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Abstract.

We develop some connections between interpolation theory and the theory of bounded
holomorphic functional calculi of operators in Hilbert spaces, via quadratic estimates. In
particular we show that an operator T of type ! has a bounded holomorphic functional
calculus if and only if the Hilbert space is the complex interpolation space midway be-
tween the completion of its domain and of its range. We also characterise the complex
interpolation spaces of the domains of all the fractional powers of T , whether or not T

has a bounded functional calculus. This treatment extends earlier ones for self{adjoint and
maximal accretive operators. This work is motivated by the study of �rst order elliptic
systems which are related to the square root problem for non{degenerate second order
operators under boundary conditions on an interval. See our subsequent paper [AMcN].

x1. Introduction.

It is often of interest to know whether an operator T of type ! in a Hilbert space
H has a bounded H1 functional calculus. This is related to the property of whether
T satis�es quadratic estimates in H . Indeed T does have a bounded H1 functional
calculus if and only if the quadratic norm

jjujjT =

�Z 1

0

jj (tT )ujj2 dt
t

� 1

2

is equivalent to the given norm of H (where  is a holomorphic function which decays
at 0 and 1 .) This result of McIntosh [Mc2] was based on earlier work by Yagi [Y1].

It was shown in these papers that these properties hold if and only if the domains
of the fractional powers of T interpolate by the complex method. In this case H is the
complex interpolation space midway between the completion DT of its domain D(T )
under the norm kTu k , and the completion RT of its range R(T ) under



T�1u

 .
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A principal result of the current paper, Theorem 4.2, is that ku kT is the norm of
this complex interpolation space midway between DT and RT , whether or not T has
a bounded H1 functional calculus.

A consequence is the fact that if two operators S and T satisfy D(S) = D(T ) with
kSuk � kTu k and R(S) = R(T ) with



S�1u

 � 

T�1u

 , then k u kS � ku kT .
Therefore, if T satis�es the quadratic estimate ku kT � c ku k , then ku kS � c ku k .
We also present a more direct proof of this result as Theorem 3.1.

These results also hold for operators of type S! which have spectrum in the union
of two sectors. In this case they can be used to show how known quadratic estimates
for the operators a d

dx
and b d

dx
imply quadratic estimates for a particular system T ,

which in turn give the bound jjL 1

2 ujj2 � jjdu
dx
jj2 for all u 2 H1(R) , originally proved

by Kenig and Meyer [KM]. Here a; b 2 L1(R) with Re a � � and Re b � � for some
� > 0 , and Lu = �a d

dx
(bdu
dx
) .

In order to prove such a bound when L includes lower order terms and is de�ned
under boundary conditions on an interval, we need a further development of the con-
nections between quadratic estimates, interpolation spaces, and fractional powers. Such
connections are developed in this paper, while the application is presented in a second
paper [AMcN].

The results of this paper have a long history, so that it is not possible to give credit
for all the underlying ideas. First, there is the operator theory developed in the study
of semi{groups as well as fractional powers. Then there is the harmonic analysis related
to Littlewood{Paley estimates as developed by Stein and many others. This is related
to the interpolation theory initiated by Calder�on, Lions and Peetre, and to the theory
of Sobolev and Besov spaces.

These concepts all lie behind the main interpolation results, Theorems 4.2 and 5.3.
Although these theorems include many known results as speci�c cases, they are, so far
as we are aware, new as stated, as are the consequences presented in Theorems 7.3 and
8.5. Our interest stems from the fact that they provides a useful tool for the study of
functional calculi of operators in Hilbert spaces.

Let us describe the contents. We review the basic background on operator theory in
Section 2. In Section 3 we present a direct approach to obtaining quadratic estimates for
an operator from known estimates for a related operator. This material is re-obtained
and strengthened from the point of view of interpolation theory in Section 4. In Section
5 we characterise the real interpolation spaces of domains of fractional powers, while we
show in Section 6 that these are the same as the complex interpolation spaces.

We turn our attention in Section 7 to applying this material to a class of operators
obtained from multiplicative perturbations of positive self{adjoint operators. In Section
8 we show how to extend these results to operators of type S! , whose spectrum is in the
union of two sectors, since that is what is needed for the motivating example in Section 9
and its generalisation in [AMcN]. We describe in Section 10 some results connecting the
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square root problem of Kato to quadratic estimates for related operators. We conclude
in Section 11 with some peturbation results.

This paper has had a gestation period of several years, during which time we have
had the bene�t of constructive comments from many people, to all of whom we ex-
press our appreciation. In particular we thank Xuan Duong, Edwin Franks and Derek
Robinson. We also thank Florence Lancien for suggesting improvements to an earlier
version.
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Japan in 1989, and to Jill Pipher who explained to us, during her visit to Australia in

1993, her unpublished derivation of the estimate



 (�a d

dx
b d
dx
)
1

2u




2
� 

 du

dx




2
from the

quadratic estimates for the Cauchy integral on Lipschitz curves.

This research was undertaken at Universit�e de Rennes I, Macquarie University in
Sydney, the Australian National University in Canberra, the International Centre for
Mathematical Sciences in Edinburgh, and the University of Texas at Austin, to all of
whom we express our gratitude.

Whenever it is stated that two Hilbert spaces H and K are equal, H = K , it is
implied that their norms are equivalent. Often we write a statement such as \X � Y
with k ukY � c ku kX " concerning two normed spaces X and Y to mean that \X � Y
and there exists a constant c such that ku kY � c ku kX for all u 2 X ".

x2. Operators of type ! , functional calculi and quadratic estimates.

Here is a brief survey of some known results about functional calculi and quadratic
estimates of operators of type ! in a Hilbert space, as developed in the papers [Y1],
[Mc2] and [McY]. See the lecture notes [ADMc] for a more detailed presentation of the
material in this section, and for further references.

Throughout this paper H denotes a complex Hilbert space. By an operator in H
we mean a linear mapping T : D(T )! H whose domain D(T ) is a linear subspace of
H . The norm of T is the (possibly in�nite) number

kT k = sup f kTu k : u 2 D(T ) ; ku k = 1 g :

We say that T is bounded on H if D(T ) = H and kT k < 1 . The Banach algebra
of all bounded operators on H is denoted by L(H) . We call T closed if its graph,
f(u; Tu) : u 2 D(T )g is a closed subspace of H�H .

The spectrum �(T ) of T is the set of all complex � for which (T ��I)�1 =2 L(H) ,
together with 1 if T =2 L(H) .
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For 0 � ! < � < � , de�ne the closed and open sectors in the (extended) complex
plane C :

S!+ = f � 2 C : j arg �j � !g [ f 0;1g
S0�+ = f � 2 C : � 6= 0; j arg �j < �g:

A closed operator T is said to be of type ! if �(T ) � S!+ and for each � > !
there exists C� such that

 (T � �I)�1



 � C�j�j�1 ; � 62 S�+ :

Traditionally, such operators are called type (!;M) where M = supf j�j

 (T + �I)�1


 :

� > 0 g [K1]. See [T] for basic results. For a treatment closer to our needs, see the
lecture notes [ADMc], in which the notation type S! is used in place of type ! .

