; t)

#
= �T

�
w(x; t)

v(x; t)

�
=

"
0 a(x) @

@x

�b(x) @
@x

0

# �
w(x; t)

v(x; t)

�
=

"
a(x) @v

@x
(x; t)

�b(x)@w
@x
(x; t)

#

as required.

We must next prove the L2 convergence of

�
w( : ; t)
v( : ; t)

�
to u as t ! 0 and to 0

as t ! 1 . This is a consequence of standard results from semi{group theory. It also
follows from the Convergence Lemma stated below. Thus w; v is a solution of (GCR + )
as claimed.

The result for u 2 H� is proved in a similar way. �
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Lemma 4.2. The Convergence Lemma. ([Mc]) Let 0 � ! < � < �
2 . Let T be a

one{one operator of type S! in a Hilbert space H . Let ff�g be a uniformly bounded
net in H1(S0�) which converges to f 2 H1(S0�) uniformly on compact subsets of

S0� , such that ff�(T )g is a uniformly bounded net in L(H) . Then f(T ) 2 L(H) ,
f�(T )u! f(T )u for all u 2 H , and k f(T ) k � sup� k f�(T ) k .

x5. Homogeneous second order di�erential operators in Lp(R) .

In this section we use estimates for the Green's function of T � �I to develop the
Lp theory of the operators L and T which were de�ned in Section 3. Our aim is to
establish the following result.

Theorem 5.1. Let 1 < p <1 . Then fw 2 H1(R) : L
1

2w 2 Lp(R) g = fw 2 H1(R) :
dw
dx
2 Lp(R) g with

L 1

2w

p
�  dw

dx


p
.

A related result of independent interest is the following.

Theorem 5.2. Let 1 < p <1 and � > ! . For each f 2 H1(S02�+) ,

f(L) : Lp \ L2(R)! Lp \ L2(R) with k f(L)w kp � cp;� k f k1 kw kp :

These results follow from Lp estimates for functions of T .

Theorem 5.3. Let 1 < p <1 and � > ! . For each f 2 H1(S0�) ,

f(T ) : Lp \ L2(R; C 2)! Lp \ L2(R; C2) with k f(T )u kp � cp;� k f k1 ku kp :

Before proving Theorem 5.3, we show that it implies Theorems 5.1 and 5.2.

Proof of Theorem 5.1. It follows from Theorem 5.3 that sgn(T ) maps Lp\L2(R; C 2) to
itself with k sgn(T )u kp � c ku kp . Also (sgn(T ))�1 = sgn(T ) has the same property, so

in fact sgn(T ) is a one{one mapping of Lp\L2(R; C 2) onto itself with k sgn(T )u kp �
ku kp .

Let w 2 H1(R) and de�ne u =

�
w
0

�
. Then dw

dx
2 Lp(R) if and only if Tu =

du 2 Lp(R; C 2) , which holds if and only if

�
L

1

2w
0

�
= jT j� u = sgn(T )Tu 2 Lp(R; C2 ) .

Moreover
L 1

2w

p
= k jT j� ukp � kTu kp =

 dw
dx


p
as claimed. �
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Proof of Theorem 5.2. Given f 2 H1(S02�+) and w 2 Lp\L2(R) , de�ne g 2 H1(S0�)

by g(�) = f(�2) and let u =

�
w
0

�
. Then, by Theorem 5.3,

k f(L)w kp =
 f(T 2)u


p
= k g(T )u kp � cp;� k g k1 ku kp = cp;� k f k1 kw kp : �

We shall see that the operators f(T ) are actually Calder�on{Zygmund singular
integral operators for all f 2 H1(S0�) . Thus the operators f(L) are also Calder�on{

Zygmund operators when f 2 H1(S02�+) .

Let us turn to the proof of Theorem 5.3. For this purpose, we derive bounds on the
Green's function of T . We need the following lemma.

Lemma 5.4. Let 
 be a real interval, possibly R itself. Suppose that dv
dx

= h + g
where v 2 L2(
) , h 2 L2(
) and g 2 L1(
) , the derivative being taken in the
distributional sense. Then v 2 C(
) and

k v k1 � 1p
�
k v k2 +

p
� kh k2 + k g k1

for all � such that 0 < � � length(
) .

Proof. The function v is continuous (or, strictly speaking, equals a continuous function
almost everywhere) because its derivative is locally integrable. For each x 2 
 choose
a subinterval S � 
 of length � with x 2 S . For almost all y 2 S ,

v(x) = v(y) +

Z x

y

f h(� ) + g(� ) g d� so

jv(x)j � jv(y)j + p� k h k2 + k g k1 and, averaging over y 2 S ;
jv(x)j � 1p

�
k v k2 +

p
� kh k2 + k g k1 as required. �

In the next two results, Lp(R; C 2) is abbreviated to Lp(R) .

Proposition 5.5. The operator T satis�es the following properties.
(i) D(T ) � C(R) with

ku k1 � c
n
j�j 12 k uk2 + j�j�

1

2 k (T � �I)u k2
o

for all � 2 C .
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Henceforth suppose that ! < � < �
2 and that � =2 S� . (The constants depend on

� but not on � itself.)

(ii) (T � �I) is a one{one mapping of D(T ) onto L2(R)

with ku k2 � c j�j�1 k (T � �I)u k2
(iii) (T � �I)�1 : L2(R)! C(R) with ku k1� c j�j� 1

2 k (T � �I)uk2
(iv) (T � �I)�1 : L1 \ L2(R)! L2(R) with ku k2 � c j�j� 1

2 k (T � �I)uk1
(v) (T � �I)�1 : L1 \ L2(R)! C(R) with ku k1� c k (T � �I)uk1

(vi) The mapping � 7! (T��I)�1 is continuous from C nS! to L(L1(R); C(R)) (where
(T � �I)�1 is extended by continuity to all of L1(R) ).

