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Abstract

Abstract

The first order Cauchy-Riemann equations have long been used in the
study of harmonic boundary value problems in the plane. The Dirac
operator can sometimes be employed in higher dimensions.

First order systems have provided insight into the solution of the Kato
square-root problem for elliptic operators. In recent joint work with
Andreas Axelsson and Pascal Auscher, we show how they can also be
used to study the solvability of elliptic equations with square integrable
boundary conditions. I shall survey this chain of ideas.
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Self Adjoint Operators Spectral Decomposition

Self Adjoint Operators
Let D be a self adjoint operator in a Hilbert space H . By the
spectral theorem, the decomposition of the real line

R = {0} ∪ R+
∪ R−

leads to a spectral decomposition

H = N (D)
⊥
⊕HD,+

⊥
⊕HD,−

where

N (D) = {u ∈ H ; Du = 0} = null space of D

HD,+ = {u ∈ R(D) ; Du =
√

D2u} = positive eigenspace of D

HD,− = {u ∈ R(D) ; Du = −

√

D2u} = negative eigenspace of D

R(D) = closure of the range of D
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Self Adjoint Operators Spectral Decomposition

Spectral Decomposition

Associated with the spectral decomposition

H = N (D)
⊥
⊕HD,+

⊥
⊕HD,−

I = P0 + P+ + P−

sgn(D) = P+ − P−

are orthogonal spectral projections P0 , P±
and the signum operator sgn(D)
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Self Adjoint Operators Evolution Equations

Given u ∈ H , consider the evolution equation E
∂U

∂t
(t) + DU(t) = 0

lim
t→0

U(t) = u ∈ H

If u ∈ HD,+ then E has a unique solution U ∈ C1
b
(R+,H) :

U(t) = e
−tD

u , 0 < t < ∞

If u ∈ HD,− then E has a unique solution U ∈ C1
b
(R−,H) :

U(t) = e
−tD

u , −∞ < t < 0

If u ∈ N (D) then E has a unique solution U ∈ C1
b
(R,H) :

U(t) = u , −∞ < t < ∞

In each case, �U(t)� ≤ �u� for all t . Note: C1
b

= {U ∈ C1; u� ∈ L∞}
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Self Adjoint Operators Motivating Example

Motivating Example

H = L2(R) with inner product (u, v) =
�∞

0 u(x)v(x) dx

and norm �u�2 = (u, u) =
�∞

0 |u(x)|2 dx

D = 1
i
∂x = 1

i

∂
∂x

with domain

D(D) = W
1,2(R) = {u ∈ L

2(R) ; ∂xu ∈ L
2(R)}

Note that N (D) = {0} and R(D) = L2(R) so the spectral
decomposition

H = N (D)
⊥
⊕HD,+

⊥
⊕HD,−

becomes
L

2(R) = L
2
D,+

⊥
⊕ L

2
D,−

where

L
2
D,+ = {u ∈ L

2(R) ; 1
i
∂xu =

�
−∂x

2
u }

L
2
D,− = {u ∈ L

2(R) ; 1
i
∂xu = −

�
−∂x

2
u }
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Self Adjoint Operators Motivating Example

Now
L

2(R) = L
2
D,+

⊥
⊕ L

2
D,−

is the usual Hardy space decomposition of L2(R) as

L
2
D,+ = {u ∈ L

2(R) ; 1
i
∂xu =

�
−∂x

2
u }

= {u ∈ L
2(R) ; ξû(ξ) = |ξ|û(ξ) }

= {u ∈ L
2(R) ; sppt û(ξ) ⊂ [0,∞) }

= positive Hardy space of L
2(R)

with û denoting the Fourier transform of u , and

L
2
D,− = {u ∈ L

2(R) ; 1
i
∂xu = −

�
−∂x

2
u }

= {u ∈ L
2(R) ; ξû(ξ) = −|ξ|û(ξ) }

= {u ∈ L
2(R) ; sppt û(ξ) ⊂ (−∞, 0] }

= negative Hardy space of L
2(R)
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Self Adjoint Operators Motivating Example

Motivating Example

The evolution equation E for D = 1
i
∂x acting in H = L2(R) is

∂U

∂t
(t) + 1

i
∂xU(t) = 0

lim
t→0

U(t) = u ∈ L
2(R)

i.e.