We remark that every one{one operator T of type ! in H has dense domain
D(T ) and dense range R(T ) = fTu : u 2 D(T )g [CDMcY]. If T is not one{one, then
H = N (T ) �H0 where N (T ) is the nullspace of T and H0 is the closure of R(T ) ,
and moreover, the restriction of T to H0 is a one{one operator of type ! in H0 . So
the general theory can readily be reduced to that of one{one operators. The direct sum
� is in general not orthogonal.

In investigating the holomorphic functional calculus of T , we employ the following
subspaces of the space H(S0�+) of all holomorphic functions on S0�+ .

H1(S0�+) = f f 2 H(S0�+) : k f k1 <1 g

where k f k1 = supf jf(�)j : � 2 S0�+ g;

	(S0�+) = f  2 H(S0�+) : j (�)j � Cj�js(1 + j�j2s)�1 for some C; s > 0 g

and

F (S0�+) = f f 2 H(S0�+) : jf(�)j � C(j�j�s + j�js) for some C; s > 0 g ;

so that
	(S0�+) � H1(S0�+) � F (S0�+) � H(S0�+) :

Every one{one operator T of type ! in H has a unique holomorphic functional
calculus which is consistent with the usual de�nition of polynomials of an operator. By
this we mean that for each � > ! and for each f 2 F (S0�+) , there corresponds a closed
operator f(T ) in H . Further, if f; g 2 F (S0�+) and � 2 C ; then

�f(T ) + g(T ) = (�f + g)(T )jD(f(T ))\D((�f+g)(T ))
g(T )f(T ) = (gf)(T ) jD(f(T ))\D((gf)(T )) :
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In particular, if  2 	(S0�+) , then  (T ) = 1
2�i

R
�
(T � �I)�1 (�) d� 2 L(H) where

the integral is on the unbounded contour � = f� = re�i� : r � 0g , parametrised
clockwise around S!+ , and ! < � < � .

Note that, if f is a function which can be expressed as f(�) = �(�+1)�1+�+ (�)
with �; � 2 C and  2 	(S0�+) , then f(T ) 2 L(H) . For example, when ! <
�
2
, then, taking fz(�) = e�z� , we see that e�zT 2 L(H) if jarg zj < �

2
� ! . By

the properties of the functional calculus, �T generates the holomorphic semigroup
fe�zT : jarg(z)j < �

2
� !g .

Of concern to us is the question whether, for every function f 2 H1(S0�+) , the
operator f(T ) 2 L(H) with jjf(T )jj � c�jjf jj1 . When this holds, we say that T has
a bounded H1 functional calculus in H . This holds if and only if the given norm jjujj
on H is equivalent to the norm jjujjT which we now de�ne [Mc2].

Given a non{zero function  2 	(S0�+) , let  t(�) =  (t�) , and de�ne the norm

jjujjT =

�Z 1

0

jj t(T )ujj2 dt
t

� 1

2

on the space of all those u 2 H for which the right hand side is �nite. Complete this
space under the norm jjujjT to form the Hilbert space HT . It is an important fact
that di�erent choices of � and  give rise to equivalent norms, and to the same space
HT . Further, jjf(T )ujjT � c�jjf jj1jjujjT for all f 2 H1(S0�+) [McY, ADMc].

Let T 0 be the dual of T (also a one{one operator of type ! ) in a Hilbert space K
which is related to H by a bilinear or sesquilinear duality hu; vi . (If K = H and the
duality is given by the inner product (u; v) , then T 0 is the adjoint T � .) We remark
that jhu; vij � c k ukT k v kT 0 for all u 2 H , v 2 K . To see this, choose a function

 2 	(S0�+) such that
R1
0
 2(� )d�

�
= 1 and write

jhu; vij =

����h
Z 1

0

 t
2(T )u dt

t
; vi

���� =

����
Z 1

0

h t(T )u ;  t(T 0)vi dt
t

���� � c ku kT k v kT 0

where  (�) =  (�) when the pairing is sesquilinear, and  =  when the pairing
is bilinear. Indeed more is true, as was essentially proved in [McQ], and explicitly in
[ADMc]:

Theorem 2.1. Let T; T 0 be one{one operators of type ! in a dual pair of Hilbert
spaces H; K such that hTu; vi = hu; T 0vi for all u 2 D(T ); v 2 D(T 0) . Then
hHT ;KT 0i is a dual pair of Hilbert spaces under an extension of the same pairing.

Consequently HT � H with jjujj � cjjujjT if and only if K � KT 0 with
jjvjjT 0 � c0jjvjj .

Inequalities of this kind are referred to as quadratic estimates and have long played
a role in harmonic analysis. The main result of the paper [Mc2] is that T has a bounded
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H1 functional calculus if and only if it satis�es quadratic estimates. Here is a precise
statement.

Theorem 2.2. Let T be a one{one operator of type ! in H , and let 0 � ! < � < � .
Then the following statements are equivalent.

(a) HT = H ;

(b) H � HT with jjujjT � cjjujj and K � KT 0 with jjvjjT 0 � cjjvjj ;
(c) f(T ) 2 L(H) and k f(T ) k � c� k f k1 for all f 2 H1(S0�+) .

We remark that (c) holds for one value of � if and only if it holds for any other
value. Thus it is unambiguous to say that an operator T which satis�es (c) has a
bounded H1 functional calculus in H , without specifying the angle � . The next
result is an easy one which is stated for later use.

Proposition 2.3. Let T be a one{one operator of type ! in H , let 0 � ! < � < � ,
and let V be an isomorphism from H to a Hilbert space K . Then S = V TV �1 is
type ! in K and f(S) = V f(T )V �1 for all f 2 F (S0�+) . Moreover, KS = VHT

with k ukT � kV u kS . Hence KS = K if and only if HT = H .

We conclude this section with some comments about self{adjoint and accretive
operators.

An operator T in H is called self{adjoint if T = T � , in which case (Tu; u) 2 R

for all u 2 D(T ) . If in addition, (Tu; u) > 0 for all non{zero u 2 D(T ) , then T
is positive self{adjoint. Such an operator is a one{one operator of type 0 and satis�es
HT = H . Indeed T has a Borel functional calculus with bound 1. In particular,
k f(T ) k � k f k1 for all f 2 H1(S0�+) and all � > 0 .

An operator T in H is called maximal accretive if Re (Tu; u) � 0 and
Re�(T ) � 0 . Such an operator is type �

2
. If, in addition, T is one{one, then

HT = H , and indeed T has a bounded H1 functional calculus with bound 1. That is,
k f(T ) k � k f k1 for all f 2 H1(S0�+) and all � > �

2 . (Actually, a one{one operator
T of type �

2 satis�es k f(T ) k � k f k1 if and only if it is maximal accretive.)

Given ! < �
2 , let us call A a bounded ! -accretive operator on H if A 2 L(H)

and j arg(Au; u)j � ! for all u 2 H . For such an operator, �(A) � S!+ . We shall
often consider bounded invertible ! -accretive operators A , meaning in addition, that
A has a bounded inverse, or, equivalently, that Re (Au; u) � � ku k2 for some � > 0 .

The numerical range of an operator A is f(Au; u) : ku k = 1g . An operator
A 2 L(H) is a bounded invertible ! -accretive operator on H for some ! < �

2 , if
and only if the closure of its numerical range is a compact subset of the open right half
plane.
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x3. A direct approach to quadratic estimates.

