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Dedicated to the memory of T. Kato

Abstract

We prove the Kato conjecture for elliptic operators and N × N -
systems in divergence form of arbitrary order 2m on Rn. More pre-
cisely, we assume the coefficients to be bounded measurable and the
ellipticity is taken in the sense of a G̊arding inequality. We iden-
tify the domain of their square roots as the natural Sobolev space
Hm(Rn,CN ). We also make some remarks on the relation between
various ellipticity conditions and G̊arding inequality.

1 Introduction, statement of the main results

and strategy

In [2] the Kato conjecture for scalar second order operators on Rn is estab-
lished. We refer to this reference for an historical account on this conjecture.
The main purpose of this paper is to complete the whole program on Rn,
n ≥ 1, and to prove the Kato conjecture for elliptic systems of any order of
the form

(Lf)i =
∑

|α|,|β|≤m
1≤j≤N

(−1)|α|∂α(aijαβ∂
βfj), 1 ≤ i ≤ N,(1.1)

where N,m ∈ N∗, f = (f1, . . . , fN) and the coefficients aijαβ are complex-
valued L∞ functions on Rn. The ellipticity is in the sense of a G̊arding
inequality. In the sequel, we write (1.1) in a vector form by introducing
the N × N -matrix valued coefficient aαβ = (aijαβ). We use the terminology
“operator” for L and, sometimes, we write “scalar operator” to stress the
case N = 1. We use the standard notations of differential calculus in Rn:
multiindices, partials...

Consider first the homogeneous case. Then L has a representation of the
form

Lf = (−1)m
∑

|α|=|β|=m

∂α(aαβ∂
βf),(1.2)

∗supported by NSF
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and we assume

(1.3)

∣∣∣∣∣∣
∑

|α|=|β|=m

∫
Rn

aαβ(x)∂βf(x)∂αḡ(x) dx

∣∣∣∣∣∣ ≤ Λ‖∇mf‖2‖∇mg‖2

and the G̊arding inequality

(1.4) Re
∑

|α|=|β|=m

∫
Rn

aαβ(x)∂βf(x)∂αf̄(x) dx ≥ λ‖∇mf‖2
2.

for some λ > 0 and Λ < +∞ independent of f, g ∈ Hm(Rn,CN). Here,

∇mf = (∂αf)|α|=m and ‖∇mf‖2 =
(∑

|α|=m
∫
Rn
|∂αf |2

)1/2
. We remark that

the ellipticity constants, that is the largest λ and smallest Λ for which the
above inequalities hold, are uniquely determined given a sesquilinear form as
in (1.3), but the representation (1.2) is not unique. The inequality (1.4) is
the strict G̊arding inequality. The operator L is defined from Hm(Rn,CN)
into H−m(Rn,CN). Defining D(L) as the space of f ∈ Hm(Rn,CN) such
that Lf ∈ L2(Rn,CN), the restriction of L to D(L) can be shown to be a
maximal-accretive operator andD(L) is dense in Hm(Rn,CN) [13]. By abuse,
we do not distinguish in the notation L from its restriction. By holomorphic
functional calculus, L has a unique maximal-accretive square root,

√
L, and

the identification of its domain is known as the Kato conjecture.

Theorem 1.5. Under the above hypotheses, the square root of L has domain
equal to the Sobolev space Hm(Rn,CN) and we have

(1.6) ‖
√
Lf‖2 ∼ ‖∇mf‖2

with constants depending only on n, m, N , λ and Λ.

Here, A ∼ B means a two-sided inequality CA ≤ B ≤ C ′A.
The main result in [2] is for scalar second order operators. We note that

for self-adjoint operators with bounded coefficients, (1.4) is equivalent to
(1.6), so that there is nothing to prove. For non self-adjoint operators, the
strict G̊arding inequality gives a lower bound on the self-adjoint part of the
form associated to L and there is no control on the skew-adjoint part besides
an upper bound; the gap from (1.4) to (1.6) explains in part the depth of
Kato’s conjecture. Another remark is that this conjecture cannot be solved
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by purely abstract methods as the counterexample in [14] shows (see [6],
Preliminaries, for a short proof).

Let us mention an immediate corollary obtained by interpolation and
straightforward functional calculus.

Corollary 1.7. For all s ∈ [0,m],

‖
√
Lf‖Ḣs−m(Rn,CN ) ∼ ‖f‖Ḣs(Rn,CN ).

Here, Ḣs(Rn,CN) denotes the homogeneous Sobolev space of order s.

We stress that the novelty is in the endpoints s = 0 and s = m as the
cases 0 < s < m were known before from Kato’s work [13]. Note also that
the constants of the equivalence do not blow up when s → 0 or m, which
cannot be obtained from abstract methods.

Our argument for Theorem 1.5 contains two parts (Section 2). In the first
part we assume that the semigroup kernel of L satisfies a pointwise upper
bound: we then follow [6] in reducing matters to establishing a Carleson mea-
sure estimate and next proceed as in [12] or [2] through a “T(b)” argument.
In a second part, as it is always enjoyed by operators with high enough order,
the assumption is removed by an argument based on an interpolation result
in [4] consisting in raising the order of L. This argument, sketched in [6],
is given in detail here. We point out that it is possible to replace pointwise
bounds by bounds in an averaged sense as in [2] (see [9] for the self-adjoint
case, but the proof goes through the non self-adjoint case), hence to obtain
a direct proof without the interpolation argument. We choose the indirect
approach for two reasons; first the direct proof contains long technical devel-
opments and, second, we feel that the interpolation result is an interesting
tool. It also provides us with a different proof of the main result in [2].

Historically, this interpolation result had been known long before it was
written in [4] and can be derived from Kato’s work [13]. The first argument
to prove the boundedness of the Cauchy integral on Lipschitz curves, which
is different from the one in [8] and was not published, went via the one-
dimensional solution of Kato’s problem and this interpolation result. The
latter was used again in the first “T(b)” theorem [15] but the proof was not
given.

Let us next consider the version of Theorem 1.5 for inhomogeneous oper-
ators. Now, L has a representation of the form

Lf =
∑

|α|,|β|≤m

(−1)|α|∂α(aαβ∂
βf),(1.8)
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and we assume

(1.9)

∣∣∣∣∣∣
∑

|α|,|β|≤m

∫
Rn

aαβ(x)∂βf(x)∂αḡ(x) dx

∣∣∣∣∣∣ ≤ Λ̃‖f‖Hm(Rn,CN )‖g‖Hm(Rn,CN )

and the G̊arding inequality

(1.10) Re
∑

|α|,|β|≤m

∫
Rn

aαβ(x)∂βf(x)∂αf̄(x) dx ≥ λ̃‖f‖2
Hm(Rn,CN ).

for some λ̃ > 0 and Λ̃ < ∞ independent of f, g ∈ Hm(Rn,CN). The norm

on the Sobolev space Hm(Rn,CN) is
(∑

|α|≤m
∫
Rn
|∂αf |2

)1/2

. Again the best

constants λ̃ and Λ̃ in the above inequalities are uniquely determined given a
sesquilinear form as in (1.9), but the representation (1.8) is not unique.

