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Abstract

The first order Cauchy-Riemann equations have long been used in the
study of harmonic boundary value problems in the plane. The Dirac
operator can sometimes be employed in higher dimensions.

First order systems have provided insight into the solution of the Kato
square-root problem for elliptic operators. In recent joint work with
Andreas Axelsson and Pascal Auscher, we show how they can also be
used to study the solvability of elliptic equations with square integrable
boundary conditions. | shall survey this chain of ideas.
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Self Adjoint Operators

Let D be a self adjoint operator in a Hilbert space H . By the
spectral theorem, the decomposition of the real line

R={0} URtUR"

leads to a spectral decomposition

H=N(D)& Hp. & Hop._
where
N(D) = {u e H; Du= 0} = null space of D
Hp+ ={ueR(D); Du= \/ﬁu} = positive eigenspace of D
Hp,— ={ueR(D); Du= —\/ﬁu} = negative eigenspace of D
R(D) = closure of the range of D
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Spectral Decomposition

Associated with the spectral decomposition

1 1
H = N(D) S HD7+ S?) HD7,

I= P + PL + P
sgn(D) = P, — P_

are orthogonal spectral projections Py , P+
andthe  signum operator sgn(D)
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Self Adjoint Operators Evolution Equations

Given u € H , consider the evolution equation E
9U(t) + DU(t) = 0
tlimo Ut)y=ue™H

@ If ue Hp then E has a unique solution U € C}(R*,H):

Ut)y=ePu, 0<t<oo

@ If ue Hp_ then E has a unique solution U € C} (R, H):

Ut)=e®Pu, —co<t<0

e If ue N(D) then E has a unique solution U € C}(R, H):
Ut)=u, -oco<t<oo
In each case, |U(t)|| < |lu|| forall t. Note: C} ={Ue C'";u € L~}
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Motivating Example
Motivating Example

e H=L2R) with inner product (u,v) = [;7 u(x)v(x) dx
and norm ||ul|® = = o7 lu(x)|? dx
e D=19,=1 5 with domain

D(D) = W"3(R) = {u € L3(R); dyu € L3(R)}

@ Note that A(D) = {0} and R(D) = L3(R) so the spectral
decomposition

1 1
H = N(D) @ HD7+ @ HD,,
becomes .
[B(R) = L5, & L5 _

L%A- ={ue LZ(]R); }8Xu: \/j)fu}
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Self Adjoint Operators Motivating Example

Now N
[B(R) = L5, & L5 _
is the usual Hardy space decomposition of L?(R) as

15, ={uel®R); tou=/-0"u}
= {u e LB(R); £0(¢) = |£10(¢) }
= {u e LB3(R); sppti(¢) C [0,00) }
= positive Hardy space of L?(R)

with & denoting the Fourier transform of u , and

L5 _ ={uel®R); tou=—\/-0lu}
= {u e L3(R); €0(€) = —[é|ae) }
= {u e L*(R); spptI(¢) C (—o0,0] }
= negative Hardy space of L2(R)
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Motivating Example
Motivating Example

The evolution equation E for D = 19, acting in H = L2(R) is

9u(t)+ tocu(t) =0

lim U(t) = u e L2(R)

ou ou
iiat(t?X) - W(ta X)

lim U(t) = u e L2(R)

namely the Cauchy-Riemann equation for U as a function of x + it
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g B 5o
Motivating Example

Soif ue L%L+ then U(t) = e Pu, 0 < t < oo is the unique bounded
analytic function in the upper half plane with L? boundary value u on
the real axis.

If uel? then U(t)=e Pu, —co <t <0 is the unique bounded
analytic function in the lower half plane with L? boundary value u on
the real axis.

In each case, [[U(t)|2 < |lullz forall t.

The projections P, on the Hardy spaces are limits of the Cauchy
integrals, and sgn(D) = P, — P_ = H, the Hilbert transform:

~im [T uy)
Piu(x)—iTtho 27r/oo xiir—ydy

o uly)
Hu(x)_p.v.ﬁ/OO x—ydy
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Perturbed Self Adjoint Operators Basic Facts

Perturbed Self Adjoint Operators

Let D be a self adjoint operator in a Hilbert space H , and suppose
that B is a bounded strictly accretive operator in . Then DB is
an w - bisectorial operator for some w < /2 i.e.

o(DB) c S, = S,.US,_ and [(DB—¢l)~'|| < C/dist(¢, S.))

