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This survey is based on lectures presented by the first author at the Blaubeuren Workshop
on Functional Calculus, 17–21 June, 2002. We both greatly enjoyed being involved in this
activity of the TULKA Internet Seminar.

Further details on holomorphic functional calculi in a Hilbert space, together with ref-
erences, can be found in the survey paper by Albrecht, Duong and McIntosh [ADMc].
For the theory of accretive sesquilinear forms and operators, see Chapter 5 of Kato’s
classic [K]. There is an earlier survey of the Kato square root problem for elliptic opera-
tors by McIntosh in [Mc]90, and a great deal of information in the book by Auscher and
Tchamitchian [AT]. The reader can find a complete proof of its solution in the paper by
Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [AHLMcT].

We shall not attempt to give complete references for the basic material, but refer the
reader to the books and papers mentioned above and to those listed at the end of this
manuscript. There we have included works suitable for further reading, as well as back-
ground material and references quoted.

1 Introduction

The theory of linear partial differential operators was formulated in the 1950s and 1960s.
In this context accretive operators, semigroups, fractional powers, interpolation and evo-
lution equations were introduced and treated by Yosida, Phillips, Kato, Lions and many
others. In the Hilbert space L2(Ω) this theory was fairly complete. But one question
remained open, now called the Kato square root problem.

The square root of a linear operator L : X → X (where X denotes a Banach space) is a
linear operator

√
L : X → X , which satisfies

√
L
√
L = L. For example, if X = Cn and L is

represented by the matrix L =








λ1 0
λ2

. . .

0 λn







, then

√
L =








√
λ1 0√

λ2
. . .

0
√
λn







.
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More generally, if the spectrum σ(L) of a matrix L satisfies σ(L)∩(−∞, 0] = ∅, then there
exists a unique matrix

√
L such that

(i) Re σ(
√
L) > 0 and (ii)

√
L
√
L = L ;

it is given by √
L =

1

2πi

∫

δ
(L− ζI)−1

√

ζdζ

where δ is a simple closed, smooth curve surrounding σ(L) clockwise.

However, limit conclusions have to be drawn carefully: If for example

Ln :=

(
1
n 1

0 1
n

)

, then Ln → L :=

(
0 1

0 0

)

as n → ∞, but
√
Ln =





1√
n

√
n
2

0 1√
n





blows up, and
√
L does not exist.

More generally, if a bounded operator L : X → X satisfies σ(L) ∩ (−∞, 0] = ∅, then the
square root is still defined by

√
L = 1

2πi

∫

δ(L− ζI)−1
√
ζdζ : X → X . Indeed, by the Dun-

ford functional calculus, f(L) := 1
2πi

∫

δ(L − ζI)−1f(ζ)dζ is defined for all f holomorphic
in a neighbourhood of σ(L), which contains such a curve δ having σ(L) in its interior.

In the following, H is a Hilbert space with inner product (., .), and we consider operators
T : D(T ) → H that may not be bounded; the domain D(T ) is always assumed to be a
dense subspace of H.

1.1 Accretive operators in a Hilbert space:

Definition: A linear operator T : D(T )→ H is maximal accretive if

(i) Re (Tu, u) ≥ 0 for all u ∈ D(T ) and (ii) σ(T ) ⊂ {z ∈ C : Re z ≥ 0} .

If so, there is no proper extension T̃ of T that satisfies (i). By definition, an operator T
is maximal accretive if and only is its negative −T is “dissipative”.

Let Sω+ denote the closed sector Sω+ := {z ∈ C : | arg z| ≤ ω} ∪ {0}.
Definition: Given 0 ≤ ω ≤ π

2 , T is called ω-accretive, provided

(i) (Tu, u) ∈ Sω+ for all u ∈ D(T ) and (ii) σ(T ) ⊂ Sω+ .

Therefore π
2−accretivity means maximal accretivity. T is 0-accretive if and only if T is

self-adjoint and non-negative (i.e. {(Tu, u) : u ∈ D(t)} ⊂ R≥0).

Properties 1.1 Let T be ω-accretive. Then

(i) −T generates a bounded (holomorphic in case ω < π
2 ) C0−semigroup (e−tT )t≥0 ;

(ii) corresponding to each α ∈ (0, 1] there exists a unique αω−accretive power T α such
that the family of operators satisfies T α+β = TαT β and T 1 = T ;

(iii) the adjoint operator T ∗ is ω−accretive, and the fractional powers according to (ii)
satisfy (T ∗)α = (Tα)∗; in case α < 1

2 we have D((T ∗)α) = D(Tα).
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If T is ω-accretive and ζ /∈ Sω+, then the estimate

dist(ζ, Sω+) ≤
∣
∣ (T

u

‖u‖ ,
u

‖u‖)
︸ ︷︷ ︸

∈Sω+

−ζ
∣
∣ ≤

∥
∥(T − ζI) u

‖u‖
∥
∥

holds for all u ∈ D(T ), whence

‖(T − ζI)−1‖ ≤ 1

dist(ζ, Sω+)
.