Theorem 1.11. Under the above hypotheses, the square root of L has domain
equal to the Sobolev space Hm(Rn,CN) and we have

‖
√
Lf‖2 ∼ ‖f‖Hm(Rn,CN )

with constants depending only on n, m, λ̃ and Λ̃.

This implies the inhomogeneous version of Corollary 1.7,

Corollary 1.12. For all s ∈ [0,m],

‖
√
Lf‖Hs−m(Rn,CN ) ∼ ‖f‖Hs(Rn,CN ),

where Hs(Rn,CN) denotes the inhomogeneous Sobolev space of order s.

Let us come back to homogeneous operators. Let L be given with a
representation (1.2) and satisfy (1.3). Replace the strict G̊arding inequality
(1.4) by the more often encountered weak G̊arding inequality

(1.13) Re
∑

|α|=|β|=m

∫
Rn

aαβ(x)∂βf(x)∂αf̄(x) dx ≥ λ‖∇mf‖2
2 − κ‖f‖2

2,

for some κ > 0.
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Proposition 1.14. Under the above hypotheses, the square root of L+κ has
domain equal to the Sobolev space Hm(Rn,CN) and we have

‖
√
L+ κf‖2 ≤ C

(
‖∇mf‖2

2 + κ‖f‖2
2

)1/2

where C depends only on n, m, λ and Λ but not on κ.

One interest of this result is in the precise behavior with respect to the
parameter κ. Indeed, formally let κ tend to 0 and compare with Theorem
1.5. When κ > 0, we only obtain a one-sided inequality. However, if we
replace L+ κ by L+ sκ for some fixed s > 1, we have a two-sided inequality
and the constants depend also on s. Both Theorem 1.11 and Proposition 1.14
are proved in Section 4.

Applicability of our results when m ≥ 2 or N ≥ 2 depends on the validity
of the G̊arding inequality. Let us discuss on this now. Assume that L is given
with a representation (1.2) and satisfies (1.3), that is the coefficients aαβ are
bounded. One does not know a necessary and sufficient condition on the
coefficients for (1.4) or (1.13). But, as mentioned earlier, these inequalities
depend only the self-adjoint part of the form which has coefficients bαβ =
1
2
(aαβ + a∗βα).

The strong ellipticity condition is

(1.15) Re
∑

|α|=|β|=m
1≤i,j≤N

bijαβ(x)ξβ,j ξα,i ≥ λ
∑
|α|=m
1≤i≤N

|ξα,i|2, a.e. ∀ ξα,i ∈ C

for some λ > 0. This inequality implies immediately (1.4) with the same λ.
Hence, we obtain

Theorem 1.16. Assume m ≥ 2. If (1.3) and (1.15) hold, then the square
root of L has domain equal to the Sobolev space Hm(Rn,CN) and we have

‖
√
Lf‖2 ∼ ‖∇mf‖2

where the constants depend only on n, m, N , λ and Λ.

Consider next the weaker ellipticity condition

(1.17) Re
∑

|α|=|β|=m

bαβ(x)ξβξα ≥ λ
∑
|α|=m

ξ2α, a.e. ∀ ξ ∈ Rn
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where the inequality holds in the sense of self-adjoint N×N -matrices. When
m ≥ 2 and N = 1 this is sometimes called the “Nirenberg” ellipticity con-
dition. When m = 1 and N ≥ 2 this is the Legendre-Hadamard ellipticity
condition.

A standard argument shows that (1.17) is necessary for (1.13) to hold for
some κ ≥ 0.

However, this is not sufficient. A counterexample is in [18]. Another
one is (indirectly) in [11]: it is a second order system with bounded measur-
able coefficients and (1.17) which does not satisfy a Caccioppoli inequality,
whereas it is shown in [5] that the G̊arding inequality (1.13) governs Cac-
cioppoli inequality.

It is classical that (1.17) implies (1.13) when bαβ are uniformly continu-
ous coefficients (see, e.g., [10]). Actually, this smoothness condition can be
relaxed. This was observed in [1] for second order operators. It is enough
to assume that the distance in BMO of the bαβ’s to VMO (the closure in
BMO of the uniformly continuous functions) is small. More precisely, we
prove in Section 5 the following result.

Proposition 1.18. Assume m ≥ 2, (1.3) and (1.17). Consider the nonin-
creasing function

w(r) = sup
α,β

sup
x∈Rn,0<ρ≤r

(
1

ρn

∫
B(x,ρ)

|bαβ −mB(x,ρ)bαβ|2
)1/2

, r > 0.

There exists ε = ε(n,m,N, λ) > 0 such that if

(1.19) lim
r→0

w(r) < ε,

then (1.13) holds with constants λ/2 and κ depends on Λ and supw−1([0, ε[).

Here B(x, ρ) is a ball centered at x with radius ρ and mB(x,ρ)f is the mean
of f over that ball. For N = n = 2 and m = 1, we mention a nice result by
K. Zhang in this spirit [19]. This gives us the following result.

Theorem 1.20. Assume m ≥ 2. If (1.3), (1.17) and (1.19) hold, then for
κ as above, the square root L + κ has domain equal to the Sobolev space
Hm(Rn,CN) and we have

‖
√
L+ κ f‖2 ≤ C

(
‖∇mf‖2

2 + κ‖f‖2
2

)1/2

where C depends only on n, m, λ and Λ but not on κ.

7



This theorem improves over prior results in two ways. First, L. Escauriaza
obtained the conclusion when m = 1, N = 1 and aαβ ∈ VMO (unpublished)
and this was extended in [6] to m ≥ 2 and the BMO-distance of the aαβ to
VMO small. Here, we relax the smoothness condition on the skew-adjoint
parts of the coefficients. Secondly, in those works, the behavior of C was not
made as precise.

We leave to the interested reader the care of stating the correponding
statements for inhomogeneous operators with principal parts as in the last
two results.

2 Proof of Theorem 1.5

Let m ≥ 1 and N ≥ 1, and L be an operator having a representation (1.2),
with ellipticity constants λ and Λ. As in [2], it is enough to prove a priori
that

(K) ‖
√
Lf‖2 ≤ C‖∇mf‖2,

for f in the domain of L with C depending only on n, m, N , λ and Λ.
Let us also set the subsequent algebra.
If v = (vi) ∈ X, X being a finite dimensional complex vector space, then

v = (vi) denotes the complex conjugate of v.
We let CN be equipped with an hermitian structure and we use implicitely

the canonical basis in CN . For u = (ui) ∈ CN , v = (vi) ∈ CN , we set
uv =

∑
i uivi so that the inner product writes uv and the norm is |u|2 = uu.