Proof. (i) Let

u =

�
w
v

�
2 D(T ) � L2(R) :

Then

(T � �I)u =

��av0 � �w
bw0 � �v

�
2 L2(R)

and so

v0 = �� 1
a
w � 1

a
((T � �I)u)0 and

w0 = � 1
b
v � 1

b
((T � �I)u)1 :

Therefore, applying Lemma 5.4 with g = 0 , we obtain u 2 C(R) with

ku k1 � cp
�
ku k2 + c

p
� fj�j ku k2 + k (T � �I)u k2g

for all � > 0 . Hence, on choosing � = j�j�1 , we conclude that
k uk1 � c

n
j�j12 ku k2 + j�j�

1

2 k (T � �I)uk2
o
:

We proved part (ii) in Section 3. Part (iii) is a consequence of (i) and (ii). Part
(iv) follows by duality. To prove (v), use the same formula as in (i), this time applying
Lemma 5.4 successively with g = 1

a
((T � �I)u)0 ; 1

b
((T � �I)u)1 2 L1(R) , and making

use of (iv). For part (vi), use the resolvent identity (T � �1I)�1 � (T � �2I)�1 =
(�1 � �2)(T � �1I)�1(T � �2I)�1 . �

Let G�(x; y) denote the distribution kernel of (T ��I)�1 . It follows from (v) that,
for each � =2 S! , G�(x; y) 2 L1(R2; C 2) with kG� k1 =

 (T � �I)�1 L(L1;L1)
and

that

(T � �I)�1u(x) =
Z
R

G�(x; y)u(y) dy a.e.

for all u 2 L1 \ L2(R) .
By (vi), the mapping � 7! G� is continuous from C n S! to L1(R2; C 2 ) . The

function G�(x; y) is called the Green's function of T � �I . Let us show that it has
exponential decay in jx � yj .
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Proposition 5.6. If � =2 S� then the Green's function G�(x; y) of T � �I satis�es

jG�(x; y)j � ce�Cj�jjx�yj

for some c; C > 0 and almost all x; y 2 R . Therefore

(T � �I)�1 : Lp \ L2(R)! Lp(R) with k ukp �
c�
j�j k (T � �I)u kp

whenever 1 � p � 1 .

Proof. For each � 2 C1
c (R) , denote by e� the operator on Lp(R) de�ned by

(e�)u(x) = e�(x)u(x) , and note that it, along with its inverse (e�)�1 = e�� , maps
each of the spaces Lp(R) and D(T ) = H1(R) to itself, albeit with large norm.

Set T� = e��Te� with D(T�) = D(T ) . A simple calculation using e�� d
dx
(e�u) =

du
dx

+ �0u shows that T� = T +M where M =

�
0 �a�0
b�0 0

�
.

Suppose that k�0 k1 � C j�j where the constant C will be chosen shortly. All
of the statements in Proposition 5.5 remain true when T is replaced by T� = T +M
provided (ii) does, namely (T� � �I) is a one{one mapping of D(T ) onto L2(R) with

(#) k uk2 � c j�j�1 k (T� � �I)uk2 :

Although T� = BD +M � �I is not of type S! , it nevertheless follows from the
lemma below that (#) holds provided C is chosen suitably.

Therefore the kernel e��(x)G�(x; y)e�(y) of T� is bounded. That is,

jG�(x; y)j � ce�(x)��(y) :

For each �xed x; y and � it is possible to choose � 2 C1
c (R) such that �(x) �

�(y) = �C j�j jx� yj . Therefore jG�(x; y)j � ce�Cj�jjx�yj as required. �

Lemma 5.7. (Proposition 8.4 of [AMcN]) Let S be a one{one self{adjoint operator
in a Hilbert space H , let B be a bounded invertible ! -accretive operator on H , let
A 2 L(H) , and let � > ! . Denote inf

� ��(B�1u; u)�� : ku k = 1
	
= � > 0 . If � =2 S�

and j�j � 2
�

B�1A cosec(� � !) , then (BS +A � �I) has an inverse in L(H) and (BS +A� �I)�1  � 2��1
B�1  cosec(� � !) j�j�1 :

The same result holds with SB replacing BS provided the condition on � =2 S� is
replaced by j�j � 2

�

AB�1  cosec(� � !) .
We turn now to a consideration of the kernels kf (x; y) of the operators f(T ) .
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These kernels can be de�ned as follows. Choose � such that ! < � < � . Let �
be the unbounded contour consisting of the four rays f� 2 C : jarg �j = � or jarg �j =
2� � �g parametrised clockwise around S! . For each f 2 H1(S0�) , de�ne kf to be
the measurable function de�ned for almost all (x; y) , x 6= y , by

kf (x; y) =
1

2�i

Z
�

G�(x; y)f(�) d� :

On applying Proposition 5.6 with ! < � < � , we see that the integral is absolutely
convergent with

jkf (x; y)j � c0
Z
�

e�Cj�jjx�yj jd�j k f k1 =
c

jx� yj k f k1 a.e. (x 6= y):

(We are not considering the distributional behaviour of kf when x = y .)

Lemma 5.8. Suppose  2 H1(S0�) satis�es j (�)j � cj�js(1 + j�j2s)�1 for some c
and 0 < s < 1 . Then

jk (x; y)j � cs
jx � yj

jx � yjs
1 + jx � yj2s a.e.

and, for all u 2 C1
c (R; C

2 ) ,

 (T )u(x) =

Z
R

k (x; y)u(y) dy a.e.

Proof. The estimate is straightforward. It allows us to use Fubini's Theorem to obtain

 (T )u(x) =
1

2�i

Z
�

(T � �I)�1u (�) d� (x)

=
1

2�i

Z
�

Z
R

G�(x; y)u(y) (�) dy d�

=

Z
R

k (x; y)u(y) dy : �

Proposition 5.9. For all f 2 H1(S0�) , f(T ) has the kernel kf in the following sense.

For all u 2 C1
c (R; C

2) and almost all x =2 sppt u ,

f(T )u(x) =

Z
R

kf (x; y)u(y) dy :

Moreover kf (x; y)B(y) satis�es the Calder�on{Zygmund bounds:

jkf (x; y)B(y)j � c

jx� yj k f k1 a.e. (x 6= y) ;(i)

�� @
@x
kf (x; y)B(y)

�� + ��� @@y (kf (x; y)B(y))��� � c

jx� yj2 k f k1 a.e. (x 6= y) :(ii)
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The derivatives in (ii) exist in L1;loc(f(x; y) 2 R2 : x 6= yg) in the distributional sense.

Proof. Choose a uniformly bounded sequence of functions  n 2 H1(S0�) which con-

verges to f uniformly on compact sets, and such that j n(�)j � cnj�js(1+ j�j2s)�1 for
constants cn and 0 < s < 1 . Let u 2 C1

c (R; C
2) . We proved in Lemma 5.8 that

 n(T )u(x) =

Z
R

k n(x; y)u(y) dy a.e.

By the Convergence Lemma,  n(T )u converges to f(T )u in the L2 sense. Suppose
that x =2 sppt u . It is not hard to check that

ess supf jk n(x; y) � kf (x; y)j : y 2 sppt u g ! 0

as n!1 , and hence thatZ
R

k n (x; y)u(y) dy !
Z
R

kf (x; y)u(y) dy :

Thus

f(T )u(x) =

Z
R

kf (x; y)u(y) dy :

The bound (i) is an immediate consequence of the similar bound already given for
kf (x; y) .