Let us present various ways in which quadratic estimates for one operator can be
deduced from quadratic estimates for a related operator. The �rst result, modi�ed for
operators of type S! , is precisely what is needed for the application in Section 9. We
follow it with a strengthened version which is more in the nature of an interpolation
result.

Theorem 3.1. Let S and T be two one{one operators of type ! in H .
(i) Assume that D(T ) � D(S) with kSuk � c kTu k , and D(S�) � D(T �) with
kT �v k � c kS�v k . If H � HT with k ukT � c ku k , then H � HS with ku kS �
c0 ku k .
(ii) Assume that D(T ) = D(S) with kSu k � kTu k , and D(S�) = D(T �) with
kT �v k � kS�v k . If H = HT with ku kT � ku k , then H = HS with ku kS � ku k .

Proof. (i) For ! < � < � , choose  2 	(S0�+) such that
R1
0
 (� )d�

�
= 1 and

 (1);  (2) 2 	(S0�+) also, where  (z) = z (1)(z) and  (2)(z) = z�(z) = z
R1
1
 t(z)

dt
t
.

Note that �r(z) = �(rz) =
R1
r
 t(z)

dt
t

and r d
dr
�r(z) = � r(z) . Since �t(S�) and

�t(T ) converge strongly to I as t! 0 and to 0 as t!1 , the fundamental theorem
of calculus gives

ku k2 = �
Z 1

0

d
dt
(�t(S

�)u ; �t(T )u) dt :

Hence

ku k2 =

Z 1

0

f( t(S�)u; �t(T )u) + (�t(S
�)u;  t(T )u)g dt

t

=

Z 1

0

(tS� (1)t (S�)u ; �t(T )u)dtt +

Z 1

0

(�t(S
�)u ; tT (1)t (T )u) dt

t

�
�Z 1

0




 (1)t (S�)u



2 dtt

� 1

2

�Z 1

0

k tS�t(T )u k2 dtt
� 1

2

+

�Z 1

0

k tT ��t(S�)u k2 dtt
� 1

2

�Z 1

0




 (1)t (T )u



2 dtt

� 1

2

� c

�Z 1

0




 (1)t (S�)u



2 dtt

� 1

2

�Z 1

0




 (2)t (T )u



2 dtt

� 1

2

+ c

�Z 1

0




 (2)t (S�)u



2 dtt

� 1

2

�Z 1

0




 (1)t (T )u



2 dtt

� 1

2

� 2c ku kS� ku kT
� c00 ku kS� ku k (since ku kT � c k uk) :

Therefore ku k � c00 k ukS� and so, by Theorem 2.1, ku kS � c0 ku k .



8 PASCAL AUSCHER, ALAN McINTOSH AND ANDREA NAHMOD

(ii) This follows on applying the above estimate twice, �rst as stated, and then with S
and T replaced by S� and T � . �

Remark. The assumptions on D(T �) and D(S�) can be replaced by assumptions on
R(T ) and R(S) . In fact, R(T ) � R(S) with



S�1u

 � c


T�1u

 if and only if

D(S0) � D(T 0) with kT 0v k � c kS0v k where S0 and T 0 denote duals of S and T
with respect to any duality.

Let us present a second version of the above result which includes these replace-
ments, and is strengthened as well. In this form it becomes an interpolation theorem.
In the next section we shall see that HT is a real interpolation space midway between
DT and RT .

Theorem 3.2. Let S and T be one{one operators of type ! in Hilbert spaces
H and K respectively, and let V be a bounded linear map from K to H . Sup-
pose that VD(T ) � D(S) with kSV u k � c kTu k , and VR(T ) � R(S) with

S�1V u

 � c



T�1u

 . Then VKT � HS with kV u kS � c0 ku kT .

Proof. Let S0 denote the dual of S in some dual Hilbert space K0 . Proceeding as in
the above proof, we obtain

jhv; V uij =

����
Z 1

0

d
dt
h�t(S0)v ; V �t(T )ui dt

���� � : : : � c00 k v kS0 ku kT

for all u 2 H and v 2 K0 . Therefore, by Theorem 2.1,

kV u kS � sup
v 6=0

� jhv; V uij
k v kS0

�
� c0 ku kT : �

Here is a consequence which is useful in practice. See [AMcN].

Corollary 3.3. Let S and T be one{one operators of type ! in Hilbert spaces H
and K respectively, and suppose there exist bounded linear transformations V : K ! H
and W : H ! K such that WV = IK ,

VD(T ) � D(S) with kSV uk � c kTu k ; and

VR(T ) � R(S) with


S�1V u

 � c



T�1u

 ; and

WD(S) � D(T ) with kTWu k � c kSu k ; and

WR(S) � R(T ) with


T�1Wu



 � c


S�1u

 :

If S has a bounded H1 functional calculus in H , then T has a bounded H1 func-
tional calculus in K .
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Proof. By Theorem 2.2, HS = H with equivalence of norms. Combining this with
Theorem 3.2, we �nd that VKT � H with kV u k � c0 ku kT and WH � KT with
kWu kT � c0 ku k . Therefore

KT � K with ku k = kWV uk � kW k kV u k � c0 kW k ku kT and

K � KT with ku kT = kWV u kT � c0 k V u k � c0 kV k ku k :

Thus KT = K . The result follows on again applying Theorem 2.2. �

x4. Quadratic estimates and interpolation theory.

Throughout this section and the next, T denotes a one{one operator of type ! in
a Hilbert space H , where 0 � ! < � . In them we develop the connection between
interpolation theory and quadratic estimates, thus re-deriving and strengthening the
results in Section 3.

For each s 2 R , de�ne the quadratic norm

ku kT;s =

�Z 1

0



 t�s t(T )u

2 dt
t

� 1

2

where  2 	(S0�+) has su�cient decay at 0 and 1 to ensure that the function ��s (�)
of � is also in 	(S0�+) . Let HT;s be the Hilbert space with this norm, formed by
completing the set of all u 2 H for which ku kT;s is �nite. In particular, HT;0 = HT

with ku kT;0 = k ukT . It is straightforward to modify the theory for the case s = 0 to
obtain the following facts.

Theorem 4.1. Let T be a one{one operator of type ! in H and let s 2 R . Then
(i) di�erent choices of � and  give rise to equivalent norms k ukT;s and to the same

space HT;s ;
(ii) f(T ) 2 L(HT;s) for all f 2 H1(S0�+) with k f(T )u kT;s � c�;s k f k1 ku kT;s ;
(iii) if T 0 is dual to T with respect to a dual pair hH; Ki of Hilbert spaces, then

hHT;s; KT 0;�si is a dual pair of Hilbert spaces under the same pairing;
(iv) If S = V TV �1 , where V is an isomorphism from H to another Hilbert space K ,

then KS;s = VHT;s and ku kT;s � k V u kS;s .

We come now to the main result which relates quadratic estimates to interpola-
tion theory. We follow the real interpolation method of Lions and Peetre as presented
in Chapter 3 of Bergh and L�ofstr�om's book [BL] though we abbreviate the symbol
(H ; K)�;2 for the usual real interpolation space to (H ; K)� . Later we shall remark
that these spaces are identical to the complex interpolation spaces [H ; K]� .