Let MN(C) be the space of N ×N complex matrices equipped with the
induced norm, denoted by |M | on L(CN), the space of linear maps on CN .

If X, Y and Z are finite dimensional complex spaces for which we have
‖uv‖Z ≤ ‖u‖X‖v‖Y and p ∈ N∗, then for u = (uβ) ∈ Xp and v = (vβ) ∈ Y p,
we set

u · v =
∑
β

uβvβ ∈ Z.

For example, we may take X = MN(C) and Y = C
N or X = Y = C

N or
X = C and Y = CN .

Hence, the inner product on (CN)
p

is (u|v) = u · v and the norm is
|u|2 = u · u =

∑
β |uβ|2 if u = (uβ), uβ ∈ CN .
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For M = (Mβ) ∈ (MN(C))p, we set |M |2 =
∑

β |Mβ|2.
As the reader may observe, we are using the same single bar notation for

the norms on different spaces : C, CN ... This will not create any problems as
we shall give enough details. We reserve the double bar norms for function
spaces.

2.1 Assuming a pointwise upper bound

We say that L satisfies an order 2m pointwise upper bound if

(2.1) |Wt2m(x, y)| ≤ Ct−n e−( |x−y|ct )
ν

,

for almost every (x, y) ∈ R2n and all t > 0 where Wt(x, y) is the MN(C)-
valued Schwartz kernel of e−tL. Here and in the sequel ν = 2m

2m−1
. For

example, constant coefficient elliptic operators do satisfy such an estimate as
easily seen from Fourier analysis.

We, henceforth, assume in this section that L satisfies this technical as-
sumption without repeating it.

We now begin the proof of (K). Introduce the (MN(C))p-valued function
γt defined by

γt(x) = (((−1)me−t
2mLtm∂αaαβ)(x))|β|=m.

Here, p is the number of multiindices α ∈ Nn having length m and we are
using the summation convention on repeated indices.

We recall that Theorem 24, Chapter 2 of [6] reduces matters to a Carleson
measure estimate. Actually, this theorem was stated in the scalar case with
a further regularity hypothesis that is not needed as it was remarked in [6].
For completeness we include an argument.

Lemma 2.2. The inequality (K) follows from the Carleson measure estimate

(2.3) sup
1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)|2 dxdt
t
≤ C,

where C depends only on n, m, N , λ, Λ and the constants in (2.1).

The supremum runs over all cubes in Rn with sides parallel to the axes.
If Q is a cube, |Q| and `(Q) denote respectively its Lebesgue measure and
sidelength.
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Proof. Recall that aαβ isMN(C)-valued so that for (CN)
p
-valued orMN(C)-

valued functions F = (Fβ)|β|=m, on defines an operator θt by

θtF = (−1)me−t
2mLtm∂α(aαβFβ).

This operator θt is bounded from L2(Rn, (CN)
p
) into L2(Rn,CN) and θt∇mf =

e−t
2mLtmLf for f ∈ Hm(Rn,CN).
Remark that γt(x) = θt1(x) with 1 = (δββ′I) ∈ (MN(C))p×p where I is

the identity matrix in MN(C) and δββ′ the Kronecker symbol (apply θt to
each of the p (MN(C))p-valued column).

First, (2.3) and Carleson’s inequality imply∫
Rn

∫ +∞

0

|γt(x) · (Pt∇mg)(x)|2 dxdt
t
≤ C

∫
Rn

|∇mg|2, g ∈ Hm(Rn,CN).

Here, Pt denotes the convolution operator with 1
tn
ϕ(x

t
) where ϕ is a smooth

real-valued function supported in the unit ball of Rn with
∫
ϕ = 1 and the

moment condition
∫
xαϕ(x) dx = 0 for 1 ≤ |α| ≤ m. Using (2.4) below, we

deduce that ∫
Rn

∫ +∞

0

|(θt∇mg)(x)|2 dxdt
t
≤ C

∫
Rn

|∇mg|2,

which rewrites ∫ +∞

0

‖e−t2mLtmLg‖2
2

dt

t
≤ C‖∇mg‖2

2.

As the latter is equivalent to (K) by H∞-functional calculus for L and a
theorem by McIntosh and Yagi [16], we are done.

The keystone of our analysis is therefore

(2.4)

∫
Rn

∫ +∞

0

|γt(x) · (Pt∇mg)(x)− (θt∇mg)(x)|2 dxdt
t
≤ C

∫
Rn

|∇mg|2,

where C depends only on n, m, N , λ, Λ and the constants in (2.1). This
inequality is proved in [6] (Lemma 29 of Chapter 2). Here is a quicker
argument. Write

γt(x) · (Pt∇mg)(x)− (θt∇mg)(x) = γt(x) · (Pt∇mg)(x)− (θtPt∇mg)(x)

+ θt(Pt − I)(∇mg)(x).
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For the last term, using that Pt commutes with partial derivatives and that
θt∇m is bounded on L2 with bound Ct−m, we have∫

Rn

∫ +∞

0

|θt(Pt − I)(∇mg)(x)|2 dxdt
t
≤ C

∫
Rn

∫ +∞

0

|(Pt − I)(g)(x)|2 dxdt
t1+2m

≤ C‖∇mg‖2
2.

The latter inequality easily follows from the Plancherel theorem and this is
where we use the moment conditions on ϕ.

Next, G(x, t) = γt(x) · (Pt∇mg)(x)− (θtPt∇mg)(x) has a kernel represen-
tation

G(x, t) =

∫∫
θt(x, y) · t−n(ϕ(x−z

t
)− ϕ(y−z

t
))∇mg(z) dzdy

≡
∫
Kt(x, z) · ∇mg(z) dz

where θt(x, y) is the (MN(C))p-valued kernel of θt whose components are
tm∂αyWt2m(x, y)aαβ(y) ∈MN(C), |β| = m. By a mere repetition of the proof
of [6, Chapter 1, Theorem 29] when N = 1, we deduce from the order 2m
pointwise upper bound the weighted L2 inequalities

(2.5)

∫
Rn

|∂αyWt2m(x, y)|2 e(
|x−y|
ct )

ν

dy ≤ Ct−n−2|α|,

for all t > 0, x ∈ Rn and |α| ≤ m, for some positive constants C and c
depending only on n, m, N , λ, Λ and the constants in (2.1). [The proof is
quite technical and relies on the analyticity of the semigroup, a Caccioppoli
inequality and integration by parts.] It easily follows from (2.5) and the
properties of ϕ that γt(x) is bounded uniformly in (x, t) and, next, that
Kt(x, y) satisfies the pointwise bounds

|Kt(x, z)| ≤ Ct−ne−( |x−z|ct )
ν

and
|Kt(x, z)−Kt(x, z

′)| ≤ Ct−n−1|z − z′|.
Moreover, one has

∫
Rn
Kt(x, z) dz = 0. Hence, we deduce from the usual

almost orthogonality arguments (see [7] or the exposition in Chapter 2 of [6])
that ∫

Rn

∫ +∞

0

|G(x, t)|2 dxdt
t
≤ C‖∇mg‖2

2.