To prove (ii), use the identities

D(T � �I)�1B = I + �B�1(T � �I)�1B and

(T � �I)�1BD = I + �(T � �I)�1

to obtain, in the distributional sense,

@
@x
J(G�(x; y)B(y)) = �(x � y) + �B�1(x)G� (x; y)B(y) and

@
@y
(G� (x; y)B(y))J = �(x � y) + �G�(x; y)

where J =

�
0 �1
1 0

�
. Therefore

�� @
@x
kf (x; y)B(y)

�� + ��� @@y (kf (x; y)B(y))
��� � c0

Z
�

j�j e�Cj�jjx�yj jd�j k f k1
� c

jx � yj2 k f k1 a.e. (x 6= y)

as required. �
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Proof of Theorem 5.3. For each f 2 H1(S0�) , f(T )B 2 L(L2(R; C 2)) with
k f(T )B k � c k f k1 . Moreover f(T )B has a kernel kf (x; y)b(y) which satis�es the
Calder�on{Zygmund bounds described above. Therefore the estimate

f(T )B : Lp \ L2(R; C2 )! Lp \ L2(R; C2 ) with k f(T )Bu kp � cp;� k f k1 ku kp

follows on applying standard Calder�on{Zygmund theory. (This is described in many
places. One good reference is by Meyer [M].) �

We conclude this section with some further remarks on the L2 theory. Now that
we have the kernel bounds of the operators f(T )B when f 2 H1(S0�) , we �nd that

we can prove that T has a bounded H1 functional calculus in L2(R; C 2) directly,
without recourse to Theorem 2.1. Indeed it is really no harder to prove that T has a
bounded H1 functional calculus, than it is to prove that �ib d

dx
does. Let us outline

two approaches.

First method. Apply the T (b) Theorem to each component of the operator  (T )B

when  2 H1(S0�) satis�es j (�)j � c j�j (1+j�j2)�1 , to obtain the bound k (T )B k �
c k k1 . Then use the Convergence Lemma to obtain the same bound for all f 2
H1(S0�) . The T (b) Theorem was proved by David, Journ�e and Semmes in [DJS].

The T (b) Theorem can be applied because of the following facts.
(i) Each component ( (T )B)j;k , j = 1; 2 , k = 1; 2 satis�es Calder�on{Zygmund
bounds;

(ii) ( (T )B)j;1(
1
a
) = 0 and ( (T )B)j;2(

1
b
) = 0 ; j = 1; 2 ;

or, in other words,

Z
R

(k (x; y)B(y))B
�1(y) dy =

Z
R

k (x; y) dy = 0 ;

(iii)

Z
R

B�1(x)(k (x; y)B(y)) dx = 0 ;

(iv) B�1( (T )B)B�1 = B�1 (T ) satis�es the weak boundedness property with bound
� c k k1 , because, when u; v 2 C1(R) with support in a compact interval 
 , then,
letting � be the contour speci�ed before Lemma 5.8, �1 = f� 2 � : j�j � length(
)�1g
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and �2 = f� 2 � : j�j � length(
)�1g , we have

��(B�1 (T )u; v)�� =

����
Z



Z



(B�1(x)k (x; y)u(y); v(x)) dxdy
����

=

���� 1

2�i

Z



Z



Z
�

(B�1(x)G� (x; y) (�)u(y); v(x)) d�dxdy
����

�
���� 1

2�i

Z



Z



Z
�1

(B�1(x)G� (x; y) (�)u(y); v(x)) d�dxdy
����

+

���� 1

2�i

Z



Z



Z
�2

1
�
(JG�(x; y) (�)u(y);

@v
@x
(x)) d�dxdy

����
+

���� 1

2�i

Z



Z
�2

1
�
(B�1(y) (�)u(y); v(y)) d�dy

����
� c length(
) k  k1 ku k1 k v k1

+ c

����
Z



Z



Z
�2

1
j�je

�Cj�jjx�yj d�dxdy
���� k k1 ku k1 k v0 k1

+ c length(
)

����
Z
�2

1
�
 (�) d�

���� ku k1 k v k1
� c0 length(
) k  k1 ku k1 fk v k1 + length(
) k v0 k1g :

In the above estimate we have used the formula for the distribution derivative of the
Green's function derived in the proof of Proposition 5.9, and the estimate for the Green's
function stated in Proposition 5.6. The bound

����
Z
�2

1
�
 (�) d�

���� � 4� k k1

is obtained by using the analyticity of  and its decay at in�nity to replace the contour
�2 by the two arcs fj�j = �; jarg �j � �g and fj�j = �; jarg(��)j � �g .

Second method. Use the theorem of Semmes in [S], together with Lemma 5.8, Propo-
sition 5.9 and the above cancellation properties (ii) and (iii), to prove the quadratic
estimate

�Z 1

0

k (tT )Bu k22 dt
t

� 1

2

� c ku k2 ; and hence

�Z 1

0

k (tT )u k22 dt
t

� 1

2

� c
B�1u

2
� c0 ku k2 ;

together with a dual estimate. Thus T has a bounded H1 functional calculus in
L2(R; C 2) [Mc].



THE SQUARE ROOT PROBLEM OF KATO IN ONE DIMENSION 17

x6. General second order di�erential operators in L2(
) .

Our aim now is to extend the preceding results to the case of operators with lower
order terms de�ned by boundary conditions on intervals.

Henceforth in this paper, 
 denotes an interval of R , which may be either R or
a half{line or a bounded interval. Also V denotes a Hilbert space with norm ku kV =

ku kH1 = f ku k22 +
 du
dx

2
2
g 12 such that

o

H1(
) � V � H1(
) . Here H1(
) is

the Sobolev space H1(
) = fu 2 L2(
) : du
dx
2 L2(
) g with norm ku kH1 , and

o

H1(
) = fu 2 H1(
) : uj@
 = 0 g where @
 denotes the end{points of 
 .

Let b; �; �;  2 L1(
) such that

B(x) =

�
b(x) �(x)
�(x) (x)

�

is a bounded invertible ! -accretive matrix for some ! < �
2 . (This holds for some

! < �
2

if and only if there exists � > 0 such that Re
�
�1 �2

�
B(x)

�
�1
�2

�
� � j�j2 for

all � 2 C 2 and almost all x 2 
 . So long as Re b � 2� > 0 , this condition can always
be achieved by adding a large positive constant to  .)