C
Sut
Sw— (Bu,u)
° 2
@ [[ul
T~
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___Poriuibed Self Adjoint Operators Rl el
Spectral Decomposition

Also H = N(DB) @ R(D) (non-orthogonal)
Main Question: Is there a spectral decomposition
H =N(DB)® Hps+ ® Hpa, -
I= P§ + P} + P where

Hps = {u € R(D); DBu = \/(DB)? u} = positive eigenspace of DB
Hps,— = {u € R(D); DBu = —1/(DB)? u} = negative eigenspace of DB
Equivalent Question: Is

I/ (DB u|l ~ |DBu|| 7

[ meaning C~'[|\/(DB)? u|| < | DBv|| < C|lv/(DB)2 u|| Vu ]
Note: Theory and questions for BD are similar, as BD = B(DB)B™"
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Perturbed Self Adjoint Operators Lipschitz Curves

Main Question: Is there a spectral decomposition
H=N(D) & Hpp+ @ Hpp,— ?

or equivalently, is ||\/(BD)? u|| = ||BDul| ?
1. YES when D = 10, in H = [3(R) and B is multiplication by a
bounded function b € L*°(R) with Re b(x) > x > 0. For then

BD = b(x )/6x = /82|’Y where ~ is the Lipschitz curve parametrised
by g: R— C and g'(x) = 1/b(x)

X R
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Then N (D) = {0} and

[*(R) = Lgp . @ L5p _
is equivalent to the Hardy space decomposition
L2(y) = LR(M) @ L2(v)

A function u € L3 () is the boundary value of a bounded analytic
function in the region Q. above or below ~. The spectral projections
P% are limits of Cauchy integrals, and sgn(BD) = PE + PE = C, is
the Cauchy integral on ~

. i u(w)
P8u(z) =+ lim — | ————
£u(2) TILnO 271'[Y z+tir — WdW

oy L[ uw)
Cyu(z) =p.v. W[y E— dw

The boundedness of these operators, and hence the spectral - or
Hardy decomposition, is a theorem of harmonic analysis
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Lipschitz Curves
Historical Interlude |

In the 1960’s, Zygmund and Calder6n made fundamental contributions
to the theory of singular integrals.

Zygmund asked whether the singular Cauchy integral on a Lipschitz
curve,

Cyu(z) =p.v. i/ u(w) dw = lim i/ u(w) dw
T Jy {

zZ— W e—0 T we;|w—z|>€} zZ— W

is defined at almost every point x € ~.
Calderon asked whether C, : L2(y) — L2(v) is bounded.
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Alberto Calderon

1920 — 1998

Yy )
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Lipschitz Curves
Historical Interlude |

@ First commutator theorem: [Calderén 1965]
@ Higher commutator theorems: [Coifman, Meyer 1975, 1978]

@ C,:L3(y) — L3(v) is bounded on curves with small Lipschitz
constants: [Calderén, 1977]

@ C,:L%(y) — L3(v) is bounded on all Lipschitz curves:
[Coifman-MclIntosh-Meyer 1982] In this paper the authors also
solve the one-dimensional Kato square root problem

@ T(b) Theorem of [David-Journé-Semmes 1986]
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Perturbed Self Adjoint Operators Lipschitz Curves

1
X0 RF7

Q,

Rn

The L2 bounds on Cauchy integrals generalise immediately to give L2

bounds on singular integrals on Lipschitz surfaces, e.g. the singular

double layer potential operator

2 / (x—y)v(y)
>

Teu(x) = pv. =
ZU(X) p.v on |X_y|n+1

u(y) dy

They do NOT immediately generalise to provide a proof of the higher
dimensional Kato problem
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Spectral Decomposition

Main Question: Is there a spectral decomposition
H =N(DB)® Hps+ ® Hps,—
I= P¢ + PR + PB

2. NO Not always. There are counterexamples.

Operator theory is not enough. Harmonic analysis of functions is
needed to prove the quadratic estimates.
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i s Bl
A Higher Dimensional Example

. LZ(R”)
Fromnowon D = { _Ov d(')v } n H= D
LQ(R”,C”)

o oo=[ O v [w] ]

Observe that D is self adjoint,

N(D){[g};divuo} . RD)= @ and
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A Higher Dimensional Operator

Notation:
Define V : L2(R") — L2(R",C") by
of of of
f=(—,—,...,—
v <8x1’8x2’ ’8x,,>

for f € D(V) = W'2(R") = {f € L?(R"); a% € L2(R") for each j}

and define div : L2(R",C") — L2(R") by

.o Oup 0w oup
divu = 0X1 + OXo + * OXn
for u= (uy, Us, ..., us) € D(div) = {u € L3(R",C"); divu € L?(R")}
. H o * . o - 82 82 82
Note: div = -V* and dlvV_A_a—ngua—xzer...jLaX%
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i s Bl
A Higher Dimensional Example