This concludes the proof of (2.4) and that of Lemma 2.2.
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The next step is to use a “T(b)” argument as in [2], [12]. To this end, fix
a cube Q, ε ∈ (0, 1) and a unit vector w in (CN)

p
, and define the CN -valued

functions

(2.6) f εQ,w(x) = (e−(ε`(Q))2mL(ΦQ · w))(x)

where

ΦQ(x) =

(
(x− x(Q))β

β!

)
|β|=m

and where x(Q) is the center of Q.

Lemma 2.7. There exist ε > 0 and C < ∞ depending on n, m, N , λ, Λ
and the constants in (2.1), and a finite collection W of unit vectors in (CN)

p

whose cardinality depends on ε, n, m and N such that

sup
1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)|2 dxdt
t
≤

C
∑
w∈W

sup
1

|Q|

∫
Q

∫ `(Q)

0

|γt(x) · SQt ∇mf εQ,w(x)|2 dxdt
t
,

the suprema running over all cubes Q.

Hereafter, if Q is a cube, SQt is the dyadic averaging operator defined on
(CN)

p
-valued functions by

SQt f(x) =
1

|Q′|

∫
Q′
f(y) dy

for x ∈ Q′ and 1
2
`(Q′) < t ≤ `(Q′) where Q′ describes a collection of dyadic

cubes of Rn that includes Q. Note that γt(x) · SQt ∇mf εQ,w(x) takes its values
in CN .

Proof. We follow closely the strategy of proof given in [2] for scalar second
order operators. We begin with the following inequality: If Q is a cube, ε > 0
and w = (wβ)|β|=m , wβ ∈ CN , is a unit vector in (CN)

p
then

(2.8)

∣∣∣∣∫
Q

1− Re(∇mf εQ,w(x) |w) dx

∣∣∣∣ ≤ Cε1/2 |Q|,

12



where C depends only on n, m, N , λ, Λ and the constants in (2.1), but not
on ε, Q and w. Indeed, by definition of the dot and inner products on (CN)

p
,

(∇m(ΦQ · w)(x) |w) = ∂α
{

(x− x(Q))β wβ
β!

}
wα = wαwα = |w|2 = 1.

Setting

(2.9) g(x) = gεQ,w(x) = ΦQ(x) · w − f εQ,w(x)

we have

1− Re(∇mf εQ,w(x) |w) = Re(∇mg(x) |w) = Re(∂αgwα)(x).

Next, for a fixed |α| = m, write ∂α = ∂∂β where ∂ denotes one first order
partial and |β| = m − 1, and invoke the following inequality proved in [2]:
for some C = C(n)∣∣∣∣∫

Q

∂αg

∣∣∣∣ ≤ C`(Q)
n−1

2

(∫
Q

|∂βg|2
)1/4(∫

Q

|∂αg|2
)1/4

.

The technical estimates obtained in Section 3 imply that

(2.10)

∫
Q

|∂αg|2 ≤ C|Q|

and

(2.11)

∫
Q

|∂βg|2 ≤ C(ε`(Q))2|Q|,

where C depends only on n, m, N , λ, Λ and the constants in (2.1), but not
on ε, Q and w. This proves (2.8).

Repeating the stopping-time argument in [2], this allows us to obtain

Proposition 2.12. There exists a small ε > 0 depending on n, m, N , λ and
Λ, and η = η(ε) > 0 such that for each unit vector w in (CN)

p
and cube Q,

one can find a collection S ′w = {Q′} of non-overlapping dyadic sub-cubes of
Q with the following properties

(i) The union of the cubes in S ′w has measure not exceeding (1− η)|Q|
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(ii) If Q′′ ∈ S ′′w, the collection of all dyadic sub-cubes of Q not contained in
any Q′ ∈ S ′w, then

(2.13)
1

|Q′′|

∫
Q′′

Re(∇mf εQ,w(y) |w) dy ≥ 3

4

and

(2.14)

(
1

|Q′′|

∫
Q′′
|∇mf εQ,w(y)|2 dy

)1/2

≤ (4ε)−1.

At this stage, we want to select a finite collection of unit vectors w ∈
(CN)

p
to make use of this.

When m = 1 and N = 1, which is the case of [2], (CN)
p

= C
n and this

selection is achieved via a sectorial decomposition of Cn in which γt(x) also
takes its values. Here, the sectorial decomposition is performed on the γt(x)’s
and this induces the choice of the w’s.

Identify γt(x) with the element Γt(x) in L((CN)
p
,CN) = L by

Γt(x)(v) = γt(x) · v , v ∈ (CN)
p
.

Remark that this identification is isometric. We use as well a single bar norm
for the norm induced on L. For σ ∈ L with |σ| = 1, let Cσ be the cone of
elements τ ∈ L such that

|τ − |τ |σ| ≤ ε |τ |.

Choose a finite collection Σ of such σ’s so as to cover L with a finite number
of cones Cσ. It suffices to argue for each σ ∈ Σ fixed and to obtain a
Carleson measure estimate for Γt,σ(x) ≡ 1Cσ(Γt(x))Γt(x), where 1Cσ denotes
the indicator function of Cσ.

Fix σ ∈ Σ and choose z ∈ CN such that |z| = 1 and |σ∗(z)| = 1 where σ∗

is the adjoint of σ. Remark that Γt,σ(x)∗(z) ∈ (CN)
p

satisfies

|Γt,σ(x)∗(z)− |Γt,σ(x)|σ∗(z)| ≤ ε |Γt,σ(x)|.

Set w = σ∗(z) ∈ (CN)
p

and apply Proposition 2.12 with that w. If Q′′ ∈ S ′′w
then

v =
1

|Q′′|

∫
Q′′
∇mf εQ,w(y) dy ∈ (CN)

p

14



satisfies

(2.15) Re(v |w) ≥ 3

4
and |v| ≤ (4ε)−1.

Writing

(v |Γt,σ(x)∗(z)) = (v |Γt,σ(x)∗(z)− |Γt,σ(x)|σ∗(z)) + |Γt,σ(x)|(v |w)

we deduce from |z| = 1 and (2.15)

|Γt,σ(x)(v)| ≥ |(v |Γt,σ(x)∗(z))| ≥ 1

2
|Γt,σ(x)|.

Next, if x ∈ Q′′ and 1
2
`(Q′′) < t ≤ `(Q′′) then v = (SQt ∇f εQ,w)(x) and we have

obtained using the identification of Γt,σ(x) with γt,σ(x) = 1Cσ(Γt(x))γt(x)
that

(2.16) |γt,σ(x)| ≤ 2|γt,σ(x) · (SQt ∇f εQ,w)(x)| ≤ 2|γt(x) · (SQt ∇f εQ,w)(x)|.

The conclusion to the proof of Lemma 2.7 is now exactly as in [2] and W is
here the collection of vectors w just constructed from the σ’s in Σ.