Then the sesquilinear form J de�ned on V � V by

J [u; v] =

Z



n
b(x)du

dx
(x) dv

dx
(x) + �(x)u(x) dv

dx
(x) + �(x)du

dx
(x)v(x) + (x)u(x)v(x)

o
dx

satis�es Re J [u; u] � ku kH1 and jargJ [u; u]j � ! , so that the associated maximal
accretive operator LJ is one{one with numerical range in S!+ . Here LJ is the
operator in L2(
) with largest domain which satis�es J [u; v] = (LJu; v) for all
u 2 D(LJ ); v 2 V . See Chapter VI of Kato's book [K].

Further, let a 2 L1(
) be a bounded invertible ! -accretive function on 
 . We
now de�ne the principal operator of our investigation, namely L = aLJ with D(L) =
D(LJ ) . By Proposition 2.2(ii), L is type 2! in L2(
) . It is given by

Lu(x) = a(x)
�� d

dx
f b(x)du

dx
(x) + �(x)u(x) g + �(x)du

dx
(x) + (x)u(x)

	
with appropriate boundary conditions, which we now make precise.

Let W be the largest subspace of H1(
) such that (du
dx
; v) = �(u; dv

dx
) for all

u 2 V; v 2 W . Then D(L) = fu 2 V : bdu
dx

+ �u 2 Wg .

For example, if V =
o

H1(
) then W = H1(
) and D(L) = fu 2
o

H1(
) : bdu
dx

+

�u 2 H1(
)g , which corresponds to Dirichlet boundary conditions. If V = H1(
) ,
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then W =
o

H1(
) , and we have natural boundary conditions. If 
 = (0; 1) , then
V = fu 2 H1(
) : u(0) = u(1) g =W corresponds to the periodic boundary conditions,
u(0) = u(1) and b(0)du

dx
(0) + �(0)u(0) = b(1)du

dx
(1) + �(1)u(1) . All possibilities for V

and W are listed at the end of this section.

Let us now state our main result about square roots of di�erential operators. In
the case when a = 1 , it was derived previously by Auscher and Tchamitchian by
constructing suitable wavelets on 
 [AT1].

Theorem 6.1. Each operator L de�ned above is one{one of type 2! , and D(L 1

2 ) = V
with

L 1

2 u

2
� ku kH1 .

This clearly extends Theorem 3.1 for �a d
dx
b d
dx

on R . A related result of indepen-
dent interest is the following.

Theorem 6.2. The operator L has a bounded H1 functional calculus in L2(
) .

The proofs of both theorems rely on the holomorphic functional calculus of the �rst
order system T which we now introduce.

Let �0 = C , �1 = C 2 , �2 = C , and set � = �0��1��2 . Therefore Lp(
;�) =
Lp(
;�0) � Lp(
;�1)� Lp(
;�2) . In particular, L2(
;�) is a Hilbert space.

Introduce the unbounded operators d = d1;0+d2;1 and � = �0;1+ �1;2 in L2(
;�)
as indicated in the pair of exact sequences below, where f is another bounded invertible
! -accretive function. Let D = d+� be the corresponding Dirac operator with D(D) =
D(d) \ D(�) .

f0g ����! L2(
;�0)
d1;0����! L2(
;�1)

d2;1����! L2(
;�2)
0����! f0g

1

a

??y B

??y f

??y
f0g  ����

0
L2(
;�0)  ����

�0;1

L2(
;�1)  ����
�1;2

L2(
;�2)  ���� f0g

d1;0 =

�
d
dx

I

�
; D(d1;0) = V

d2;1 = [ I � d
dx

] ; D(d2;1) =

� �
w
v

�
2 L2(
;�1) : v 2 V

�

�0;1 = [� d
dx

I ] ; D(�0;1) =

� �
w
v

�
2 L2(
;�1) : w 2 W

�

�1;2 =

�
I
d
dx

�
; D(�1;2) = W
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Lemma 6.3. (i) � and d are closed operators with closed ranges in L2(
;�) ;
(ii) �0;1 = d1;0

� and �1;2 = d2;1
� , so that � = d� and d = �� ;

(iii) R(d) = N (d) and R(�) = N (�) = R(d)? ;

(iv) D = d+ � is a one{one self adjoint operator in L2(
) with
o

H1(
;�) � D(D) �
H1(
;�) .

Proof. Parts (i) and (ii) are easy to prove, as is (iii) once we have the following identity.

If u =

�
w
v

�
2 D(d2;1) \ D(�0;1) , then w 2 W and v 2 V , so that

k d2;1u k22 + k �0;1u k22 =
w � dv

dx

2
2
+

 dw
dx
� v 2

2

= kw k2H1 + k v k2H1 � 2(w; dv
dx
) � 2(dw

dx
; v) = ku k2H1 :

Therefore N (d2;1) \N (�0;1) = f0g . Part (iv) also follows from this. �

Let B denote the bounded invertible ! -accretive operator de�ned on Lp(
;�) by
B(u0; u1; u2) = ( 1

a
u0; Bu1; fu2) where uk 2 Lp(
;�k) , and set

T = d + �B = d + B�1�B
with D(�B) = B�1D(�) and D(T ) = D(d) \ D(�B) . Then

Lu = a�0;1Bd1;0u = �Bdu = T 2u

for all u 2 D(L) = fu 2 V : bdu
dx

+ �u 2 W g
= fu 2 D(d1;0) : Bd1;0u 2 D(�0;1) g = D(T 2) \ L2(
;�0) :

Theorem 6.4. The operator T is one{one of type S! in L2(
;�) and has a bounded
H1 functional calculus.

Before proving this, let us show how it implies Theorem 6.1 and Theorem 6.2.

Proof of Theorems 6.1 and 6.2. By Theorem 2.3 and the above result, T 2 is a one{
one operator of type 2! with a bounded H1 functional calculus in L2(
;�) , and
moreover, D(jT j�) = D(T ) , so that D(jT j�) \ L2(
;�0) = D(T ) \ L2(
;�0) = V and

k jT j� u k2 � kTu k2 = k du k2 = ku kH1

for all u 2 V .

Now T 2 is diagonal on
P2
j=0 L2(
;�

j) and, for u 2 D(T 2) \ L2(
;�0) = D(L) ,
T 2u = Lu . Therefore L is one{one of type 2! with a bounded H1 functional calculus
in L2(
) .
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Further, jT j� u = L
1

2 u when u 2 D(jT j�) \ L2(
;�0) = D(L 1

2 ) , so D(L 1

2 ) = V
with

L 1

2 u

2
� ku kH1 . �

Our aim for the remainder of this section is to prove Theorem 6.4. To this end we
introduce the operators E; V; W; U; EB; VB = V �1; WB =W�1; P; A 2 L(L2(
;�)) .