Recall that DT is the completion of the domain D(T ) under the norm kTu k
and that RT is the completion of the range R(T ) under



T�1u

 . These spaces are
compatible in the sense that each is continuously embedded in a larger Banach space
X . For example, we could choose X = R (T ) where  (�) = �2(1 + �2)�2 .
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Theorem 4.2. Let T be a one{one operator of type ! in H . Then

HT = (RT ; DT ) 1
2

with equivalence of norms. More generally, if 0 < � < 1 , then HT;2��1 = (RT ;DT )� .

Proof. We prove the �rst statement and leave the generalisation to the reader.

Let u 2 HT � DT+RT . Recall K(t; u) = inf
�

T�1u0 

+ k tTu1 k : u = u0 + u1

	
.

For  with su�cient decay at 0 and 1 , normalised so that
R1
0

 (t) dt
t

= 1 ,

choose u0 =
R pt
0

 � (T )u
d�
�

and u1 =
R1p

t
 � (T )u

d�
�
, where  � (�) =  (��) .

Let  (0)(�) = ��1
R 1
0
 � (�)

d�
�

and  (1)(�) = �
R1
1

 � (�)
d�
�

so that t�1K(t2; u) �


 (0)t (T )u



+ 


 (1)t (T )u




 .
Then, using the K{method of interpolation, u 2 (RT ;DT ) 1

2

with norm

k uk 1

2
;K =

�Z 1

0

t�1K(t; u)2 dt
t

� 1

2

=

�
2

Z 1

0

t�2K(t2; u)2 dt
t

� 1

2

�
�
2

Z 1

0

n


 (0)t (T )u



 +




 (1)t (T )u



o2 dt

t

� 1

2

� c ku kT (since  (0);  (1) 2 	(S0�+)) :

Use of the J{method, together with the equivalence of the two methods, gives
the reverse inequality, as we now show. With respect to the functional J de�ned by
J(t; v) = max

�

T�1v 

 ; t kTv k� , the interpolation space (RT ;DT ) 1
2

has norm

ku k 1

2
;J = inf

(�Z 1

0

t�1J(t; u(t))2 dt
t

� 1

2

: u =

Z 1

0

u(t) dt
t
; u(t) 2 DT \RT

)
:

For a particular decomposition u =
R1
0
u(t) dt

t
with u(t) 2 DT \RT , write u(t) =

 pt(T )w(t) where w(t) = (
p
t T )�1u(t)+

p
t Tu(t) and  (�) = �(1+�2)�1 . Therefore,

applying Schur's lemma,

ku k2T = 1
2

Z 1

0





 p� (T )
Z 1

0

u(t) dt
t






2
d�
�

= 1
2

Z 1

0






Z 1

0

 p� (T ) pt(T )w(t)
dt
t






2
d�
�

� 1
2 sup

t

�Z 1

0



 ( p� pt)(T ) 

 d�
�

�
sup
�

�Z 1

0



 ( p� pt)(T ) 

 dt
t

�Z 1

0

kw(t) k2 dt
t

� c

Z 1

0

t�1J(t; u(t))2 dt
t
:
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The integral bounds on ( p� pt)(T ) are obtained by contour integrals as in Lemma
E of [ADMc].

On taking the in�mumover all decompositions of u , we conclude that (RT ; DT ) 1
2

�
HT with

ku kT � c ku k1

2
;J : �

Remark. An adaptation of this proof leads to the identities

HT;� = (H; DT )� and HT;�� = (H; RT )�

when 0 < � < 1 . These characterisations of HT;� and HT;�� as interpolation
spaces are due to Komatsu [Kom1, Kom2, Kom3]. In the case when ! < �

2
, such

characterisations were also obtained by Berens and Butzer [BB1] and by Grisvard [G1].
See also Sections 3.5 and 3.6.5 of [BB2]. In these papers, speci�c quadratic functionals
are used. Our more general approach to quadratic estimates allow us to simplify the
exposition and to interpolate between RT and DT .

The signi�cance of Theorem 4.2 is that it provides a method for determiningwhether
T has a bounded H1 functional calculus. Indeed this is equivalent to H being interpo-
lated midway between RT and DT . For both statements are equivalent to HT = H .

Remark. The authors mentioned above all consider real interpolation in Banach spaces
as well as in Hilbert spaces. We do not do so here, because in Banach spaces the property
of T having a bounded H1 functional calculus is related to complex rather than to
real interpolation. Some results along these lines are contained in [CDMcY] and in [Y2].

As an initial application, we present an alternative proof of Theorem 3.2 and hence
of Theorem 3.1.

Proof of Theorem 3.2. By assumption, V 2 L(DT ;DS) and V 2 L(RT ;RS ) , and so,
by interpolation, V 2 L(HT ;HS) . �

x5. Fractional powers of operators.

Our aim now is to give a fuller version of Theorem 4.2 involving fractional powers of
T . For each � 2 C , the powers T� are de�ned by T� = f�(T ) , where f�(�) = �� .
These are one{one closed operators on H with dense domain D(T�) in H . Properties
to be expected of powers follow from the identities for a functional calculus. This
de�nition is consistent with those employed by other authors.

Proposition 5.1. For all � 2 C , T� is an isomorphism from HT;Re� to HT with
kT�ukT � k ukT;Re� . If HT = H , then DT;� = HT;Re� .
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Proof. For  with su�cient decay at 0 and 1 ,

kT�u kT =

�Z 1

0



 (tT )�� t(T )T�u

2 dtt
� 1

2

=

�Z 1

0



 t�� t(T )u

2 dt
t

� 1

2

= k ukT;Re� :

The �nal statement follows from the estimates kT�u k � k T�u kT � ku kT;Re� . �

The �rst part of the following result is well known [K1], [T].

Proposition 5.2. If 0 < � < �
!
, then T� is a one{one operator of type �! , and

HT� = HT . More generally, if s 2 R , then HT�;s = HT;�s .

Proof. Suppose � > ! and � =2 S��+ . Then

(T� � �I)�1 = ��1
n
� j�j 1� (T + j�j 1� )�1 +  (�)(T )

o
where

 (�)(�) = �(�� � �)�1 + j�j 1� (� + j�j 1� )�1 = (�� + j�j 1� ��)(�� � �)�1(� + j�j 1� )�1 :
On expressing  (�)(T ) as a contour integral as described in Section 2, we have



 (�)(T ) 

 =
1

2�






Z
�

(T � �I)�1 (�)(�) d�




 � c

Z
�

�� (�)(�)�� jd�jj�j � c

where the constant c is independent of � when jarg(�)j � �� . (Prove this �rst for
j�j = 1 , and then use the scale invariance  (s��)(s�) =  (�)(�) , s > 0 , to handle other
values of � .) Therefore 

 (T� � �I)�1



 � c� j�j�1 :

That T� is one{one, we leave to the reader.