The next lemma is the last step. Compared to [6], Chapter 3, the argu-
ment is slightly simplified due to the fact that functions are defined on all of
R
n.

Lemma 2.17. For some constant C depending on n, m, N , λ, Λ, the con-
stants in (2.1) and ε > 0, but not on Q and w, we have∫

Q

∫ `(Q)

0

|γt(x) · SQt ∇mf εQ,w(x)|2 dxdt
t
≤ C|Q|.

Proof. Fix Q, w and ε, and set f ≡ f εQ,w. Let X be a smooth function
supported in 4Q, which is identically 1 on 2Q and such that ‖∇jX‖∞ ≤
C`(Q)−j for all j = 0, . . . ,m. For x ∈ Q and 0 < t ≤ `(Q), we have

(SQt ∇mf)(x) = (SQt ∇m(X f))(x).

Using that ∫
Rn

∫ +∞

0

|(SQt − Pt)h(x)|2 dxdt
t
≤ C

∫
Rn

|h|2,

15



(See [6], Appendix C for a proof) and (2.4), we obtain∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇mf)(x)|2 dxdt
t
≤ C

∫
Rn

|∇m(X f)|2

+ 4

∫
Q

∫ `(Q)

0

|(θt∇m(X f))(x)|2 dxdt
t
.

We shall prove in Section 3 that

(2.18)

∫
Rn

|∇m(X f)|2 ≤ C|Q|

where C is independent of Q and w (it may depend on ε which we allow).

It remains to estimate
∫
Q

∫ `(Q)

0
|(θt∇m(X f))(x)|2 dxdt

t
. To this end, write

θt∇m(X f) = e−t
2mLtmLf + e−t

2mLtmL((X − 1)f).

and treat each term by separate arguments.
To handle the first term, observe that (see Section 3 for a proof)

(2.19) |Lf(x)| ≤ C(ε`(Q))−m

with C independent of Q, w, ε and x. Using (2.1) which implies L∞ bound-
edness of e−t

2mL, we obtain

|(e−t2mLtmLf)(x)| ≤ Ctm(ε`(Q))−m

from which we deduce∫
Q

∫ `(Q)

0

|(e−t2mLtmLf)(x)|2 dxdt
t
≤ Cε−2m|Q|.

To handle the second term, observe that the kernel of e−t
2mLt2mL satisfies

an upper bound similar to that of e−t
2mL with different constants C, c (it is a

classical consequence of the analyticity of the semigroup). Hence for x ∈ Q
and t ≤ `(Q),

|(e−t2mLtmL((X − 1)f))(x)| ≤ Ct−m−n
∫
y/∈2Q

e−( |x−y|ct )
ν

|f(y)| dy

≤ Ct−m−ne−
1
2( `(Q)

2ct )
ν
∫
y/∈2Q

e−
1
2(µ|x(Q)−y|

c`(Q) )
ν

|f(y)| dy,
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where µ is the largest number (depending only on n) so that |x − y| ≥
µ|x(Q) − y| for all x ∈ Q and y /∈ 2Q. We used that |x − y| ≥ `(Q)/2 for
x ∈ Q and y /∈ 2Q. Recall also that ν = 2m

2m−1
. We now invoke the following

estimate, to be proved in Section 3,

(2.20)

∫
Rn

e−( |x(Q)−y|
b`(Q) )

ν

|f(y)| dy ≤ C(`(Q))n+m

for all b > 0 with C depending only n, m, N , λ, Λ, ε, b and the constants in
(2.1). Therefore, we obtain a pointwise bound

|(e−t2mLtmL((X − 1)f))(x)| ≤ Ct−m−n(`(Q))n+me−
1
2( `(Q)

2ct )
ν

and this yields straightforwardly∫
Q

∫ `(Q)

0

|(e−t2mLtmL((X − 1)f))(x)|2 dxdt
t
≤ C|Q|,

the latter C depending only on n, m, N , λ, Λ, the constants in (2.1) and ε.
We have proved Lemma 2.17 modulo the technical estimates (2.18), (2.19)

and (2.20) that we explain in the Section 3.

2.2 Removing the pointwise upper bound

In this section, we are still given an operator L of order 2m with a represen-
tation (1.2) and ellipticity constants λ and Λ. We begin with recalling the
following result.

Proposition 2.21. If, in addition, 2m ≥ n, then L satisfies the order 2m
pointwise upper bound and the constants in (2.1) depend only on n, m, N , λ
and Λ.

Proof. See [9] for the self-adjoint case with 2m > n and N = 1, and [6],
Chapter 1, Proposition 28, for the general case when N = 1. The proof is
identical when N ≥ 2. We do stress that the estimates are global in time
(i.e., the constant C does not depend on t).

To take advantage of this, we shall increase the order of L. Consider the
positive self-adjoint unbounded operator on L2(Rn,CN) by

Sg =

(
(−1)m

∑
|α|=m

∂2α

)1/2

g, g ∈ Hm(Rn,CN).
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Then S2 is an elliptic homogeneous operator of order 2m and ‖Sg‖2 =
‖∇mg‖2. For k ∈ 2N, define Lk as the maximal accretive operator as-
sociated with the form 〈aαβ∂αSkf, ∂βSkg〉 on Hm(1+k)(Rn,CN). Formally,
Lk = SkLSk. Then Lk is an homogeneous operator of order 2m(1+k) and it
has a representation (1.2) with ellipticity constants λk and Λk in the inequal-
ities corresponding to (1.3) and (1.4) depending only on n, m, N , k, λ and
Λ. These observations are easy consequences of ‖Sk+1f‖2 ∼ ‖∇m(1+k)f‖2

deduced from the Plancherel theorem.

Proposition 2.22. Under the above hypotheses, the inequalities (K) for L
and Lk are equivalent. More precisely, the inequalities ‖

√
Lf‖2 ≤ C‖Sf‖2

and ‖
√
Lkf‖2 ≤ Ck‖Sk+1f‖2 hold simultaneously. Furthermore, C depends

on Ck, k, λ and Λ.

Proof. This was proved for scalar second order operators in [6], Chapter 0,
Proposition 10. The argument is similar. Write L = SBS where B =
S−1LS−1. It follows from its definition and (1.4) that B is a bounded,
invertible, and ω-accretive operator on L2(Rn,CN), with ‖B‖, ‖B−1‖ and
ω ∈ [0, π/2) depending only on λ and Λ. As Lk = Sk+1BSk+1, it remains to
apply the general interpolation result in Hilbert spaces from [4] as quoted in
[6], Chapter 0, Proposition 9. The constant C depends only on k, Ck, ‖B‖,
‖B−1‖ and ω, and symetrically Ck depends only on k, C, ‖B‖, ‖B−1‖ and
ω.