∂U

i ∂t
(t , x) =

∂U

∂x
(t , x)

lim
t→0

U(t) = u ∈ L
2(R)

namely the Cauchy-Riemann equation for U as a function of x + it
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Self Adjoint Operators Motivating Example

Motivating Example
So if u ∈ L2

D,+ then U(t) = e−tDu , 0 < t < ∞ is the unique bounded
analytic function in the upper half plane with L2 boundary value u on
the real axis.

If u ∈ L2
D,− then U(t) = e−tDu , −∞ < t < 0 is the unique bounded

analytic function in the lower half plane with L2 boundary value u on
the real axis.

In each case, �U(t)�2 ≤ �u�2 for all t .

The projections P± on the Hardy spaces are limits of the Cauchy
integrals, and sgn(D) = P+ − P− = H , the Hilbert transform:

P±u(x) = ± lim
τ→0

i

2π

� ∞

−∞

u(y)

x ± iτ − y
dy

Hu(x) = p.v.
i

π

� ∞

−∞

u(y)

x − y
dy
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Perturbed Self Adjoint Operators Basic Facts

Perturbed Self Adjoint Operators
Let D be a self adjoint operator in a Hilbert spaceH , and suppose
that B is a bounded strictly accretive operator in H . Then DB is
an ω - bisectorial operator for some ω < π/2 i.e.
σ(DB) ⊂ Sω = Sω+ ∪ Sω− and �(DB − ζI)−1� ≤ C/dist(ζ, Sω)

Sω+

Sω−

ω

(Bu,u)
�u�2

C

0
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Perturbed Self Adjoint Operators Spectral Decomposition

Spectral Decomposition
Also H = N (DB)⊕R(D) (non-orthogonal)

Main Question: Is there a spectral decomposition

H = N (DB)⊕HDB,+ ⊕HDB,−

I = P
B

0 + P
B
+ + P

B
− where

HDB,+ = {u ∈ R(D) ; DBu =
�

(DB)2 u} = positive eigenspace of DB

HDB,− = {u ∈ R(D) ; DBu = −

�
(DB)2 u} = negative eigenspace of DB

Equivalent Question: Is

�

�
(DB)2 u� ≈ �DBu� ?

[ meaning C−1�
�

(DB)2 u� ≤ �DBv� ≤ C�
�

(DB)2 u� ∀u ]

Note: Theory and questions for BD are similar, as BD = B(DB)B−1
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Perturbed Self Adjoint Operators Lipschitz Curves

Main Question: Is there a spectral decomposition

H = N (D)⊕HBD,+ ⊕HBD,− ?

or equivalently, is �
�

(BD)2 u� ≈ �BDu� ?

1. YES when D = 1
i
∂x in H = L2(R) and B is multiplication by a

bounded function b ∈ L∞(R) with Re b(x) ≥ κ > 0 . For then
BD = b(x)1

i

∂
∂x

= 1
i

∂
∂z
|γ where γ is the Lipschitz curve parametrised

by g : R → C and g�(x) = 1/b(x)

C
!

R

Lipschitzg

z

x
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Perturbed Self Adjoint Operators Lipschitz Curves

Then N (D) = {0} and

L
2(R) = L

2
BD,+ ⊕ L

2
BD,−

is equivalent to the Hardy space decomposition

L
2(γ) = L

2
+(γ)⊕ L

2
−(γ)

A function u ∈ L2
±(γ) is the boundary value of a bounded analytic

function in the region Ω± above or below γ . The spectral projections
PB
± are limits of Cauchy integrals, and sgn(BD) = PB

+ + PB
− = Cγ is

the Cauchy integral on γ

P
B
±u(z) = ± lim

τ→0

i

2π

�

γ

u(w)

z ± iτ − w
dw

Cγu(z) = p.v.
i

π

�

γ

u(w)

z − w
dw

The boundedness of these operators, and hence the spectral - or
Hardy decomposition, is a theorem of harmonic analysis
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Perturbed Self Adjoint Operators Lipschitz Curves

Historical Interlude I

In the 1960’s, Zygmund and Calderón made fundamental contributions
to the theory of singular integrals.