Given  2 	(S0�+) , then  (�)(�) =  (��) 2 	(S0��+) provided �� < � , so we
can take

k ukT� =

�Z 1

0

k t(T�)u k2 dt
t

� 1

2

=
p
�

�Z 1

0




 (�)� (T )u



2 d�

�

� 1

2

=
p
� ku kT

where we set t = �� . Thus HT� = HT . �

In the following material we write DT;s in place of DTs for notational convenience.
That is, the Hilbert space DT;s is the completion of the domain D(T s) of the power T s

under the norm kT su k . In particular, DT;1 = DT under the norm kTu k , DT;0 = H ,
while DT;�1 = RT under



T�1u

 .
We are now ready for the main result of this section. As before, each pair of spaces

considered is compatible.
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Theorem 5.3. Let T be a one{one operator of type ! in H . Let s; t 2 R ; s 6=
t ; 0 < � < 1 . Then

HT;s+�(t�s) = (DT;s ; DT;t)�
with equivalence of norms. In particular, HT;� = (H;DT )� and HT;�� = (H;RT )�
and HT;2��1 = (RT ;DT )� and HT;0 = (RT ;DT ) 1

2

. Moreover,

HT;s+�(t�s) = (DT;s ; HT;t)� = (HT;s ; DT;t)� = (HT;s ; HT;t)� :

Proof. Proceed as before. The �nal statement is a consequence of the reiteration theo-
rem. For example, on choosing � > t and 
 = (t � s)(� � s)�1 , we have

(DT;s ; HT;t)� =
�
DT;s ; (DT;s ; DT;� )


�
�

= (DT;s ; DT;� )�
 = HT;s+�(t�s) : �

On combining this interpolation result with Proposition 5.1, we obtain the following
fact.

Theorem 5.4. Let T be a one{one operator of type ! for which HT = H . Then
the spaces DT;s interpolate by the real method.

We shall see in a moment that these spaces also interpolate by the complex method.
This result dates back to the early days of interpolation theory in the particular case
when T is positive self{adjoint. In the case when T is maximal accretive, it was �rst
proved by Lions [L]. For general operators of type ! satisfying HT = H , see [Y1, Mc2].
The result follows from the boundedness of the imaginary powers T is , s 2 R (which is
a particular case of T having a bounded H1 functional calculus) and the three lines
theorem.

Another consequence of Theorem 5.3 is the following result of Yagi [Y1]. Recall
that T � denotes the adjoint of T using the given inner product on H .

Corollary 5.5. (i) Suppose there exists s > 0 such that kT �suk � c kT su k for all
u 2 H . Then HT � H � HT� and ku kT� � c1 ku k � c2 ku kT for all u . Suppose

further that there exists t > 0 such that kT tu k � c


T �tu

 . Then HT = H .

(ii) Suppose (H ; DT )s = (H ; DT�)s for some s > 0 . Then HT = H .

Proof. (i) By completion of the appropriate spaces, we have DT;s � DT�;s , and, by
duality, DT;�s � DT� ;�s . Therefore, by interpolation, HT � HT� and ku kT� �
c3 ku kT , from which it follows that ku k2 = hu; ui � c4 ku kT ku kT� � c3c4(k u kT )2
and hence, by Theorem 2.1, that ku kT� � c1 k uk .
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(ii) By Theorem 4.2, HT;s = HT�;s , and, by duality, HT;�s = HT�;�s . Therefore,
applying Theorem 5.3, HT = HT� . Now proceed as before to conclude that HT =
H . �

Yagi used this result to show that, if L is an m 'th order elliptic operator with
smooth coe�cients on a smooth domain 
 , such that T � I = L + �I is type ! in
H = L2(
) for some positive � , when de�ned using appropriate smooth boundary
conditions, then HT = H . For then (H ; DT )s and (H ; DT�)s are both precisely
the Sobolev space Hsm(
) when 0 < s < 1

2m
, as was shown previously by Grisvard

[G2].

x6. Real and complex interpolation of Hilbert spaces.

It is time to observe that the real interpolation spaces of Theorem 5.3 are equal to
the corresponding complex interpolation spaces. Indeed there is always an equivalence
between real and complex interpolation for pairs of Hilbert spaces whose intersection is
dense in each of them. This is a special case of a result of Peetre [P].

As Peetre's aims are much more general, it may be worth presenting a direct proof
of this fact. The result is well known when one space is densely embedded in the other.
See e.g. pp141{143 of [Tr].

Here and elsewhere [H; K]s denotes the usual complex interpolation space.

Theorem 6.1. Suppose that H and K are two compatible Hilbert spaces with inter-
section H \K dense in H and dense in K . Then

[H; K]s = (H;K)s ; 0 < s < 1 :

Proof. Let V = H\K . There exists a positive self{adjoint operator S with domain V
in the Hilbert space H such that jjujjK = jjSujjH for all u 2 K , and thus K = DS .
Therefore, by the known results for self{adjoint operators,

[H; K]s = [H; DS ]s = DS;s = (H; DS)s = (H; K)s :

The existence of such an operator S can be seen as follows. The positive sesquilin-
ear form J [u; v] = (u; v)K with domain V�V in the Hilbert space H is closed, meaning
that V is complete under the norm J [u; u] + (u; u)H . Therefore the operator L asso-
ciated with J is a positive self{adjoint operator [K]. Now let S be the positive square
root of L . Then D(S) = V and J [u; v] = (Su; Sv) for all u; v 2 V as claimed. �

As a consequence of this result, the interpolation spaces in all the preceding results
can be taken as complex interpolation spaces.
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x7. Special classes of operators.

Aside from maximal accretive operators, the operators of type ! which are most
commonly encountered are multiplicative perturbations AS or SA of positive self{
adjoint operators S by bounded invertible ! -accretive operators A . The important
thing to note is that they do not necessarily have bounded H1 functional calculi [McY].
In other words, there exist such operators S and A for which HAS 6= H .

In practice, a lot of work can be involved in proving the quadratic estimates required
to obtain HT = H for speci�c operators.

Here are some results which are automatically satis�ed by operators AS and SA ,
starting with the known fact [Mc2] that they are of type ! .

Proposition 7.1. Let T = AS and T = SA , where S is a positive self{adjoint
operator in H , and A is a bounded invertible ! -accretive operator on H . Then T
and T are one{one operators of type ! . Here D(T ) = D(S) and D(T ) = A�1D(S) .

Proof. For � =2 S!+ and u 2 D(T ) we have

A�1 

 k (T � �I)uk ku k � j(A�1(T � �I)u; u)j = j(Su; u)� �(A�1u; u)j

= j(A�1u; u)j
���� (Su; u)

(A�1u; u)
� �

���� � j(A�1u; u)j dist(�; S!+)

because (Su; u) > 0 and (A�1u; u) 2 S!+ . Hence, for some constant c ,

c k (T � �I)u k � dist(�; S!+) ku k
so that (T � �I) is one{one with closed range.

The dual of (T � �I) with respect to the pairing (u; v)A = (A�1u; v) of H with
itself, is (T 0 � �I) where T 0 = A�S . Since T 0 has the same form as T , we also have

c


 (T 0 � �I)u



 � dist(�; S!+) k uk :

Thus R(T � �I) = H . It follows that � 2 �(T ) and



 (T � �I)�1


 � c

dist(�; S!+)
:

Therefore T is type ! .

The result for T is obtained by taking adjoints (using the given inner product),
with A� in place of A . �

Remark. If the condition on S is relaxed to the statement that S is a one{one
maximal accretive operator with numerical range in S�+ where � < � � ! , then T



16 PASCAL AUSCHER, ALAN McINTOSH AND ANDREA NAHMOD

and T are one{one operators of type ! + � . This is proved in a similar way by �rst
obtaining the estimate 

 (T � �I)�1



 � c

dist(�; S(!+�)+)

for all � =2 S(!+�)+ . There is a similar estimate for the resolvent of T .