We may finish the proof of Theorem 1.5. If L satisfies the order 2m
pointwise upper bound with constants depending only on n, m, N , λ and Λ
we are done. Otherwise choose the smallest integer k so that 2m(1 + k) ≥
n. By Proposition 2.21, the operator Lk defined above satisfies the order
2m(1 + k) pointwise upper bound with constants depending only on n, m,
λ and Λ. Thus ‖

√
Lkf‖2 ≤ Ck‖∇m(1+k)f‖2 holds by what we just did in

the previous section and Ck depends only on n, m, N , λk and Λk. By
Proposition 2.22, ‖

√
Lf‖2 ≤ C‖∇mf‖2 holds with C depending on n, m, N

λ and Λ. Hence (K) is completely proved.

3 Proof of technical estimates

Here, we prove the technical estimates left aside, namely (2.10), (2.11), (2.18),
(2.19) and (2.20).
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We begin with the appropriate extension to higher order operators of the
classical conservation property for scalar second order operators, that is the
reproduction of polynomials by the semigroup.

Lemma 3.1. If L satisfies the order 2m pointwise upper bound, then

(3.2) e−tLP = P

holds pointwise for any P = (P1, . . . , PN) and t > 0 where the Pi’s are
polynomials with degrees not exceeding m− 1.

Remark. The upper bound assumption can be dropped for the equality to
hold say in L2

loc(R
n,CN) but the argument is much more involved.

Proof. To simplify the exposition, we assume that N = 1. The proof in the
general case is the same.

Let X be a smooth function with X (x) = 1 if |x| ≤ 1 and X (x) = 0
if |x| ≥ 2. Let XR(x) = X (x/R) for R > 0. If φ is a smooth compactly
supported function, then for R > 0 and t > 0

(3.3) 〈P, e−tL∗φ〉 = 〈PXR, e−tL
∗
φ〉+ 〈P (1−XR), e−tL

∗
φ〉

where the brackets make sense as Lebesgue integrals by the decay of the
kernel of e−tL

∗
and the support of φ. We use this representation twice, first

to show that the left hand side does not depend on t > 0 and, second, to
find 〈P, φ〉 as its value. This, indeed, shows that e−tLP = P in the sense
of distributions. The equality also holds in the pointwise sense using again
kernel decay.

Let us begin with differentiating (3.3) with respect to t. Since the kernel
of d

dt
e−tL

∗
has also Gaussian decay, we have

d

dt
〈P (1−XR), e−tL

∗
φ〉 = 〈P (1−XR),

d

dt
e−tL

∗
φ〉

and by Lebesgue dominated convergence, this quantity tends to 0 as R tends
to +∞.

Next, since PXR ∈ L2 we have that

d

dt
〈PXR, e−tL

∗
φ〉 =

∑
|α|=|β|=m

〈aαβ∂β(PXR), ∂αe−tL
∗
φ〉.
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Since the degree d of P does not exceed m − 1, observe from Leibniz for-
mula that ∂β(PXR) is supported in the annulus R ≤ |x| ≤ 2R and is
dominated by CRd−m. Using this remark, together with a weighted L1

estimate (which follows from the weighted L2 estimate (2.5) by Cauchy-
Schwarz) and the fact that the support of φ is compact, it is easy to show
that 〈aαβ∂β(PXR), ∂αe−tL

∗
φ〉 tends to 0 as R tends to +∞ (t is fixed).

This shows that the left hand side of (3.3) is independent of t > 0. In
the right hand side, choose and fix R large enough so that the supports of
φ and P (1− XR) are far apart. The decay of the kernel of e−tL

∗
yields that

〈P (1 − XR), e−tL
∗
φ〉 tends to 0 as t tends to 0. Eventually, since e−tL

∗
is a

continuous semigroup on L2 at t = 0, we obtain that 〈PXR, e−tL
∗
φ〉 tends to

〈PXR, φ〉 = 〈P, φ〉 as t tends to 0. This proves (3.2).

We continue with

Lemma 3.4. Assume that L satisfies the order 2m pointwise upper bound.
If P = (P1, . . . , PN) with the Pi’s polynomials of degrees not exceeding m, Q
is a cube and 0 < t ≤ `(Q) then

(3.5)

∫
5Q

|∇j(e−t
2mLP − P )(x)|2 dx ≤ C

(
sup
|α|=m
1≤i≤N

|P (α)
i |
)2

t2(m−j)|Q|,

where C depends on n, m, N , λ, Λ and the constants in (2.1), but not on
P , Q, t and 0 ≤ j ≤ m.

Remark. This lemma holds without the upper bound assumption as well.

Proof. Again we assume N = 1 to simplify matters. Write

(e−t
2mLP )(x) = (e−t

2mL(P − Pz))(x) + Pz(x)

where Pz is the Taylor polynomial of P at z with degree m − 1. Letting
z = x, we obtain

(e−t
2mLP )(x) =

∫
Rn

Wt2m(x, y)(P − Px)(y) dy + P (x).

Since
(P − Px)(y) =

∑
|α|=m

pα
α!

(y − x)α
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with pα ∈ C the value of the constant polynomial P (α), we arrive at

(3.6) (e−t
2mLP − P )(x) =

∑
|α|=m

pα
α!

∫
Rn

Wt2m(x, y)(y − x)α dy.

Hence, by the Leibniz formula we have

|∇j(e−t
2mLP − P )(x)| ≤ C(sup |pα|)

j∑
k=0

fj,k(x)

with

fj,k(x) =

∫
Rn

|∇k
xWt2m(x, y)||x− y|m−j+k dy.

Choose µ > 0 depending on n such that if x ∈ 5Q and y /∈ 10Q we have

µ|x(Q)− y| ≤ 1

2
|x− y|.

One easily checks that for x ∈ 5Q and t ∈ (0, `(Q)],∫
Rn

|x− y|2`e−( |x−y|ct )
ν

e(
µ|x(Q)−y|
c`(Q) )

ν

dy ≤ Ct2`+n,

where c is the constant in (2.5), in which the roles of x and y are switched,
and C is independent of x, Q, t ∈ (0, `(Q)] and ` ∈ {0, . . . ,m}. Hence by
Cauchy-Schwarz inequality and (2.5),∫

5Q

|fj,k(x)|2 dx ≤ Ct2(m−j+k)+n

∫
Rn

∫
Rn

|∇k
xWt2m(x, y)|2e(

|x−y|
ct )

ν

×

e−(µ|x(Q)−y|
c`(Q) )

ν

dydx

≤ Ct2(m−j)
∫
Rn

e−(µ|x(Q)−y|
c`(Q) )

ν

dy

≤ Ct2(m−j)`(Q)n.

We now return to proving the needed estimates. Recall that f = f εQ,w
in (2.6) and g is defined by (2.9). We have, therefore, f = e−t

2mLP and
g = P − e−t2mLP where P (x) = ΦQ(x) · w and t = ε`(Q). Also observe that
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pα = wα and since w is a unit vector, sup |pα| ≤ 1.