Zygmund asked whether the singular Cauchy integral on a Lipschitz
curve,

Cγu(z) = p.v.
i

π

�

γ

u(w)

z − w
dw = lim

�→0

i

π

�

{w∈γ;|w−z|>�}

u(w)

z − w
dw

is defined at almost every point x ∈ γ .

Calderón asked whether Cγ : L2(γ) → L2(γ) is bounded.
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Perturbed Self Adjoint Operators Lipschitz Curves

Alberto Calderón 

1920 – 1998 
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Perturbed Self Adjoint Operators Lipschitz Curves

Historical Interlude I

First commutator theorem: [Calderón 1965]

Higher commutator theorems: [Coifman, Meyer 1975, 1978]

Cγ : L2(γ) → L2(γ) is bounded on curves with small Lipschitz
constants: [Calderón, 1977]

Cγ : L2(γ) → L2(γ) is bounded on all Lipschitz curves:
[Coifman-McIntosh-Meyer 1982] In this paper the authors also
solve the one-dimensional Kato square root problem

T (b) Theorem of [David-Journé-Semmes 1986]
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Perturbed Self Adjoint Operators Lipschitz Curves

Ω+

Ω−

R1+n

x
Σ

Rn

x0

The L2 bounds on Cauchy integrals generalise immediately to give L2

bounds on singular integrals on Lipschitz surfaces, e.g. the singular
double layer potential operator

TΣu(x) = p.v.
2
σn

�

Σ

(x − y).ν(y)

|x − y |n+1 u(y) dy

They do NOT immediately generalise to provide a proof of the higher
dimensional Kato problem
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Perturbed Self Adjoint Operators Counterexample

Spectral Decomposition

Main Question: Is there a spectral decomposition

H = N (DB)⊕HDB,+ ⊕HDB,−

I = P
B

0 + P
B
+ + P

B
−

2. NO Not always. There are counterexamples.

Operator theory is not enough. Harmonic analysis of functions is
needed to prove the quadratic estimates.
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A Higher Dimensional Operator Grad Plus Div

A Higher Dimensional Example

From now on D =

�
0 div
−∇ 0

�
in H =

L2(Rn)
⊕

L2(Rn, Cn)

i.e. Du =

�
0 div
−∇ 0

� �
u0
ũ

�
=

�
div ũ

−∇u0

�

Observe that D is self adjoint,

N (D) =

��
0
ũ

�
; div ũ = 0

�
; R(D) =

L2(Rn)
⊕

R(∇)
and

D
2 =

�
−∆ 0
0 −∇div

�
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A Higher Dimensional Operator Grad Plus Div

A Higher Dimensional Operator

Notation:

Define ∇ : L2(Rn) → L2(Rn, Cn) by

∇f =

�
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

�

for f ∈ D(∇) = W 1,2(Rn) = {f ∈ L2(Rn) ; ∂f

∂xj
∈ L2(Rn) for each j}

and define div : L2(Rn, Cn) → L2(Rn) by

div u =
∂u1
∂x1

+
∂u2
∂x2

+ · · ·+
∂un

∂xn

for u = (u1, u2, . . . , un) ∈ D(div ) = {u ∈ L2(Rn, Cn) ; div u ∈ L2(Rn)}

Note: div = −∇∗ and div∇ = ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n
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A Higher Dimensional Operator Grad Plus Div

A Higher Dimensional Example

From now on D =

�
0 div
−∇ 0

�
in H =

L2(Rn)
⊕

L2(Rn, Cn)

i.e. Du =

�
0 div
−∇ 0

� �
u0
ũ

�
=

�
div ũ

−∇u0

�

Observe that D is self adjoint,

N (D) =

��
0
ũ

�
; div ũ = 0

�
; R(D) =

L2(Rn)
⊕

R(∇)
and

D
2 =

�
−∆ 0
0 −∇div

�
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A Higher Dimensional Operator Spectral Decomposition