We know that HS = H , so that HS;s = DS;s for all s 2 R . Let us determine the
interpolation spaces for T in terms of these spaces when we can.

Theorem 7.2. Let T = AS where S is a positive self{adjoint operator in H , and A
is a bounded invertible ! -accretive operator on H . If 0 < s < 1 , then HT;s = DS;s
with ku kT;s � kSsuk , while, if �1 < s < 0 , then HT;s = ADS;s with ku kT;s �

SsA�1u

 .

Moreover, if T = SA and if 0 < s < 1 , then HT;s = A�1DS;s with ku kT;s �
kSsAu k , while, if �1 < s < 0 , then HT;s = DS;s with ku kT;s � kSsu k .

Proof. Since DT = DS , interpolation gives HT;s = HS;s = DS;s when 0 < s < 1 .
Moreover, RT = ARS and clearly H = AH so, interpolating again, HT;s = AHS;s =
ADS;s when �1 < s < 0 . The proof for T is similar. �

This theorem informs us what HT;s is, for every value of s 2 (�1; 1) except for the
most important value s = 0 . Note that DS;0 = H = ADS;0 . Nevertheless, as noted
above, there exist operators S and A for which HT;0 = HT 6= H .

Remark. In the case when A is a bounded positive self{adjoint operator (i.e. ! =
0 ) then HT = H because T is itself self{adjoint with respect to the inner product
(u; v)A = (A�1u; v) on H .

We conclude this section by stating an important result which depends on the
understanding of interpolation provided by Theorem 5.3. See [AMcN] and [McN] for
applications.

Theorem 7.3. Let T = AS where S is a positive self{adjoint operator in H , and A
is a bounded invertible ! -accretive operator on H , and let r > 0 . De�ne Tr = ASr .
Then Tr is a one{one operator of type ! and HTr = HT . Similarly, if T = SA and
T r = SrA , then HT

r

= HT .

Proof. By Proposition 7.1, Tr is a one{one operator of type ! . Choose a positive
number s so that s < 1 and rs < 1 . Then HTr;s = DSr;s = DS;rs = HT;rs . Also
HTr;�s = ADSr ;�s = ADS;�rs = HT;�rs . Therefore

HTr = [HTr;s ; HTr;�s] 1
2

= [HT;rs ; HT;�rs] 1
2

= HT : �
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x8. Operators of type S! .

There is a straightforward generalisation of the theory of operators of type ! to
operators with spectrum in the union of two sectors. Let us review this, and record
some analogues of the preceding theory in this case.

For 0 � ! < � < �
2
, de�ne S!� = �S!+ and S0�� = �S0�+ . Then de�ne the

closed and open double sectors S! = S!�[S!+ and S0� = S0��[S0�+ , and the function
spaces

	(S0�) � H1(S0�) � F (S0�) � H(S0�)

on them.

Let 0 � ! < �
2
. An operator T in H is said to be of type S! if �(T ) � S! and,

for each � > ! , 

 (T � �I)�1


 � C�j�j�1 ; � 62 S� :

The results of Sections 2 and 3 generalise directly to the case when T is a one{one
operator of type S! , with the following modi�cations.
(i) The functions  used to de�ne the norms ku kT are not identically zero on either

sector.
(ii) The unbounded contour � used in the formula  (T ) = 1

2�i

R
�
(T � �I)�1 (�) d�

when  2 	(S0�+) , consists of four rays from the origin in S0� which enclose S! .
(iii) The only powers of T which we consider are integer powers.

We shall not write out the results in detail, though we draw attention to the fact
that, if � > ! , then k f(T )u kT � c� k f k1 ku kT for all f 2 H1(S0�) . As before, T
has a bounded H1 functional calculus if and only if HT = H . In such a case it follows
that k sgn(T )u k � c ku k where sgn is the holomorphic function on S0� de�ned by

sgn(z) = 1 when z 2 S0�+ and sgn(z) = �1 when z 2 S0�� .

Also de�ne jT j� = (T 2)
1

2 . (Note that jT j� is not equal to the operator jT j used
in the polar decomposition of operators except when T is self{adjoint.)

Proposition 8.1. Let T be a one{one operator of type S! in H . Then T 2 is type
2! and jT j� is type ! . Moreover, HjT j

�

= HT2 = HT .

Proof. For � > ! and � =2 S2�+ , then �p� =2 S� , so (T 2 � �I)�1 = (T � p
�I)�1

(T +
p
�I)�1 2 L(H) and



 (T 2 � �I)�1


 � c�

2 j�j�1 . Therefore T 2 is type 2! , and
by Proposition 5.2, jT j� is type ! .

The identity HjT j
�

= HT2 follows from Proposition 5.2, while HT2 = HT is proved
in a similar way. �

Let us draw attention to the fact that such proofs repeatedly use the equivalence of
the norms ku kT de�ned with di�erent choices of  .
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An important consequence of our theory is provided by the following result. It is
applied in Theorem 9.1, and also in the paper [AMcN].

Theorem 8.2. Suppose that T is a one{one operator of type S! in H with the
property that HT = H . Then D(jT j�) = D(T ) with k jT j� u k � k Tuk .

Proof. A consequence of the assumption that HT = H is the fact that sgn(T ) 2 L(H) .
The result then follows from the identities jT j� = sgn(T )T and T = sgn(T ) jT j� . �

The interpolation results of Sections 4 and 5 can also be adapted to the case when
T is a one{one operator of type S! . In this case we de�ne the spaces HT;s for all
values of s 2 R , but only consider the powers T s when s is an integer. Note that if
� > ! and s 2 R , then k f(T )u kT;s � c�;s k f k1 ku kT;s for all f 2 H1(S0�) .

Theorem 5.3 remains true for those values of s and t for which it makes sense.
Moreover HT;s+�(t�s) =

�DjT j�;s ; DjT j�;t�� .
Here are the analogues to Proposition 7.1 and Theorem 7.2, obtained by dropping

the positivity assumption on S .

Theorem 8.3. Let T = AS and T = SA , where S is a one{one self{adjoint operator
in H and A is a bounded invertible ! -accretive operator on H . Then T and T are
one{one operators of type S! . Here D(T ) = D(S) and D(T ) = A�1D(S) .

If 0 < s < 1 , then HT;s = DjSj;s with ku kT;s � k jSjs u k , while, if �1 < s < 0 ,

then HT;s = ADjSj;s with ku kT;s �


 jSjsA�1u

 .

Moreover, if 0 < s < 1 , then HT;s = A�1DS;s with ku kT;s � k jSjsAu k , while,
if �1 < s < 0 , then HT;s = DjSj;s with ku kT;s � k jSjs uk .

Let us also state a variant of Proposition 8.3 for use in [AMcN].