(i) Recalling from Lemma 6.3 that L2(
;�) = R(d) �R(�) where the decomposition
is orthogonal, let E denote the orthogonal projection of L2(
;�) onto R(d) , so that
E? = I�E is the orthogonal projection onto R(�) . Note that d = Ed = dE? = EdE?

and � = E?� = �E = E?�E .

(ii) Let V = E + B�1E? , W = E? +EB and U =WV = EBE +E?B�1E? . Note
that U is a bounded invertible ! -accretive operator on L2(
;�) , because (Uu; u) =
(BEu;Eu) + (B�1E?u;E?u) .

(iii) Because B is a bounded invertible ! -accretive operator, we can also decompose
L2(
;�) = R(d)�B�1R(�) = R(d)�R(�B) , where the decomposition is typically not
orthogonal. Let EB be the projection of L2(
;�) onto R(d) with N (EB) = R(�B) .
Clearly (I �E)EB = 0 and EB(I �EB) = 0 .

(iv) Let VB = EB+B(I�EB) and WB = (I �EB)+EBB�1 . Then V VB = I ; VBV =
I ; WWB = I and WBW = I , so that V and W are invertible in L(L2(
;�)) with
V �1 = VB and W�1 =WB . Let us just check the �rst identity.

V VB = (E + B�1(I �E)) (EB + B(I �EB))
= EEB + EB(I �EB) + B�1(I �E)EB + B�1(I �E)B(I �EB)
= EB + 0 + 0 + (I �EB) = I :

The reason for introducing these operators and checking their invertibility, is to write

T = d + B�1�B = EdE? + B�1E?�EB = V DW = V (DU)V �1

where D = d+ � .

(v) De�ne P (u0;

�
w
v

�
; u2) = (0;

�
w
0

�
; u2) . Then D(E � P ) 2 L(L2(
;�)) too. In

fact,

D(E � P )u = �(I � P )u � dPu = �(u0;

�
0
v

�
; 0) � d(0;

�
w
0

�
; u2) = (v; 0;�w) :

(vi) De�ne A(u0;
�
w
v

�
; u2) = (au0;

�
bw
~bv

�
; fu2) where ~b = b(detB)�1 , or in other

words,
A = PBP + (I � P )B�1(I � P ) :
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Then, writing Z = E � P and P? = (I � P ) , we have

U = EBE +E?B�1E?
= (PBP + P?B�1P?) + Z(BE � B�1E?) + (PB � P?B�1)Z
= A + X + Y

where X = Z(BE�B�1E?); Y = (PB�P?B�1)Z 2 L(L2(
;�)) satisfy DX; DY � 2
L(L2(
;�)) as follows from (v) above.

We need to introduce one more operator in L2(
;�) , namely � = D2 . Note that,
on its domain D(�) ,

�(u0;

�
w
v

�
; u2) = ( (I � d2

dx2
)u0;

�
(I � d2

dx2
)w

(I � d2

dx2
)v

�
; (I � d2

dx2
)u2 ) :

This domain satis�es
o

H2(R;�) � D(�) � H2(R;�) where these Sobolev spaces are
de�ned as usual. See, for example, [LM].

Lemma 6.5. Let r > 0 . The operators T , DU and DA are all one{one operators
of type S! in L2(
;�) , while �A and �rA are one{one operators of type ! in
L2(
;�) . The following statements about them are equivalent.

(1) T has a bounded H1 functional calculus;
(2) DU has a bounded H1 functional calculus;
(3) DA has a bounded H1 functional calculus;
(4) �A has a bounded H1 functional calculus;
(5) �rA has a bounded H1 functional calculus.

Proof. The fact that the operators are one-one of type ! or type S! is a consequence
of Proposition 2.2, except for T , in which case it follows from the similarity T =
V (DU)V �1 noted in (iv) above. The equivalence of (1) and (2) is also an immediate
consequence of this similarity and the fact that f(T ) = V f(DU)V �1 .

The equivalence of (2) and (3) follows from (vi) above and Theorem 11.4 of [AMcN],
which is stated below for convenience. To apply this theorem, note that

kDu k2 = f (du; du) + (�u; �u) g 12 = ku kH1 � ku k2
for all u 2 D(D) .

The equivalence of (3), (4) and (5) follows from Theorems 7.3 and 8.5 of [AMcN]. �

Let us record the three results from [AMcN] which we have just used, together with
a fourth to be used shortly. In each case, A denotes a bounded invertible ! -accretive
operator on a Hilbert space H . Some editorial changes have been made.
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Theorem 11.4 of [AMcN]. Let S be a self{adjoint operator in H such that kSuk �
ku k for all u 2 D(S) . Suppose that SA has a bounded H1 functional calculus in H .
If U is a bounded invertible ! -accretive operator on H , such that U = A +X + Y
where X; Y; SX and SY � are all bounded on H , then SU has a bounded H1
functional calculus in H .

Theorem 7.3 of [AMcN]. Let S be a positive self{adjoint operator in H , and let
r > 0 . Then SrA is a one{one operator of type ! which has a bounded H1 functional
calculus if and only if SA does.

Theorem 8.5 of [AMcN]. Let S be a one{one self{adjoint operator in H . Then
S2A is a one{one operator of type ! with a bounded H1 functional calculus if and
only if SA is a one{one operator of type S! with a bounded H1 functional calculus.

Proposition 11.2 of [AMcN]. Let S be a positive self{adjoint operator in H . If
SA has a bounded H1 functional calculus, then so does (S + I)A .

Let us now treat the special case 
 = R .

Proof of Theorem 6.4 when 
 = R . We have seen in Lemma 6.5 that the problem of
showing that T has a bounded H1 functional calculus is equivalent to showing that
�A has. When 
 = R and hence V = W = H1(R) , then D(�) = H2(R;�) and
� acts on each component separately, as does A . So our problem reduces to showing

that (I � d2

dx2
)h has a bounded H1 functional calculus in L2(R) = L2(R; C ) where h

denotes one of a; b; f or ~b = b(detB)�1 .

In Section 3 we drew attention to the fact that �ih d
dx

has a bounded H1 func-

tional calculus in L2(R) . Therefore �i ddxh = 1
h
(�ih d

dx
)h does too, and therefore, by

Theorem 8.5 of [AMcN], so does � d2

dx2
h . Now apply Proposition 11.2 of [AMcN] to

obtain the desired result. �

Note that, by Lemma 6.5, we have also shown that �rA has a bounded H1 func-
tional calculus in L2(R;�) . Let us also record the facts that D(�rA) = A�1H2r(R;�)
with k�rAu k2 � kAukH2r , and R(�rA) = L2(R;�) with

 (�rA)�1u
2
�

ku kH�2r . Here we are writing Hs(R;�) for the usual Sobolev space with norm
ku kHs .