. LZ(R”)
Fromnowon D = { _Ov d(')v } n H= D
LQ(R”,C”)

o oo=[ O v [w] ]

Observe that D is self adjoint,

N(D){[g};divuo} . RD)= & and
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Spectral Decomposition

Recall that u belongs to the positive eigenspace of D provided
uecR(D) and Du=vVD?u. Thatis I € R(V) and

div i |V —A 0 U | V=AU
—Vuy | 0 +-Vdiv o | —vdiv U
This holds if and only if &1 = —V(—A)~"/2y,
Similarly u belongs to the negative eigenspace of D if and only if

0=v(-A)"2y
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Spectral Decomposition

So the spectral decomposition for D = [ 0 div ] is

-V 0

€L L
H = N(D) @ HD’+ @ HD7,

where
N(D) = {2 ;divEl:O}
Hp. = { Ls’ } U= —V(—A)1/2u0}
Hp_ = { 2 } U= V(—A)_Vzuo}
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Evolution Equation
Evolution Equation

The evolution equation E for D = { _Ov dév is
9U(t) + DU(t) = 0
i =
lim U(t) = u e L2(R)
ie. U= { %O ] satisfies the generalized Cauchy-Riemann equations

9% (t,x) + div U(t,x) = 0
9Y(t,x) — VUo(t,x) =0
lim U(t) = u e L2(R)
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A Higher Dimensional Operator Evolution Equation

If ue Hp, ie. U=-V(—A)""2uy, then E has a unique solution
Ue CGy(R".H): Ut)=e®Pu, 0<t<oo

If ue Hp_ ie. U=+V(-A)""2yy, then E has a unique solution
Ue Cl(R™,H):
U

—
=
N
I
(D\
S

u, —-oo<t<0

If ue N(D) i.e. diviu =0, then E has a unique solution
Ue Cl(R,H):
Ut)=u, —-oco<t<x

Ineach case, |[U(t)|| < |ju|]| forall t.
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A Perturbed Higher Dimensional Operator Perturbed Grad Plus Div

First Perturbed Problem in H = L2(R") @ L?(R",C"):

oo [ %][3 2] %

v 0 ||0 A vV 0 }Where

A€ [*(R" L(C")) with Re(A(x)) > kI >0, sothat B = [ (l) ,(2\ } is
a bounded strictly accretive operator in H . Note:

| 0 divA up | _ | divAu
on-[ & 4 |[3]-[ 2] =

o | L 0 o
(DB)* = [ 0 _vdivA where L = —divAV

i.e. L isthe second order divergence form elliptic operator
L=—divAvV = — Zﬁk:1 8/Aj,k(X)8k
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Spectral Decomposition

Main Question: Is there a spectral decomposition for

DB = { _OV d':)’A] . H=N(DB)®Hps. ®Hps_ ?

Equivalent Question: Is ||\/(DB)? u|| ~ ||DBul|| ?

Equivalent Question: Is

[ R |

Equivalent Question: Is ||[VL ug| ~ ||[Vup||  ?
3. YES This is the Square Root Problem of Kato
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Spectral Decomposition
Historical Interlude Il

Let L = —div AV be the second order divergence form elliptic operator

n

Lu(x)=— Y %(Ajk%ﬁjk)(x)

Jk=1

with domain D(L) = {u € W'3(R"); Lu € L?(R")}

where

Ac L=2(R" £L(CHM), Re(A(x)¢, ¢) > k|¢|> a.e. x e R, V¢ € C"
forsome x> 0.

Note that the set of all % is contained in a compact subset of

the right half plane, and therefore in a sector S, for some w < 7/2.

i.e. A is abounded strictly accretive operator in L2(R")
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Historical Interlude Il: Properties of the Operator

o (Lu,u) = (AVu,Vu) e S, forall uec D(L) c WH2(R")
@ o(L) ¢ S,+ (Lax-Milgram theorem)

@ Together these mean that L is w -accretive in L?(R")

@ L generates a contraction semigroup e~ in L?(R")

@ L has unique fractional powers L“ (0 < « < 1 ) which are
aw -accretive

@ In particular, there exists a unique w/2 -accretive operator
VL= L2 suchthat vLVL=L

@ See Kato’s book on "Perturbation Theory for Linear Operators" for
details.