Spectral Decomposition

Recall that u belongs to the positive eigenspace of D provided
u ∈ R(D) and Du =

√
D2 u . That is ũ ∈ R(∇) and

�
div ũ

−∇u0

�
=

� √
−∆ 0
0

√
−∇div

� �
u0
ũ

�
=

� √
−∆ u0√
−∇div ũ

�

This holds if and only if ũ = −∇(−∆)−1/2u0

Similarly u belongs to the negative eigenspace of D if and only if

ũ = ∇(−∆)−1/2
u0
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A Higher Dimensional Operator Spectral Decomposition

Spectral Decomposition

So the spectral decomposition for D =

�
0 div
−∇ 0

�
is

H = N (D)
⊥
⊕HD,+

⊥
⊕HD,−

where

N (D) =

��
0
ũ

�
; div ũ = 0

�

HD,+ =

��
u0
ũ

�
; ũ = −∇(−∆)−1/2

u0

�

HD,− =

��
u0
ũ

�
; ũ = ∇(−∆)−1/2

u0

�
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A Higher Dimensional Operator Evolution Equation

Evolution Equation

The evolution equation E for D =

�
0 div
−∇ 0

�
is

∂U

∂t
(t) + DU(t) = 0

lim
t→0

U(t) = u ∈ L
2(R)

i.e. U =

�
U0
Ũ

�
satisfies the generalized Cauchy-Riemann equations

∂U0
∂t

(t , x) + div Ũ(t , x) = 0
∂Ũ

∂t
(t , x)−∇U0(t , x) = 0

lim
t→0

U(t) = u ∈ L
2(R)
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A Higher Dimensional Operator Evolution Equation

If u ∈ HD,+ i.e. ũ = −∇(−∆)−1/2u0 , then E has a unique solution
U ∈ C1

b
(R+,H) :

U(t) = e
−tD

u , 0 < t < ∞

If u ∈ HD,− i.e. ũ = +∇(−∆)−1/2u0 , then E has a unique solution
U ∈ C1

b
(R−,H) :

U(t) = e
−tD

u , −∞ < t < 0

If u ∈ N (D) i.e. div ũ = 0 , then E has a unique solution
U ∈ C1

b
(R,H) :

U(t) = u , −∞ < t < ∞

In each case, �U(t)� ≤ �u� for all t .
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A Perturbed Higher Dimensional Operator Perturbed Grad Plus Div

First Perturbed Problem in H = L2(Rn)⊕ L2(Rn, Cn) :

DB =

�
0 div
−∇ 0

� �
I 0
0 A

�
=

�
0 div A

−∇ 0

�
where

A ∈ L∞(Rn,L(Cn)) with Re(A(x)) ≥ κI > 0 , so that B =

�
I 0
0 A

�
is

a bounded strictly accretive operator in H . Note:

DBu =

�
0 div A

−∇ 0

� �
u0
ũ

�
=

�
div Aũ

−∇u0

�
and

(DB)2 =

�
L 0
0 −∇div A

�
where L = −div A∇

i.e. L is the second order divergence form elliptic operator

L = −div A∇ = −
�

n

j,k=1 ∂jAj,k (x)∂k
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Spectral Decomposition

Main Question: Is there a spectral decomposition for

DB =

�
0 div A

−∇ 0

�
: H = N (DB)⊕HDB,+ ⊕HDB,− ?

Equivalent Question: Is �
�

(DB)2 u� ≈ �DBu� ?

Equivalent Question: Is
����

� √
L u0√

−∇div A ũ

����� ≈
����

�
div A ũ

−∇u0

����� ?

Equivalent Question: Is �
√

L u0� ≈ �∇u0� ?

3. YES This is the Square Root Problem of Kato
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Historical Interlude II

Let L = −div A∇ be the second order divergence form elliptic operator

Lu(x) = −

n�

j,k=1

∂
∂xj

(Ajk
∂u

∂xk
)(x)

with domain D(L) = {u ∈ W 1,2(Rn) ; Lu ∈ L2(Rn) }
where
A ∈ L∞(Rn,L(C1+n)) , Re(A(x)ζ , ζ) ≥ κ|ζ|2 a.e. x ∈ Rn , ∀ζ ∈ Cn

for some κ > 0 .