Let us turn our attention to the general case of an interval 
 � R . Our aim is to
use the results on R in the preceding paragraph, together with Theorem 2.1, to prove
that �rA has a bounded H1 functional calculus in L2(
;�) when 0 < r < 1

4 . The
required result follows on once more applying Lemma 6.5.

In doing this, we need notations which di�erentiate between 
 and R , so write
L2(
) = L2(
;�) , H

s(
) = Hs(
;�) , D
 and �
 when we are working on 
 , and



THE SQUARE ROOT PROBLEM OF KATO IN ONE DIMENSION 23

reserve the symbols L2 = L2(R;�) , Hs = Hs(R;�) , D and � for the case of R . Of
course D
 and �
 depend on V as well.

Proof of Theorem 6.4. By complex interpolation, D(�

r) = H2r(
) provided 0 <

r < 1
4
. Therefore D(�


rA) = A�1H2r(
) with k�

rAuk2 � kAu kH2r(
) , and

R(�

rA) = L2(
) with

 (�

rA)�1u

2
� k ukH�2r(
) .

Let E : Hs(
)! Hs be the operator of extension by zero, and let F : Hs ! Hs(
)
be the restriction operator, which are both bounded and satisfy FE = I provided
� 1

2
< s < 1

2
. Extend A to a matrix valued function, still called A , on R which has

the same properties as A on 
 . Note that AE = EA and AF = FA .

The hypotheses of Theorem 2.1 are satis�ed by these operators when H = L2 ,
K = L2(
) , S = �rA and T = �


rA provided 0 < r < 1
4
.

Indeed, E(D(�

rA)) � D(�rA) with

k�rAEu k2 � kEAu kH2r � c kAu kH2r(
) � k�

rAuk2

and E(R(�

rA)) = E(L2(
)) � L2 = R(�rA) with (�rA)�1Eu 

2
� kEu kH�2r � c kukH�2r(
) �

 (�

rA)�1u

2
:

Also F(D(�rA)) � D(�

rA) with

k�

rAFuk2 � kFAukH2r(
) � c kAukH2r � k�rAuk2

and F(R(�rA)) = F(L2(
)) � L2 = R(�

rA) with (�


rA)�1Fu
2
� kFu kH�2r(
) � c ku kH�2r �

 (�rA)�1u
2
:

Therefore, by Theorem 2.1, �

rA has a bounded H1 functional calculus in L2(
)

when 0 < r < 1
4 . We conclude, once more applying Lemma 6.5, that T has a bounded

H1 functional calculus in L2(
) as required. �

Remark. The boundedness of the H1 functional calculus of �A holds for all bounded
invertible ! -accretive matrix valued functions, not just the diagonal ones. It remains
true in higher dimensions in L2(Rn; Cm ) when � is the usual Laplacian [McN].

Let us conclude this section by listing all possible choices of 
 , V and W .

Case I

(i) 
 = R ; V = H1(R) ; W = H1(R)

(ii) 
 a half{line; V =
o

H1(
) ; W = H1(
) and vice{versa

(iii) 
 = (x1; x2);V =
o

H1(
) ; W = H1(
) and vice{versa
(iv) 
 = (x1; x2) ;V = fu 2 H1(
) : u(x1) = 0g ; W = fu 2 H1(
) : u(x2) = 0g and v-v
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Case II


 = (x1; x2) ; V = fu 2 H1(
) : �1u(x1) = �2u(x2)g ; W = fu 2 H1(
) :
�2u(x1) = �1u(x2)g where �1 6= 0; �2 6= 0

x7. General second order di�erential operators in Lp(
) .

In this section we develop the Lp theory of the operators L and T which were
de�ned in Section 6. This is based on estimates for the Green's function of T � �I , or,
in other words, on estimates for solutions of certain systems of �rst order di�erential
equations.

Recall that T = d + �B = d + B�1�B with D(T ) = D(d) \ B�1D(�) � L2(
;�)
where d and � are operators in L2(
;�) , and that the bounded invertible ! -accretive
operator B is already de�ned on Lp(
;�) , where 0 � ! < �

2
. We assume henceforth

that length(
) � 1 . The results remain true for a short interval 
 , though the
constants in some of the estimates may then depend on its length.

Our aim is to establish the following result, in which W 1
p (
) denotes the Sobolev

space W 1
p (
) = fu 2 Lp(
) : dudx 2 Lp(
) g with norm k ukW1

p

=
 du
dx


p
+ ku kp .

Theorem 7.1. Let 1 < p < 1 . Then fu 2 V : L
1

2u 2 Lp(
) g = V \W 1
p (
) withL 1

2u

p
� ku kW1

p

.

A related result of independent interest is the following.

Theorem 7.2. Let 1 < p <1 and � > ! . For each f 2 H1(S02�+) ,

f(L) : Lp \ L2(
)! Lp \ L2(
) with k f(T )u kp � cp;� k f k1 ku kp :

These results follow from Lp estimates for functions of T .

Theorem 7.3. Let 1 < p <1 and � > ! . For each f 2 H1(S0�) ,

f(T ) : Lp \ L2(
;�)! Lp \ L2(
;�) with k f(T )u kp � cp;� k f k1 ku kp :

Before proving Theorem 7.3, we show that it implies Theorems 7.1 and 7.2.

Proof of Theorem 7.1. It follows from Theorem 7.3 that sgn(T ) maps Lp\L2(
;�) to
itself with k sgn(T )u kp � c ku kp . Also (sgn(T ))�1 = sgn(T ) has the same property,
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so in fact sgn(T ) is a one{one mapping of Lp\L2(
;�) onto itself with k sgn(T )u kp �
ku kp .

Let u 2 V � L2(
;�0) . Then u 2 W 1
p (
) if and only if Tu = du 2 Lp(
;�) ,

which holds if and only if L
1

2u = jT j� u = sgn(T )Tu 2 Lp(
;�) . Moreover
L 1

2 u

p
�

kTu kp � k ukW1
p

. �

Proof of Theorem 7.2. Given f 2 H1(S02�+) , de�ne g 2 H1(S0�) by g(�) = f(�2) .

Then f(L)u = f(T 2)u = g(T )u for all u 2 L2(
;�0) . The result follows from Theorem
7.3. �

Let us turn to the proof of Theorem 7.3. For this purpose, we derive bounds on the
Green's function of T . In the next two results, Lp(
;�) is abbreviated to Lp(
) .