Mclintosh (ANU) First Order Systems Nov 2010 29/49



A Perturbed Higher Dimensional Operator Spectral Decomposition

Tosio Kato 1917 — 1999
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Historical Interlude Il: Selfadjoint Operators

When A= A* (i.e. w=0),then L= L* and v/L = (v/L)*. In this

case

D(VL) = WH3(R")

with |[VLul| ~ |Vu|| because

IVLu|2 = (VLu,VLu) = (Lu, u) = (—div AVu, u)
= (AVu,Vu) ~ |[Vul}3

Mclintosh (ANU)
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Historical Interlude II: Kato’'s Question [1961]

When A # A* (iLe. 0 <w < w/2),is |D(VL) = W'2(R") \with
IVLu|| = [[Vul ?

@ n=1: Yes [Coifman, McIntosh, Meyer 1982]

@ ||[A— /|| < e: Yes [Coifman, Deng, Meyer 1983], [Fabes, Jerison,
Kenig 1984]

@ Many partial results. Systemetized in book [Auscher,
Tchamitchian 1998]

@ n=2: Yes [Hofmann, Mc 2000]

@ n > 3, under Gaussian kernel bounds: Yes [H, Lacey, Mc 2002]

@ n>3:Yes[A H, L, Mc, T 2002]
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Spectral Decomposition
Historical Interlude II: Neumann Problem

14+n
R+

Rn

n
Recall  L=-divAV =— Y ;A (x)0k
Jik=1

where A € L>°(R", £(C")) with Re(A(x)) >kl >0,
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Spectral Decomposition
Neumann Problem for £ 8,2 £ +divAVF =0 on R1*"
The Neumann problem N on the upper half space
R = {(t,x); x € R", t > 0}
with L? boundary data is:

2F

Consequence of Kato Estimate [Kenig]: The unique solution F (up to
constants) with 2F gf € CJ(R*, L2(R"))is

F .
F(t)= (VL) 'e™"w  sothat aa—t(t):—e"ﬁw with
_ oF
9O, = IVEF(@le = o w], = | S| <iwle ve>o0
2
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Evolution Equation
Evolution Equation

The evolution equation E for DB = [ 7Ov dlz)’A } is
99(t) + DBU(t) = 0

lim U(t) = u e L2(R)

ie. U= { LL!? ] satisfies

9% (t,x) +divAU(t,x) = 0
%(tv X) - VUO(ta X) =0
lim U(t) = u e L2(R)

Modification of the material for D gives:
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A Perturbed Higher Dimensional Operator Evolution Equation

If ueHpg, i.e. U=-VL"2uy,then E has a unique solution
Ue Cl(RY H):

Ut)=e ™y, 0<t<oo

If ueHpg,_ i.e. U=+VL "2y, then E has a unique solution
Ue Cl(R™,H):

Ut)=e By, —co<t<0

If ue N(DB) i.e. divAu =0, then E has a unique solution
1 :
UeCRH): Ut)=u, —-oco<t<oo

In each case ||U(1)| < Jjul| forall ¢
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Evolution Equation
Neumann Problem and Evolution Equation

Recall the Neumann problem with L2 boundary data is:

0°F
A (t,x) +divAVF(t,x) =0, t>0
oF . o, n
_}mﬁ(t)_WGL(R)
OF
Let U= L{O = %
u VF

Equivalent Claim: There exists a unique function U € C}(R", H) s. th.

iv A oh A
g l{o n 0 div L{o _ + div U — Oon ]Rl_"“’
ot U -V 0 U — VU,
U(t) e R(V)
tlirrg) Up(t) = —w
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Evolution Equation
Neumann Problem and Evolution Equation

Same Claim: There exists a unique function U € C}(R", H) such that

/I 0
U
%—t+DBU:O where B[O A]

U(t) e R(D) and }in?) Uo(t) = —w
Equivalent Claim: There exists a unique function
_| Yo
u= |: i :| € HDB,+

such that uy = —w. For then U(t) = e P8y is the unique solution of
the evolution equation E
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Evolution Equation
Neumann Problem and Evolution Equation

Solution:

a0

_VF()

_ U(l’) _ e—z‘DBu — e—tDB

—w
VL12w

with bound
157 (Oll2 + IVF(B)ll2 = [UB)ll2 < [lull2 ~ [[wll2
Exercise: Show that this agrees with the previous expression
F(t)= (VL) 'e Vlw

where L = —div AV
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Spectral Decomposition

More General Perturbed Problem in ‘H = L2(R") @ L2(R",C"):

i 0 div BOTO Bg’k
B = [ -V 0 ] [ Bio Bjx

where B € L*(R", L(C & C")) with Re(B(x)) > xl > 0, so that B is
a bounded strictly accretive operator in H.