Proposition 8.4. Let T = AS where A and S have the properties speci�ed in
Proposition 8.3, let B 2 L(H) , and let � > ! . Denote inf

� ��(A�1u; u)�� : ku k = 1
	
=

� > 0 . If � =2 S� and j�j � 2
�



A�1B 

 cosec(��!) , then (T +B� �I) has an inverse
in L(H) and



 (T +B � �I)�1


 � 2��1



A�1 

 cosec(� � !) j�j�1 :

The same result holds with T = SA replacing T provided the condition on � =2 S� is
replaced by j�j � 2

�



BA�1 

 cosec(� � !) .
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Proof. For � =2 S� and u 2 D(T ) , then

kA�1 k k (T +B � �I)u k k uk � j(A�1(T +B � �I)u; u)j
� j�j sin(� � !)

��(A�1u; u)�� � 

A�1B 

 ku k2
� 1

2
� j�j sin(� � !) ku k2

provided


A�1B 

 � 1

2
� j�j sin(� � !) . Now proceed as in the proof of Proposition

7.1. �

We conclude with a result similar to Theorem 7.3.

Theorem 8.5. Let S be a one{one self{adjoint operator in H , and A a bounded
invertible ! -accretive operator on H . Then HAS2 = HAS and HS2A = HSA .

Proof. Let T = AS and T2 = AS2 Choose a number s such that 0 < s < 1

2
. Then

HT2;s = DjSj2;s = DjSj;2s = HT;2s . Also HT2;�s = ADjSj2;�s = ADjSj;�2s = HT;�2s .
Therefore

HT2 = [HT2;s ; HT2;�s] 1
2

= [HT;2s ; HT;�2s] 1
2

= HT

as required. �

x9. First order systems and square roots of second order di�erential opera-

tors in L2(R) .

Here is the result which stimulated the current investigation.

In this section 0 � ! < �=2 , and a and b denote bounded ! -accretive func-
tions on R with bounded reciprocals, meaning that a; b; 1

a
; 1
b
2 L1(R; C ) and

j arg aj; j arg bj � ! . The operator of multiplication by b is a bounded invertible
! -accretive operator on H = L2(R) , as is multiplication by a .

First consider the operator �ib d
dx

in H = L2(R) with domain D(�ib d
dx
) =

H1(R) = fu 2 L2(R) : du
dx

2 L2(R) g where the derivative is in the weak or dis-

tributional sense. The operator �i d
dx

with domain H1(R) is a one{one self{adjoint

operator. Thus, by Proposition 8.3, �ib d
dx

is a one{one operator of type S! in H .

For this operator it is well known that H�ib d
dx

= L2(R) . This is the same as

having quadratic estimates for D
 = �i d
dz

in L2(
) , where the Lipschitz curve 
 in

C is parametrised by z = g(x) and dg
dx

= 1
b
. These results are intimately connected

with the L2 boundedness of the Cauchy integral C
 on L2(
) which was �rst proved
by Calder�on [C] when Re g(x) = x and k Im b k1 is small, and by Coifman, McIntosh
and Meyer [CMcM] in the general case. There are now many proofs of this fact. See
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[McQ] for a treatment of the connections between such estimates and the holomorphic
functional calculus of D
 . There is also some discussion of this in [ADMc].

Second, consider S = �ia d
dx
��ib d

dx
in K = L2(R)�L2(R) . There is no essential

change, and so we �nd that KS = K .

Third, consider

T =

�
0 �ia d

dx

�ib d
dx

0

�
=

�
a 0
0 b

� �
0 �i d

dx

�i d
dx

0

�
= BD :

Now B =

�
a 0
0 b

�
is a bounded invertible ! -accretive operator on K , while

D =

�
0 �i d

dx

�i d
dx

0

�
is a one{one self{adjoint operator. So, by Proposition 8.3, T

is a one{one operator of type S! . Clearly D(T ) = D(S) with kTu k � kSu k and
R(T ) = R(S) with



T�1u

 � 

S�1u

 , where S is de�ned in the previous para-
graph. Therefore, by the analogue of Theorem 3.1 for operators of type S! , KT = K .

The application that we have in mind is the following result of Kenig and Meyer
[KM].

Theorem 9.1. Suppose that a and b are functions with the properties given above,
and let L denote the operator in H de�ned by Lu = �a d

dx
(bdu
dx
) with domain D(L) =

fu 2 H1(R) : bdu
dx
2 H1(R)g . Then L is one{one of type 2! in L2(R) , its square root

L
1

2 has domain D(L 1

2 ) = H1(R) , and



L 1

2u




2
� 

 du

dx




2
for all u 2 H1(R) .

Proof. By Proposition 8.1, T 2 =

��a d
dx
b d
dx

0

0 �b d
dx
a d
dx

�
is type 2! in K and

jT j� = (T 2)
1

2 =

�
(�a d

dx
b d
dx
)
1

2 0

0 (�b d
dx
a d
dx
)
1

2

�
:

Applying Theorem 8.2 and the fact that KT = K , it follows that D(jT j�) = D(T ) and
k jT j� u k � kTu k for all u 2 D(T ) .

Therefore �a d
dx
b d
dx

is type 2! in L2(R) , and



 (�a d

dx
b d
dx
)
1

2u



 � 

 du

dx



 (and of

course



 (�b ddxa d

dx
)
1

2 u



 � 

 du

dx



 as well). �

The fact that this result can be deduced from the same quadratic estimates as those
already known for �ib d

dx
, was �rst proved by Pipher using direct arguments involving

integration by parts. Her work led us to state and prove Theorem 3.1, the key idea of
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which is the �rst expression for ku k2 , which is a reformulation of her more explicit
formula.

We remark that the interpolation spaces for the operator T are KT;s = _Hs(R)�
_Hs(R) when 0 < s < 1 , and KT;s = a _Hs(R) � b _Hs(R) when �1 < s < 0 . Here
_Hs(R) denotes the homogeneous Sobolev space. This is a consequence of Theorem 8.3
and does not depend on quadratic estimates for �ib d

dx
. These are only needed for the

key case s = 0 .

Let us record a related result of independent interest. It is a consequence of the
fact that KT2 = KT = K and the diagonal nature of T 2 .

Theorem 9.2. The operator L = �a d
dx
b d
dx

de�ned in Theorem 9.1 satis�es HL = H .
Thus L has a bounded H1 functional calculus in L2(R) .

For a more comprehensive treatment of these topics, see [AMcN].

x10. Remarks about sesquilinear forms and square roots.

Let J be the sesquilinear form in H given by

J [u; v] = (ASu;Sv) ; u; v 2 V = D(S)

where S is a positive self{adjoint operator in H , and A is a bounded invertible ! -
accretive operator on H for some ! < �=2 . Then J is a regularly accretive form
in H , and the operator associated with it, namely L = SAS , is a maximal accretive
operator of type ! [K]. (The operator associated with a sesquilinear form J on V �V
is the operator L in H with largest domain D(L) � V which satis�es (Lu; v) = J [u; v]
for all u 2 D(L) and all v 2 V .)

Actually every regularly accretive form can be represented in this way, provided
J [u; u] 6= 0 when u 6= 0 .

It is a consequence of the fact of L being maximal accretive, that HL = H , and
that DL; 1

2

= HL; 1
2

= [H;DL] 1
2

with equivalence of norms.

The operator T = AS is type ! , as was shown in Proposition 7.1. We indicate
now how quadratic estimates for T are related to the square root problem for J .