Proposition 7.4. The operator T = d+ �B satis�es the following properties.
(i) D(T ) � L1(
) with

ku k1 � c
n
(1 + j�j) 12 k uk2 + (1 + j�j)� 1

2 k (T � �I)uk2
o

for all � 2 C .

Henceforth suppose that ! < � < �
2 and that � =2 S� or that � = 0 . (The

constants depend on � but not on � itself.)

(ii) (T � �I) is a one{one mapping of D(T ) onto L2(
)
with ku k2 � c(1 + j�j)�1 k (T � �I)u k2

(iii) (T � �I)�1 : L2(
)! L1(
) with ku k1� c(1 + j�j)� 1

2 k (T � �I)uk2
(iv) (T � �I)�1 : L1 \ L2(
) ! L2(
) with ku k2 � c(1 + j�j)� 1

2 k (T � �I)uk1
(v) (T � �I)�1 : L1 \ L2(
) ! L1(
) with ku k1� c k (T � �I)uk1
In particular, T�1 : L1 \ L2(
)! L1(
) with ku k1 � c k Tuk1 .

Proof. (i) Let

u = (u0 ;

�
w
v

�
; u2 ) 2 D(T ) � L2(
) :

Recall that B is de�ned on Lp(
) by B(u0; u1; u2) = ( 1
a
u0; Bu1; fu2) where

B(x) =

�
b(x) �(x)
�(x) (x)

�

is a bounded invertible ! -accretive matrix, and a and f are bounded invertible ! -
accretive functions. Let us write the inverse B�1 of B as

B�1(x) =

�
~(x) ~�(x)

~�(x) ~b(x)

�
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and note that b and ~b are invertible functions. Then

(T � �I)u = (d+ B�1�B � �I)u

= ( a�0;1B

�
w
v

�
� �u0 ; d1;0u0 +B�1�1;2(fu2) � �

�
w
v

�
; d2;1

�
w
v

�
� �u2 )

= (�a(bw + �v)0 + a(�w + v)� �u0 ;�
u0
0 + ~fu2 + ~�(fu2)0 � �w

u0 + ~�fu2 +~b(fu2)0 � �v
�
; w � v0 � �u2 ) 2 L2(
)

and so 8>><
>>:

(bw + �v)0 = (�w + v)� � 1
a
u0 � 1

a
((T � �I)u)0�

u0
0 + ~�(fu2)0
~b(fu2)0

�
= �

�
~fu2 � �w

u0 + ~�fu2 � �v
�
+ ((T � �I)u)1

v0 = w � �u2 � ((T � �I)u)2 :

Therefore, applying Lemma 5.4 with g = 0 , we obtain bw+�v; fu2; u0; v 2 C(
)
with

k bw + �v k1 + k fu2 k1 + ku0 k1 + k v k1
� cp

�
k uk2 + c

p
� f(1 + j�j) k u k2 + k (T � �I)u k2g

for all � � 1 . Hence, on choosing � = (1 + j�j)�1 , we conclude that u 2 L1(
) and

ku k1 � c
n
(1 + j�j) 12 ku k2 + (1 + j�j)� 1

2 k (T � �I)u k2
o
:

(ii) We saw in Section 3 that T is a one{one operator of type S! in L2(
) , so we know

the result when � 6= 0 with the estimate ku k2 � c j�j�1 k (T � �I)u k2 . We also proved
that T = V DW where V and W are isomorphisms and D is a one{one mapping of
D(D) onto L2(
) with kDu k2 � ku k2 , so 0 2 �(T ) . Since the resolvent set is open,
the estimate ku k2 � c k (T � �I)u k2 holds for j�j small enough. The result follows.

Part (iii) is a consequence of (i) and (ii). Part (iv) follows by duality. To prove
(v), use the same formula as in (i), this time applying Lemma 5.4 successively with

g = 1
a
((T � �I)u)0 ; 1

~b

�
~b �~�
0 1

�
((T � �I)u)1 ; ((T � �I)u)2 2 L1(
) , and making use

of (iv). �

It is a consequence of (v) that T��I has a Green's function G�(x; y) 2 L1(
�
) .
That is, (T � �I)�1u(x) = R


G�(x; y)u(y) dy for all u 2 L1 \ L2(
) and almost all
x 2 
 .

The Green's function has exponential decay with respect to the metric � on 

de�ned as follows. Set �(x; y) = jx � yj in Case I speci�ed at the end of Section 6, and
set �(x; y) = minf jx� yj ; x2 � x1 � jx� yj g in Case II.
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Proposition 7.5. If � =2 S� or if � = 0 , then the Green's function G�(x; y) of T ��I
satis�es

jG�(x; y)j � ce�C(1+j�j)�(x;y)

for some c; C > 0 and almost all x; y 2 
 . Therefore

(T � �I)�1 : Lp \ L2(
)! Lp(
) with k u kp �
c�

1 + j�j k (T � �I)u kp
whenever 1 � p � 1 .

Proof. We follow the method of Davies. De�ne a real valued C1 function to be
admissible if its support is a compact subset of the closed interval 
 and, in Case
II, it has the additional property that �(x1) = �(x2) . For such a � , denote by e� the
operator on Lp(
) de�ned by (e�)u(x) = e�(x)u(x) , and note that it, along with its
inverse (e�)�1 = e�� , maps each of the spaces Lp(
); W 1

p (
) and D(T ) to itself.

Set T� = e��Te� with D(T�) = D(T ) . A simple calculation using e�� d
dx
(e�u) =

du
dx

+ �0u shows that T� = T +M where M denotes multiplication by a matrix M
with kM k1 � c k�0 k1 .

Suppose that k�0 k1 � 2C(1 + j�j) where the constant C will be chosen shortly.
All of the statements in Proposition 7.4 remain true when T is replaced by T� = T+M
provided (ii) does, namely (T� � �I) is a one{one mapping of D(T ) onto L2(
) with

(#) ku k2 � c(1 + j�j)�1 k (T� � �I)uk2 :

If k�0 k1 and j�j are both small enough, then T� � �I is invertible, because it is
a small perturbation of the invertible operator T , and thus (#) holds.

For larger values of j�j write
T� � �I = V (DU + V �1MV � �I)V �1 :

Although T� is not of type S! , it nevertheless follows from Lemma 5.7 that (#) holds
provided C is chosen suitably.