Proof of (2.10) and (2.11). Straightforward from (3.5) with j = m and
j = m− 1.

Proof of (2.18). Write ∇m(X f) = ∇m(X (e−t
2mLP −P )) +∇m(XP ). Recall

that the components of ΦQ(x) are (x−x(Q))β

β!
so that it is clear from the choice

of X that ∇m(XP ) is bounded in Rn with a bound independent of Q and w.
As for ∇m(X (e−t

2mLP − P )), we use (3.5) with the Leibniz rule to obtain∫
Rn

|∇m(X (e−t
2mLP − P ))|2 ≤ C(1 + ε2 + . . .+ ε2m)|Q|

with C independent of Q, w and t = ε`(Q).

Proof of (2.19). Using the notation above, it amounts to showing the uniform
bound

|Le−t2mLP (x)| ≤ Ct−m

for any cube Q, 0 < t ≤ `(Q) where C is independent of P , Q and t. Using
the same ideas as before, we have

(Le−t
2mLP )(x) = (Le−t

2mL(P − Pz))(x)

where Pz is the Taylor polynomial of P at z with degree m−1 since LPz = 0.
Letting z = x, we obtain

(Le−t
2mLP )(x) = t−m

∑
|α|=m

pα
α!

∫
Rn

W̃t2m(x, y)

(
y − x
t

)α
dy

where W̃t(x, y) is the kernel of tLe−tL = −de−tL

dt
. As this kernel satisfies a

similar bound to Wt(x, y), the latter integrals are bounded uniformly in x
and t and the desired bound follows at once.

Proof of (2.20). Using (2.1) and the definition of f = f εQ,w, we have

|f(y)| ≤ C(ε`(Q))−n
∫
Rn

e−( |y−z|cε`(Q))
ν

|z − x(Q)|m dz
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with C independent of Q, w and ε. Using the convolution inequality∫
Rn

e−( |x(Q)−y|
b`(Q) )

ν

e−( |y−z|c`(Q))
ν

dy ≤ C(`(Q))ne
−
(
|z−x(Q)|
c′`(Q)

)ν

with C, c′ depending on n, m, N , b and c, we obtain∫
Rn

e−( |x(Q)−y|
b`(Q) )

ν

|f(y)| dy ≤ C

∫
Rn

e
−
(
|z−x(Q)|
c′`(Q)

)ν
|z − x(Q)|m dz

≤ C(`(Q))n+m.

Remark. In (2.20), the weight could be weakened to (1 + |x(Q)−y|
`(Q)

)−n−m−δ for
any δ > 0.

4 Inhomogeneous operators

Proof of Theorem 1.11. Take L with a representation (1.8) and ellipticity

constants λ̃ and Λ̃.
First we raise the order of L if necessary. Let

(4.1) Sg =

∑
|α|≤m

(−1)|α|∂2α

1/2

g, g ∈ Hm(Rn,CN)

so that S2 is an elliptic inhomogeneous operator of order 2m and L = SBS
with B bounded, invertible and ω-accretive on L2(Rn,CN). Then for k ∈ 2N
so that 2m(1 + k) ≥ n, set Lk = SkLSk. Then Lk is an inhomogeneous
operator of order 2m(1 + k) and it has a representation (1.8) with ellipticity

constants λ̃k and Λ̃k in the inequalities corresponding to (1.9) and (1.10) for

Lk depending only on n, m, k, λ̃ and Λ̃. The square root problems for L and
Lk are equivalent.

Again, if 2m(1 + k) ≥ n, Lk satisfies the local order 2m(1 + k) pointwise

upper bound (See [6]) with constants depending on n, m, N , λ̃ and Λ̃. The
local order 2m pointwise upper bound for an operator L means that there
exists c > 0 such that for all T > 0 there exists a constant C for which

(4.2) |Wt2m(x, y)| ≤ Ct−n e−( |x−y|ct )
ν

,

for almost every (x, y) ∈ R2n and all 0 < t < T where Wt(x, y) is again
the MN(C)-valued Schwartz kernel of e−tL. By the semigroup property, it
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suffices to obtain this for one T > 0 and C usually blows up like eωT . For
simplicity, we choose T = 1. Hence, we may assume from now on that L has
order larger than dimension.

Secondly, let L0 be the principal part of L, that is the homogeneous part
of degree 2m in (1.8). Using interpolation inequalities, it is easy to show
that the weak G̊arding inequality (1.13) holds for L0 with λ = λ̃/2 and some

κ > 0 depending only on n, m, N , λ̃ and Λ̃. We begin with studying the
square root of L0 + 2κ, and then return to L.

The operator L0 + 2κ satisfies (1.10) with constant λ] = inf(λ, κ) and

(1.9) with some Λ] depending on n,m, N , κ and Λ̃. Again, we are interested
in establishing only

‖
√
L0 + 2κ f‖2 ≤ C‖f‖Hm(Rn,CN ), f ∈ D(L0)

as the inequality for the adjoint is similarly obtained. By the McIntosh-Yagi
theorem [16]

‖
√
L0 + 2κ f‖2

2 ∼
∫ ∞

0

‖e−t2m(L0+2κ)tm(L0 + 2κ)f‖2
2

dt

t
, f ∈ D(L0).

Since e−t
2m(L0+2κ)t2m(L0+2κ) is uniformly bounded on L2(Rn,CN) (or rather,

has a bounded extension with uniform bound), we have∫ ∞
1

‖e−t2m(L0+2κ)tm(L0 + 2κ)f‖2
2

dt

t
≤ C‖f‖2

2.

Since e−t
2m(L0+2κ) is a contraction on L2(Rn,CN) we have∫ 1

0

‖e−t2m(L0+2κ)tm(2κ)f‖2
2

dt

t
≤
∫ 1

0

t2m(2κ)2 dt

t
‖f‖2

2 ≤ C‖f‖2
2.

Finally using e−t
2m(L0+2κ) = e−t

2m2κe−t
2mL0 and e−u ≤ 1 for u ≥ 0, it remains

to checking the inequality∫ 1

0

‖e−t2mL0tmL0f‖2
2

dt

t
≤ C‖∇mf‖2

2.

At this point, we are back to the case of homogeneous operators and the same
algorithm as in Section 2.1 applies with the restriction that Carleson norms
are taken on cubes of sidelength less than 1 since L0 satisfies the local upper
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bound (because L0 + 2κ does). All the technical estimates apply provided
t ≤ 1 and `(Q) ≤ 1. We have established the desired inequality for L0 + 2κ.

We return to the operator L and wish to prove at last

‖
√
Lf‖2 ≤ C‖f‖Hm(Rn,CN ), f ∈ D(L).