Note that the set of all (A(x)ζ , ζ)
|ζ|2 is contained in a compact subset of

the right half plane, and therefore in a sector Sω+ for some ω < π/2 .

i.e. A is a bounded strictly accretive operator in L2(Rn)
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Historical Interlude II: Properties of the Operator

(Lu, u) = (A∇u,∇u) ∈ Sω+ for all u ∈ D(L) ⊂ W 1,2(Rn)

σ(L) ⊂ Sω+ (Lax-Milgram theorem)

Together these mean that L is ω -accretive in L2(Rn)

L generates a contraction semigroup e−tL in L2(Rn)

L has unique fractional powers Lα ( 0 < α < 1 ) which are
αω -accretive

In particular, there exists a unique ω/2 -accretive operator
√

L = L1/2 such that
√

L
√

L = L

See Kato’s book on "Perturbation Theory for Linear Operators" for
details.
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Tosio  Kato  1917 – 1999 
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Historical Interlude II: Selfadjoint Operators

When A = A∗ (i.e. ω = 0 ), then L = L∗ and
√

L = (
√

L)∗ . In this

case D(
√

L) = W
1,2(Rn) with �

√
L u� ≈ �∇u� because

�
√

L u�
2
2 = (

√
L u,

√
L u) = (Lu, u) = (−div A∇u, u)

= (A∇u,∇u) ≈ �∇u�
2
2
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Historical Interlude II: Kato’s Question [1961]

When A �= A∗ (i.e. 0 < ω < π/2 ), is D(
√

L) = W
1,2(Rn) with

�
√

L u� ≈ �∇u� ?

n = 1 : Yes [Coifman, McIntosh, Meyer 1982]

�A− I� < � : Yes [Coifman, Deng, Meyer 1983], [Fabes, Jerison,
Kenig 1984]

Many partial results. Systemetized in book [Auscher,
Tchamitchian 1998]

n = 2 : Yes [Hofmann, Mc 2000]

n ≥ 3 , under Gaussian kernel bounds: Yes [H, Lacey, Mc 2002]

n ≥ 3 : Yes [A, H, L, Mc, T 2002]
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Historical Interlude II: Neumann Problem





f 1

g
1
2+ 1

3

1
6





R1+n
+

Rn

t

(t,x)
t

x

1

Recall L = −div A∇ = −

n�

j,k=1

∂jAj,k (x)∂k

where A ∈ L∞(Rn,L(Cn)) with Re(A(x)) ≥ κI > 0 ,
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A Perturbed Higher Dimensional Operator Spectral Decomposition

Neumann Problem for ∂2F

∂t2 + div A∇F = 0 on R1+n
+

The Neumann problem N on the upper half space

R1+n

+ = {(t , x) ; x ∈ Rn , t > 0}

with L2 boundary data is:

∂2F

∂t2 (t , x)− LF (t , x) = 0 , t > 0

− lim
t→0

∂F

∂t
(t) = w ∈ L

2(Rn)

Consequence of Kato Estimate [Kenig]: The unique solution F (up to
constants) with ∂F

∂t
, ∂F

∂xj
∈ C1

b
(R+ , L2(Rn)) is

F (t) = (
√

L)−1
e
−t
√

L
w so that

∂F

∂t
(t) = −e

−t
√

L
w with

�∇xF (t)�2 ≈ �
√

LF (t)�2 =
���e

−t
√

L
w

���
2

=

����
∂F

∂t
(t)

����
2
≤ �w�2 ∀t > 0
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A Perturbed Higher Dimensional Operator Evolution Equation

Evolution Equation

The evolution equation E for DB =

�
0 div A

−∇ 0

�
is

∂U

∂t
(t) + DBU(t) = 0

lim
t→0

U(t) = u ∈ L
2(R)

i.e. U =

�
U0
Ũ

�
satisfies

∂U0
∂t

(t , x) + div A Ũ(t , x) = 0
∂Ũ

∂t
(t , x)−∇U0(t , x) = 0

lim
t→0

U(t) = u ∈ L
2(R)

Modification of the material for D gives:
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A Perturbed Higher Dimensional Operator Evolution Equation