Therefore the kernel e��(x)G�(x; y)e�(y) of T� is bounded. That is,

jG�(x; y)j � ce�(x)��(y) :

For each �xed x; y and � it is possible to choose an admissible � such that �(x)�
�(y) = �C(1 + j�j)�(x; y) . Therefore jG�(x; y)j � ce�C(1+j�j)�(x;y) as required. �

We come now to the proof of Theorem 7.3. The usual Calder�on{Zygmund theory
does not apply owing to the lack of H�older bounds on G� . Nevertheless we can proceed
without them by applying the following result of Duong and Robinson. Let us state a
variant of a special case of Theorem 3.1 of [DR].



28 PASCAL AUSCHER, ALAN McINTOSH AND ANDREA NAHMOD

Theorem 7.6. Let T be a one{one operator of type S! in L2(X) where (X;�;m) is
a space of homogeneous type (with the doubling property) with metric � and measure
m . Suppose that T has a bounded H1 functional calculus in L2(X) , that ! < � <
� < �

2
, and that

jG�(x; y)j � ce�Cj�j�(x;y)

for all � =2 S0� and almost all x; y 2 X . If 1 < p <1 , then

f(T ) : Lp \ L2(X)! Lp \ L2(X) with k f(T )u kp � cp k f k1 k ukp

for all f 2 H1(S0�) .

Proof of Theorem 7.3. This follows from the above result, since T has a bounded H1
functional calculus in L2(
) (Theorem 6.4) and its Green's function satis�es suitable
bounds (Proposition 7.5). �

Remark. Extend the operators f(T ) in Theorem 7.3 to operators f(T )(p) 2
L(Lp(
;�)) when 1 < p < 1 . Then f(T )(p) = f(T(p)) where the operator T(p)
is de�ned on the subspace of W 1

p (
;�) determined by the same boundary conditions

as those determining D(T ) � W 1
2 (
;�) = H1(
;�) . Thus T(p) is a one{one opera-

tor of type S! in Lp(
;�) which has a bounded H1(S0�) functional calculus for all

� > ! . Moreover L(p) = T(p)
2jLp(
;�0) is a one{one operator of type 2! in Lp(
)

with the bounded H1(S02�+) functional calculus de�ned by f(L(p))u = f(L)u for all

f 2 H1(S02�+) when u 2 Lp \ L2(
) . Details are left to the reader.

Similar comments apply to the operators f(T ) in Theorem 5.3.

x8. The Green's function of L .

Let us turn to some results of independent interest.

Proposition 8.1. The operators E; V; W; U; EB; VB = V �1; WB =W�1 introduced
in Section 6 all map Lp \ L2(
;�) to Lp(
;�) with

max
n
kEukp ; kV ukp ; kWukp ; kUu kp ; kEBu kp ; kVBu kp ; kWBukp

o
� c k ukp

for 1 � p � 1 .

Proof. Let us introduce another projection on Lp(
;�) , namely
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PB(u0;
�
w
v

�
; u2) = (0;

�
w + �

b
v

0

�
; u2) . Then

T (EB � PB)u = �B(I � PB)u � dPBu

= B�1�B(u0;
���

b
v

v

�
; 0) � d(0;

�
w + �

b
v

0

�
; u2)

= B�1�( 1
a
u0;

�
0

(���
b
+ )v

�
; 0) � (0; 0; w + �

b
v)

= B�1((���
b
+ )v; 0; 0) � (0; 0; w + �

b
v)

= (a
b
(b � ��)v; 0;�w � �

b
v) so that

EB = PB + T�1M

where M denotes multiplication by an L1 matrix. Thus, on applying Proposition 7.5
with � = 0 , we have the required result for EB , and hence for VB and WB . The
result for the remaining operators is the special case B = I . �

Theorem 8.2. Let L be the operator de�ned in Section 6. Then, for 1 � p � 1 ,

L�1 : Lp \ L2(
) ! Lp(
) with
L�1u

p
� c kukp ;

d
dx
L�1 : Lp \ L2(
) ! Lp(
) with

 d
dx
(L�1u)


p
� c kukp ;

L�1a d
dx

: Lp(
) \W ! Lp(
) with
L�1adu

dx


p
� c kukp ;

d
dx
L�1a d

dx
: Lp(
) \W ! Lp(
) with

 d
dx
(L�1adu

dx
)

p
� c kukp :

Further,

L�1 : L1 \ L2(
) ! L1(
) with
L�1u1 � c ku k1 ;

d
dx
L�1 : L1 \ L2(
) ! L1(
) with

 d
dx
(L�1u)


1 � c ku k1 ;

L�1a d
dx

: L1(
) \W ! L1(
) with
L�1adu

dx


1 � c ku k1 ;

d
dx
L�1a d

dx
+ 1

b
I : L1(
) \W ! L1(
) with

 d
dx
(L�1adu

dx
) + 1

b
u

1 � c ku k1 :

Moreover L has a Green's function g(x; y) which satis�es

supfjg(x; y)j ; �� @
@x
g(x; y)

�� ; ��� @@y (g(x; y)a(y))��� ; ��� @2

@x@y
(g(x; y)a(y)) + 1

b
�(x � y)

���g � ce�C�(x;y)

for some constants c; C > 0

Proof. The projection EB can be represented as EBu = dT�2�Bu when u 2 D(�B) .
That is, dT�2B�1� = EBB�1jD(�) . Therefore, by the previous result,

dT�2B�1� : Lp(
;�) \ D(�) ! Lp(
;�) with
 dT�2B�1�u

p
� c ku kp :
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In particular, 
�

d
dx

I

�
L�1a [� d

dx
I ]

�
w
v

�
p

� c


�
w
v

�
p

for all w 2 Lp(
) \W and v 2 Lp \ L2(
) . The Lp estimates follow.

A little more care needs to be taken with the next set of estimates because PB does
not map L1 to L1 . So here we use the facts that

 (EBB�1 � PBB�1)u

1 =

T�1MB�1u1 � c ku k1

(which follows from Proposition 7.4) and that PBB�1(u0;
�
w
v

�
; u2) = (0;

�
1
b
w
0

�
; 1
f
u2) .

Similar estimates are satis�ed by L� = e��Le� where � is an admissible function
as de�ned in the proof of Proposition 7.5. The kernel estimates follow from this by
again applying the method of Davies. See, for example, the appendix of [AMcT]. �

This result was proved in [AMcT] in the case when 
 = R and a = 1 . Though
�rst order systems were not used in that work, nevertheless there are many features
in common between the two approaches. The aim there was to prove heat kernel and
resolvent bounds for the operator L in this case, along with higher dimensional results.

It may be of interest to continue this work and see whether all the one{dimensional
results in [AMcT] have analogues on bounded intervals, at least when a = 1 .
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