Recall that we just obtained the same inequality with L0 + 2κ. The point is
to write L as a perturbation of L0 + 2κ. Set Σ = S1/m, with S defined by
(4.1) and write

Lf =
∑
k,l≤m

ΣkBk,lΣ
lf

with

Bk,l = Σ−k
(

(−1)k
∑

|α|=k,|β|=l

∂α(aαβ∂
β)

)
Σ−l

for all non negative integers k, l ≤ m except when k = l = 0 for which

B0,0 = a00 − 2κ

and k = l = m for which

Bm,m = Σ−m
(

(−1)m
∑

|α|=m,|β|=m

∂α(aαβ∂
β) + 2κ

)
Σ−m = Σ−m(L0 + 2κ)Σ−m.

The operators Bk,l are bounded operators on L2(Rn,CN) and the operator
Bm,m is nothing but B defined above. The above representation of Lf works
for f in Hm(Rn,CN) as L is bounded from Hm(Rn,CN) into H−m(Rn,CN).

It remains to use [6], Chapter 0, Proposition 11, to conclude the proof of
Theorem 1.11.

Proof of Proposition 1.14. Under our assumption, the theory of regularly
accretive forms of Kato asserts that for all κ′ ≥ κ, L + κ′ have square roots
with same domains. By the preceding result D(

√
L+ κ ) = D(

√
L+ 2κ ) =

Hm(Rn,CN). Introduce C(n,m,N, λ,Λ, κ) as the best constant C such that

‖
√
L+ κ f‖2 ≤ C(‖∇mf‖2

2 + κ‖f‖2
2)1/2

holds for all operators L given by a representation (1.2) with constants λ, Λ
and κ in (1.3) and (1.13). A dilation argument with dilation factor s > 0 in
R
n changes L to another homogeneous operator with constants λ, Λ, κs2m.

At the same time, (‖∇mf‖2
2 +κ‖f‖2

2)1/2 changes to (‖∇mf‖2
2 +κs2m‖f‖2

2)1/2.
This implies that C(n,m,N, λ,Λ, κs2m) ≤ C(n,m,N, λ,Λ, κ) for all s, κ > 0
so that C(n,m,N, λ,Λ, κ) is independent of κ. This proves Proposition 1.14.
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5 Proof of Proposition 1.18

We give a sketch of the proof as it follows closely the ideas in [1]. Let L denote
now the operator associated to the bαβ. As this operator is self-adjoint, the
weak G̊arding inequality is equivalent to the invertibility of

L+ κ : Hm(Rn,CN)→ H−m(Rn,CN)

for some κ > 0. This is done by constructing a parametrix using wavelet
expansions.

Let Ψj,k,` be a Schwartz class wavelet basis of L2(Rn,CN). Here j ∈ Z,
k ∈ Zn and ` belongs to some finite set with cardinality N(2n − 1). We
have Ψj,k,`(x) = 2nj/2Ψ`(2

jx−k) where Ψ` is valued in CN and has a Fourier
localisation in an annulus a ≤ |ξ| ≤ b. Also one may think that Ψj,k,` has
essential support in the dyadic cube Qj,k defined by 2jx − k ∈ [0, 1[n (In
fact it can be chosen with rapid decay away from this cube). We index the
wavelets by the dyadic cubes and drop the index ` as it plays no role, so that
Ψj,k,` becomes ΨQ and j = j(Q) is the scale index of Q; the larger j(Q), the
smaller Q. Such a wavelet basis characterizes BMO and the weight function
w takes the following form: define

Nj(b) = sup
R;j(R)≥j

|R|−1
∑
Q⊂R

| < b,ΨQ > |2.

Then b ∈ BMO is characterized by supj Nj(b) < +∞ and b ∈ vmo by
b ∈ BMO and limj→∞Nj(b) = 0. The condition (1.19) can be rephrased as
supα,β limj→∞Nj(bαβ) ≤ ε. See [17].

Define a collection of functions θQ by

θQ = (LQ + κ)−1(ΨQ)

where LQ is the operator with coefficients bαβ replaced by their averages over
Q. Hence, LQ have constant coefficients and satisfy ellipticity uniformly. By

straightforward Fourier estimates, for σj = 4mj

4mj+κ
and κ ≥ 1, the functions

(σj(Q))
−1(1 + 2mj(Q))∂βθQ form a family of “vaguelettes” (which is in the

wavelet langage the same as an almost orthogonal family) uniformly with
respect to κ. Hence, ΨQ 7→ (σj(Q))

−1(1+2mj(Q))∂βθQ is a Calderón-Zygmund
operator and

(5.1)

∥∥∥∥∑
Q

cQ(σj(Q))
−1(1 + 2mj(Q))∂βθQ

∥∥∥∥2

2

≤ C
∑
Q

|cQ|2
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where C depends only on n, m, N . See [17].
Since the ΨQ’s form an unconditional basis of any Hs(Rn,CN), s ∈ R,

one can define operators by linearity (and continuity once a priori bounds
are obtained). Define Pκ by

Pκ(ΨQ) = θQ.

We have
(L+ κ)Pκ(ΨQ) = ΨQ −Rκ(ΨQ)

where
Rκ(ΨQ) = (−1)α∂α

[
(bαβ −mQbαβ)∂βθQ

]
.

The desired invertibility for L+κ (or the parametrix property of Pκ) follows
from

‖Rκ‖ < 1

where the norm is the operator norm on H−m(Rn,CN). Introducing

Tα(ΨQ) = (bαβ −mQbαβ)(1 + 2mj(Q))∂βθQ

and S(ΨQ) = 2mj(Q)ΨQ, we have

Rκ = (−1)α∂αTα(1 + S)−1.

Since 1 + S is an isomorphism from L2(Rn,CN) onto H−m(Rn,CN), it is
enough to show that the L2 operator norm of Tα is small when κ is large.

There are two ways of estimating the operator norm of such an operator.
To take advantage of this, introduce a threshold j to be chosen and split
Tα = Tαπj + Tαπ

⊥
j where πj is the orthogonal projection from L2 onto the

closed space generated by the ΨQ for j(Q) < j and π⊥j = Id− πj.
For Tαπj, use (5.1) and the boundedness of the bαβ through the ellipticity

constant Λ to obtain that

‖Tαπj‖ ≤ CΛ sup
j(Q)<j

σj(Q) ≤ CΛσj.

For the other part of Tα, remark that, ignoring σj(Q) as it is close to 1,
the operator ΨQ 7→ (1 + 2mj(Q))∂βθQ for j(Q) ≥ j and ΨQ 7→ 0 for j(Q) < j
is a Calderón-Zygmund operator (with uniform estimates with respect to
j and κ). Then, the operator norm of Tαπ

⊥
j can be estimated using the

commutator result of Coifman-Rochberg-Weiss between BMO function and
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Calderón-Zygmund operators expressed in the wavelet langage and this gives
us

‖Tαπ⊥j ‖ ≤ C sup
β
Nj(bαβ).

Further details can be found in [1].
Hence,

‖Tα‖ ≤ C

(
4mj

4mj + κ
+ sup

β
Nj(bαβ)

)
.

It remains to choose j so that Nj(bαβ) is small enough, then choose κ large
enough.
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