The square root problem for a particular regularly accretive form J is the problem
of determining whether D(L 1

2 ) = V with either the equivalence kL 1

2u k + k uk �
kSuk+ku k or the stronger equivalence kL 1

2 u k � kSuk . This question was originally
posed by Kato for all forms [K2], though an example of a form for which it does not
hold was subsequently presented in [Mc1].
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Theorem 10.1. Suppose that J; S;A;L and T have the properties speci�ed above.
Then DL; 1

2

= HT;1 with kL 1

2 uk � ku kT;1 � kTu kT . Consequently the following

statements are equivalent.
(i) V � D(L 1

2 ) with kL 1

2 uk � c1 kSuk
(ii) HS;1 = DS � HT;1 with ku kT;1 � c2 kSuk
(iii) H � HT with ku kT � c3 ku k
(iv) HT� � H with ku k � c4 ku kT�

(v) D(L� 12 ) � V with kSuk � c5kL� 12u k where L� = SA�S .
The relationship of the constants to each other depends only on ! and kA k kA�1 k .

It follows that D(L 1

2 ) = V with kL 1

2 u k � kSu k if and only if T has a bounded
H1 functional calculus in H .

Proof. The operator T 2 is type 2! and DT2 = DL , so D
L
1

2

= [H;DL] 1
2

=

[H;DT2 ] 1
2

= HT;1 . The other statements follow. �

The fact that V � D(L 1

2 ) if and only if D(L� 12 ) � V is due to Lions [L] and Kato

[K3]. These statements are also equivalent to D(L� 12 ) � D(L 1

2 ) .

For example, if S is the operator S = �i d
dx

acting in H = L2(R) with D(S) =
V = H1(R) and b is a bounded ! -accretive function on R with Re b � � > 0 as
in Section 9, then we re-derive the known equivalence of �ib d

dx
having a bounded

H1 functional calculus with the square root problem for the second order operator
L = � d

dx
b d
dx

.

An interesting corollary of this theorem and Theorem 7.3 is the following result. It
provides a way to derive estimates for the square root of one operator from those of a
related operator. See [AT] for an application.

Theorem 10.2. Suppose that J; S;A;L and T have the properties speci�ed above
and let r > 0 . De�ne the related regularly accretive form Jr by Jr[u; v] =
(ASru; Srv) ; u; v 2 Vr = D(Sr) . Its associated operator is Lr = SrASr . Then

V � D(L 1

2 ) with jjL 1

2ujj � cjjSujj if and only if Vr � D(Lr 1

2 ) with jjLr 1

2ujj �
c0jjSrujj .

Proof. Both statements are equivalent to the statement that HASr = H with
ku kASr � ku k . �

x11. Some perturbation results.

In this section we show that if an operator satis�es quadratic estimates, then so do
certain related operators. These results are all useful in applications. See [AMcN].
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Proposition 11.1. Let T be a one{one operator of type ! in H , and let � > 0 .
Then T + �I is type ! with ku kT+�I � cf ku kT + ku k g . Moreover, if HT = H ,
then HT+�I = H .

Proof. It is easy to see that T + �I is type ! . Let us use  (�) = �(� + 1)�2 in the
de�nition of ku kT and ku kT+�I , so that

ku kT+�I =

�Z 1

0

k t(T + �I)u k2 dt
t

� 1

2

=

�Z 1

0



 t(T + �I)(tT + t�I + I)�2u


2 dt

t

� 1

2

�
�Z 1

0



 f2(T )tT (tT + I)�2u


2 dt

t

� 1

2

+ c

�Z 1

0

ku k2 ((t�)(t� + 1)�2)2 dt
t

� 1

2

� cf ku kT + ku k g

where f(�) = t�+1
t�+t�+1 , because

k f(T ) k = 

 (tT + I)(tT + t�I + I)�1


 = 

 I � t�(tT + t�I + I)�1



 � c :

If HT = H , then H � HT+�I with k u kT+�I � c ku k . Further, HT� = H , so
H � HT�+�I with k u kT�+�I � c ku k . Therefore, by Theorem 2.1, HT+�I = H . �

Here are other ways to obtain quadratic estimates for one operator from those for
a related operator.

Proposition 11.2. Let T = SA and T1 = (S+I)A , where S is a positive self{adjoint
operator and A is a bounded invertible ! -accretive operator on H . If HT = H with
ku kT � ku k then HT1 = H with ku kT1 � ku k .

Proof. First note that, if u 2 D(T ) , then
kTu k + ku k =



 (I � (T + I)�1)(T + I)u


 + ku k � c k (T + I)u k :

So D(T + I) = D(T1) with

k (T + I)u k � kTu k+ ku k � kSAu k+ kAu k � kT1u k :

Similarly, D((T + I)�) = D(T �1 ) with k (T + I)�u k � kT �1 u k .
Recall from Proposition 11.1 that HT+I = H with ku kT+I � ku k . Therefore,

by Theorem 3.1, HT1 = H with ku kT1 � ku k . �
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Lemma 11.3. Let S be a one{one self{adjoint operator in H , and let A be a bounded
invertible ! -accretive operator on H . Suppose that HSA = H with ku kSA � ku k .
Then HSA� = H with ku kSA� � ku k .

Proof. Apply the analogue of Proposition 2.3 for operators of type S! to see that
HAS = H , and then the analogue of Theorem 2.1 to obtain the result. �

Theorem 11.4. Let S be a self{adjoint operator in H such that kSuk � ku k for
all u 2 D(S) , and let A be a bounded invertible ! -accretive operator on H . Suppose
that HSA = H with ku kSA � ku k . If U is another bounded invertible ! -accretive
operator on H , such that U = A+X+Y where X; Y; SX and SY � are all bounded
on H , then HSU = H with ku kSU � k uk .

Proof. (i) First consider the special case when Y = 0 . Then

kSUu k � kSUuk+ ku k � kSAu k+ k uk � kSAu k

and

k (SU)�v k � kSv k � k (SA)�v k

so, by the analogue of Theorem 3.1, HSU = H with ku kSU � ku k .

(ii) Next consider the special case when X = 0 . By Lemma 11.3, HSA� = H .
Now apply part (i) to U� = A� + Y � to obtain HSU� = H . Apply Lemma 11.3 again
to conclude that HSU = H .

(iii) Let us now consider the general case. Let C be the closed convex hull of the
numerical ranges of A and U , and choose an integer n large enough that Cn = fz+� :
z 2 C; j�j � kX k

n
g is also a compact subset of the open right half plane. Let

Uk = A+ k
n
X + k

n
Y = n�k

n
A+ k

n
U ; 0 � k � n ; and

Vk = A+ k+1
n
X + k

n
Y = Uk +

1
n
X ; 0 � k � n� 1 :

The numerical range of each operator Uk is a subset of C , and so the numerical range
of each operator Vk is a subset of Cn . Thus they are all bounded invertible � -accretive
operators for some � < �

2 .

Therefore parts (i) and (ii) can be applied repeatedly with X and Y replaced by
1
n
X and 1

n
Y respectively. First, by (i), we �nd that HSV0 = H , then by (ii) we get

HSU1 = H , and again using (i) we get HSV1 = H . Proceeding in this way, we conclude
that HSU = HSUn = H . (The reason for not taking just two steps, is that A + X
might not be accretive.) �
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