If u ∈ HDB,+ i.e. ũ = −∇L−1/2u0 , then E has a unique solution
U ∈ C1

b
(R+,H) :

U(t) = e
−tDB

u , 0 < t < ∞

If u ∈ HDB,− i.e. ũ = +∇L−1/2u0 , then E has a unique solution
U ∈ C1

b
(R−,H) :

U(t) = e
−tDB

u , −∞ < t < 0

If u ∈ N (DB) i.e. div A ũ = 0 , then E has a unique solution
U ∈ C1

b
(R,H) :

U(t) = u , −∞ < t < ∞

In each case �U(t)� � �u� for all t
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A Perturbed Higher Dimensional Operator Evolution Equation

Neumann Problem and Evolution Equation
Recall the Neumann problem with L2 boundary data is:

∂2F

∂t2 (t , x) + div A∇F (t , x) = 0 , t > 0

− lim
t→0

∂F

∂t
(t) = w ∈ L

2(Rn)

Let U =

�
U0

Ũ

�
=

�
∂F

∂t

∇F

�

Equivalent Claim: There exists a unique function U ∈ C1
b
(Rn,H) s. th.

∂

∂t

�
U0

Ũ

�
+

�
0 div A

−∇ 0

� �
U0

Ũ

�
=

�
∂U0
∂t

+ div AŨ

∂Ũ

∂t
−∇U0

�
= 0 on R1+n

+

Ũ(t) ∈ R(∇)

lim
t→0

U0(t) = −w
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A Perturbed Higher Dimensional Operator Evolution Equation

Neumann Problem and Evolution Equation

Same Claim: There exists a unique function U ∈ C1
b
(Rn,H) such that

∂U

∂t
+ DBU = 0 where B =

�
I 0
0 A

�

U(t) ∈ R(D) and lim
t→0

U0(t) = −w

Equivalent Claim: There exists a unique function

u =

�
u0
ũ

�
∈ HDB,+

such that u0 = −w . For then U(t) = e−tDBu is the unique solution of
the evolution equation E
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A Perturbed Higher Dimensional Operator Evolution Equation

Neumann Problem and Evolution Equation

Solution:



∂F

∂t
(t)

−∇F (t)



 = U(t) = e
−tDB

u = e
−tDB



 −w

∇L−1/2w





with bound

�
∂F

∂t
(t)�2 + �∇F (t)�2 ≈ �U(t)�2 � �u�2 ≈ �w�2

Exercise: Show that this agrees with the previous expression

F (t) = (
√

L)−1
e
−t
√

L
w

where L = −div A∇
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General Perturbed Higher Dimensional Operator Spectral Decomposition

Spectral Decomposition

More General Perturbed Problem in H = L2(Rn)⊕ L2(Rn, Cn) :

DB =

�
0 div
−∇ 0

� �
B0,0 B0,k

Bj,0 Bj,k

�

where B ∈ L∞(Rn,L(C⊕ Cn)) with Re(B(x)) ≥ κI > 0 , so that B is
a bounded strictly accretive operator in H .

Main Question: Is there a spectral decomposition

H = N (DB)⊕HDB,+ ⊕HDB,− ?

where
HDB,± = {u ∈ R(D) ; DBu = ±

�
(DB)2 u}

4. YES The technology of the solution of the Kato Square Root
Problem can be extended to prove this [Axelsson, Keith, Mc 2006]
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General Perturbed Higher Dimensional Operator Evolution Equation

Given u ∈ H , consider the evolution equation E
∂U

∂t
(t) + DBU(t) = 0

lim
t→0

U(t) = u

If u ∈ HDB,+ then E has a unique solution U ∈ C1
b
(R+,H) :

U(t) = e
−tDB

u , 0 < t < ∞

If u ∈ HDB,− then E has a unique solution U ∈ C1
b
(R−,H) :

U(t) = e
−tDB

u , −∞ < t < 0

If u ∈ N (DB) then E has a unique solution U ∈ C1
b
(R,H) :

U(t) = u , −∞ < t < ∞

In each case, �U(t)� � �u� for all t .
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General Perturbed Higher Dimensional Operator Evolution Equation