Main Question: Is there a spectral decomposition
H =N(DB) & Hps+ ® Hps,— ?

where
Hpp+ ={U€ ﬁ(D) ; DBu = ++/(DB)? u}

4. YES The technology of the solution of the Kato Square Root
Problem can be extended to prove this [Axelsson, Keith, Mc 2006]
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General Perturbed Higher Dimensional Operator Evolution Equation

Given u € H , consider the evolution equation E
9U(t)+ DBU(t) = 0
lim U(t) = u
t—0

@ If ue Hpp . then E has a unique solution U € C}(R*,H):

Uty =e®PBu, 0<t<oo

@ If ue Hpp_ then E has a unique solution U € C}(R™,H):

Ut)=ePPu, —<t<0

e If ue N(DB) then E has a unique solution U € C}(R, H):
Ut)y=u, —-oco<t<oo

In each case, ||U(t)|| < |lul] forall t.
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Historical Interlude lll: First Order Systems

@ First order systems and the Kato problem in one dimension:
[Auscher, Nahmod, Mclntosh 1997]

@ Quadratic estimates and functional calculi of perturbed Dirac
operators: [Axelsson, Keith, Mc 2006] These results imply the
0 div :| [ Bo,o BO,k :|

spectral decomposition for DB = [ v 0 Bo Bjx

@ For a more direct proof, see also [Auscher-Axelsson-Mc 2010a]
@ What is needed is

/00 tDB u2
o |1+ t2(DB)2

dt >
— = |Uu
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The Quadratic Estimate

@ Therefore

* o

o0 tDB
DB)2 2 DB)2

2
00 2
z/ tV(DB)* DBUH at
0

I+ t2(DB)? t
~ ||DB u||?
@ We need to prove
>0 tDB 2 ot »
S — — <
/o Hl+t2(DB)2u p = Cll

as the reverse direction is a dual result.
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General Perturbed Higher Dimensional Operator Evolution Equation

The quadratic estimate

/00 tDB
o |1+ eoBR"

is reduced to proving the Carleson measure bounds like

/ /w 0P 2% < c o)

for all dyadic cubes Q c R”, where ~(x) € £(C'*") is defined by

dt
< Cl|u|l?

()W = </+f£)5)2 w> (x)  vYwecCHn

When n=1 we can do so witha T(b) argument. For n > 1 we use
a much more complicated local T(b) type proof.
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Recent Applications
Recent Applications

To conclude, we consider the Neumann problem N on the upper half
space R1*" with L? boundary data:

9By o(X) % + 2By k(X)0kF + 9;Bjo(X) % + 9;Bjk(X)OkF =0, t >0
- lim (3070%(0 +y Bo7k8kF> = w e [3(R")
Boo Bok
Bio Bk
Definition: we say N is well-posed if there exists a unique solution F

(up to constants) with % , 3 € CH(R*, L3(R")) and

where B = [ } e L*R" L(CaC™) , Re(B(x)) >kl >0

128 (0)||, + IVF()]5 < w2
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Recent Applications
Neumann Problem with t-independent coefficients

Theorem (Auscher-Axelsson-Mclntosh 2010)
N is well posed if and only if the mapping

7_(DIAs‘,Jr - Lz(Rn)
u — Up = —w

is an isomorphism, where

oo A% %
Bo Bk || 0O I
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Recent Applications
Neumann Problem with t-independent coefficients

Corollary: The set of B € L>(R", £(C'*™)) for which N is well posed,
is an open set.

. . /I 0 B B Up
Case 1: When B = [ 0 A } ,then B=B and u = [ _vL-1/2y, ]
so the fact that ||u|| = ||ug|| is a consequence of the Kato Square Root
Problem for L = —div AV .

Case 2: When B = B*, then a simple Rellich argument allows us to
prove that ||u|| =~ ||up|| and hence that N is well-posed.

Historical Comments: When B is real-symmetric, then the
well-posedness of N was established in [Kenig-Pipher 1993]. Earlier
results on related problems were established by Dahlberg, Jerison and
Kenig. See the book [Kenig 1994].

Counterexample: There exist B for which N is NOT well-posed
[Kenig-Rule 2009].
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