Historical Interlude III: First Order Systems

First order systems and the Kato problem in one dimension:
[Auscher, Nahmod, McIntosh 1997]

Quadratic estimates and functional calculi of perturbed Dirac
operators: [Axelsson, Keith, Mc 2006] These results imply the

spectral decomposition for DB =

�
0 div
−∇ 0

� �
B0,0 B0,k

Bj,0 Bj,k

�

For a more direct proof, see also [Auscher-Axelsson-Mc 2010a]

What is needed is
� ∞

0

����
tDB

I + t2(DB)2 u

����
2

dt

t
≈ �u�

2
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General Perturbed Higher Dimensional Operator Evolution Equation

The Quadratic Estimate

Therefore

�

�
(DB)2 u�

2
≈

� ∞

0

����
tDB

I + t2(DB)2

�
(DB)2 u

����
2

dt

t

≈

� ∞

0

�����
t
�

(DB)2

I + t2(DB)2 DB u

�����

2
dt

t

≈ �DB u�
2

We need to prove

� ∞

0

����
tDB

I + t2(DB)2 u

����
2

dt

t
≤ C�u�

2

as the reverse direction is a dual result.
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General Perturbed Higher Dimensional Operator Evolution Equation

The quadratic estimate

� ∞

0

����
tDB

I + t2(DB)2 u

����
2

dt

t
≤ C�u�

2

is reduced to proving the Carleson measure bounds like
� �(Q)

0

�

Q

|γt(x)|2
dxdt

t
≤ C vol(Q)

for all dyadic cubes Q ⊂ Rn , where γt(x) ∈ L(C1+n) is defined by

[γt(x)]w =

�
tDB

I + t2(DB)2 w

�
(x) ∀w ∈ C1+n

When n = 1 we can do so with a T (b) argument. For n > 1 we use
a much more complicated local T (b) type proof.
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General Perturbed Higher Dimensional Operator Recent Applications

Recent Applications

To conclude, we consider the Neumann problem N on the upper half
space R1+n

+ with L2 boundary data:

∂
∂t

B0,0(x)∂F

∂t
+ ∂

∂t
B0,k (x)∂kF + ∂jBj,0(x)∂F

∂t
+ ∂jBj,k (x)∂kF = 0 , t > 0

− lim
t→0

�
B0,0

∂F

∂t
(t) +

�
B0,k∂kF

�
= w ∈ L

2(Rn)

where B =

�
B0,0 B0,k

Bj,0 Bj,k

�
∈ L∞(Rn,L(C⊕ Cn)) , Re(B(x)) ≥ κI > 0

Definition: we say N is well-posed if there exists a unique solution F

(up to constants) with ∂F

∂t
, ∂F

∂xj
∈ C1

b
(R+ , L2(Rn)) and

��∂F

∂t
(t)

��
2 + �∇F (t)�2 � �w�2
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General Perturbed Higher Dimensional Operator Recent Applications

Neumann Problem with t -independent coefficients

Theorem (Auscher-Axelsson-McIntosh 2010)
N is well posed if and only if the mapping

H
DB̂,+ → L

2(Rn)

u �→ u0 = −w

is an isomorphism, where

B̂ =

�
I 0

Bj,0 Bj,k

� �
B0,0 B0,k

0 I

�−1

.
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General Perturbed Higher Dimensional Operator Recent Applications

Neumann Problem with t -independent coefficients

Corollary: The set of B ∈ L∞(Rn,L(C1+n)) for which N is well posed,
is an open set.

Case 1: When B =

�
I 0
0 A

�
, then B̂ = B and u =

�
u0

−∇L−1/2u0

�

so the fact that �u� ≈ �u0� is a consequence of the Kato Square Root
Problem for L = −div A∇ .

Case 2: When B = B∗ , then a simple Rellich argument allows us to
prove that �u� ≈ �u0� and hence that N is well-posed.

Historical Comments: When B is real-symmetric, then the
well-posedness of N was established in [Kenig-Pipher 1993]. Earlier
results on related problems were established by Dahlberg, Jerison and
Kenig. See the book [Kenig 1994].

Counterexample: There exist B for which N is NOT well-posed
[Kenig-Rule 2009].
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