Therefore, if 0 ≤ ω < µ < π
2 and δ : R → C with δ(t) = −te−iµ for t < 0 and δ(t) = teiµ

for t ≥ 0, then

∫

δ

∥
∥(T − ζI)−1

∥
∥

∣
∣
∣

√
ζ

1 + ζ

∣
∣
∣ |dζ| ≤

∫

δ

1

|ζ| sin(µ− ω)
∣
∣
∣

√
ζ

1 + ζ

∣
∣
∣ |dζ| <∞ ,

so that
∫

δ(T − ζI)−1
√
ζ

1+ζ dζ is absolutely convergent in L(H).

ωS +

ω0

δ C

ω

On the space of all u ∈ H for which the value of the integral is in D(T ) thus define

√
T := (I + T )

√
T

I + T
:= (I + T )

1

2πi

∫

δ

(T − ζI)−1
√
ζ

1 + ζ
dζ .

Theorem 1.2 T
1
2 :=

√
T is the unique ω

2−accretive operator such that T
1
2T

1
2 = T . (In

particular D(T ) = {x ∈ D(
√
T ) :

√
Tx ∈ D(

√
T )}.)

1.2 Sectorial forms

Let V be a dense subspace of H and J : V × V → C sesquilinear, i.e. J [u, v] is linear in u
and conjugate linear in v. Suppose 0 ≤ ω < π

2 .

Definition: J is called an ω−sectorial sesquilinear form if

(i) J [u, u] ∈ Sω+ for all u ∈ V and (ii) V is complete under ‖u‖2
V
:= ‖u‖2+Re J [u, u] .

Let T be the operator with largest domain D(T ) ⊂ V such that

J [u, v] = (Tu, v) holds for all u ∈ D(T ), v ∈ V .
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Theorem 1.3 (Lax-Milgram) If J is ω-sectorial, then the associated operator T is ω-
accretive.

Theorem 1.4 If J is 0-sectorial, then T is non-negative self-adjoint and

J [u, v] = (
√
Tu,

√
Tv) holds for all u, v ∈ D(

√
T ) = V .

Obviously this means that ‖
√
Tu‖2 = J [u, u] when ω = 0 . Kato’s (so-called) first question

concerned the possibility of a generalization to positive ω:

“REMARK 1. We do not know whether or not D(A
1
2 ) = D(A∗

1
2 ) (where A

is a maximal accretive operator). This is perhaps not true in general. But
the question is open even when A is regularly accretive (ω < π

2 ). In this case

it appears reasonable to suppose that both D(A
1
2 ) and D(A∗

1
2 ) coincide with

D(H
1
2 ) = VJ , where H is the real part of A and J is the regular sesquilinear

form which defines A. But all that we know are VJ ⊃ D(A) ⊂ D(A
1
2 ) ⊃ D(P )

(where P is the real part of A
1
2 ) and a similar chain of inclusions with A re-

placed by A∗.”

Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan,
13 (1961), 246-274.

For maximal accretive operators, a counterexample was given by Lions shortly after [L], so
interest turned to ω-accretive operators associated with a sesquilinear form J (0 < ω < π

2 ).
In the above notation, this means: Is it always true that

(K1) D(
√
T ) = V with ‖

√
Tu‖2 + ‖u‖2 ' Re J [u, u] + ‖u‖2 = ‖u‖2

V
?

(‘'’ means equivalence of the norms)
When (K1) holds, also the equality D(

√
T ∗) = V is true, and J [u, v] = (

√
Tu,

√
T ∗v) for

all u, v ∈ V.

Now let Jt : V×V → C be a family of positive hermitian forms (i.e. ω = 0), which extends
to a family Jz that is holomorphic in {z : |z| < κ}. By Tz denote the associated operators.
(Note that although for real t all Tt are non-negative self-adjoint by Theorem 1.4, the Tz
do not have the same property.)

Suppose now that (K1) holds with uniform bounds, i.e. that ‖√Tzu‖ ≤ c‖u‖V for some
c > 0, all |z| < κ and all u ∈ V. Then, for every |z1| < κ1 < κ2 < κ,

∥
∥
∥
d

dz

√

Tz

∣
∣
∣
z=z1

u
∥
∥
∥ =

∥
∥
∥

1

2πi

∫

|z|=κ2

1

(z − z1)2
√

Tzudz
∥
∥
∥ ≤ c

(κ2 − κ1)2
‖u‖V .

In particular, if −κ < t1 < κ, then d
dt

√
Tt
∣
∣
t=t1

is a bounded operator on V. This motivates

Kato’s “second question”:

“REMARK 2. If A = H is self-adjoint, the question raised above is answered
in the affirmative, for we have VJ = D(H

1
2 ). The question is still open, how-

ever, whether or not [“JT is holomorphic in t” implies “Ast is holomorphic in
t”] is true with s = 1

2 when At are self-adjoint for real t, although it is true

that D(A
1
2
t ) is independent of t as long as t is real. Thus it must be stated that
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our knowledge is quite unsatisfactory regarding the case s = 1
2 .”

Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan,
13 (1961), 246-274.

The question is, for Jt and Tt as above: Is it always true that

(K2)
d

dt

√

Tt : V → H is bounded ?

Both problems were solved negatively by McIntosh: in 1972 by giving an example of a
maximal accretive operator T for which D(

√
T ) 6= D(

√
T ∗), so that (K1) could not hold

in general [Mc]72, and in 1982 [Mc]82 contradicting also (K2).

The validity of the above statements for special spaces and operators therefore has to be
checked in each case. In particular this has been done extensively for the following forms,
which were those with which Kato was most concerned.

1.3 Elliptic forms

Let Ω ⊂ Rn, H = L2(Ω) and V = W1,2
0 (Ω) = {u ∈ L2(Ω) : ∂u

∂xj
∈ L2(Ω) with u|

bΩ
≡ 0}

(where bΩ denotes the boundary of the connected open set Ω).
Let the matrix valued function a = (aj,k) ∈ L∞(Ω)n×n satisfy

(¦) Re

n∑

j,k=1

aj,k(x)ζkζj ≥ κ|ζ|2

for some κ > 0, all x ∈ Ω and all ζ = (ζ1, . . . , ζn) ∈ Cn.

ωS

ζ

+

0 κω
ω

C

ζ, ζ)(a(x)
2

Define J : V × V → C by

J [u, v] :=

∫

Ω

n∑

j,k=1

aj,k(x)
∂u

∂xk
(x)

∂v

∂xj
(x)

︸ ︷︷ ︸

=
(
a(x)∇u(x),∇v(x)

)

dx (+ lower order terms) .

It can be shown that, in order to solve the Kato problem for such forms, it suffices to
treat the case where no lower order terms appear. Then Re J [u, u] ≤ ‖a(.)‖∞‖∇u‖22 ≤
‖a(.)‖∞

κ Re J [u, u] and thus

‖u‖22 + Re J [u, u] ' ‖u‖22 + ‖∇u‖22 ' ‖u‖2W1,2 .
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As by assumption,
(
a(x)∇u(x),∇u(x)

)
∈ Sω+ for some ω ∈ (0, π2 ) and all u ∈ V, x ∈ Ω,

it follows that J is ω−sectorial. Its associated operator L is

(∗) Lu(x) = −
n∑

j,k=1

∂

∂xj

(

aj,k(x)
∂u

∂xk
(x)
)

withD(L) = {u ∈ W1,2
0 (Ω) : Lu ∈ L2(Ω)}. As a consequence of condition (¦), L is one-one.

By Theorem 1.3, L is ω−accretive. Thus there exists a unique ω
2 -accretive operator

√
L

such that
√
L
√
L = L. In fact, D(

√
L) = [D(L),H] 1

2
.

Kato’s question in this context therefore becomes

(K1) Is D(
√
L) =W1,2

0 (Ω) with ‖
√
Lu‖2 + ‖u‖2 ' ‖∇u‖2 + ‖u‖2 ?

In the case Ω = Rn there is a homogeneous version: “Is ‖
√
Lu‖2 ' ‖∇u‖2 ?”

If the coefficients aj,k(x) and the boundary bΩ are smooth, then D(L) = (W2,2∩W1,2
0 )(Ω),

so in fact D(
√
L) =W1,2

0 (Ω) by complex interpolation (J.L.Lions [L]).

If aj,k = ak,j , then ω = 0 and L is positive self-adjoint. Theorem 1.4 then yields

D(
√
L) =W1,2

0 (Ω) with ‖
√
Lu‖22 = J [u, u], i.e. (K1) holds.

Several affirmative results under different assumptions have been proved:

1.) n = 1, Ω = R (and no lower order terms), i.e. L = − d
dxb(x)

d
dx , where b ∈ L∞(R).

Kato’s question (K1) then is: “Is ‖
√
Lu‖2 ' ‖u′‖2?” This is connected with the

Calderón question on Cauchy integrals; see Section 3.1 (Coifman, McIntosh and
Meyer [CMcM]).

2.) n = 1, Ω ⊂ R (Auscher and Tchamitchian [AT]92)

3.) n ≥ 2, Ω = Rn, ‖aj,k − δj,k‖∞ ≤ ε for δj,k :≡
{

1 if j = k
0 otherwise

(Coifman, Deng

and Meyer [CDM], Fabes, Jerison and Kenig [FJK]84, Journé [J])

4.) n ≥ 2, Ω ⊂ Rn, ∃s > 0 s.th. ‖aj,ku‖Hs ≤ c‖u‖
Hs

(e.g. aj,k ∈ Cα(Ω), α > 0)
(McIntosh [Mc]85)

The main achievement for a long time after was the writing of a book by Auscher and
Tchamitchian [AT]98, consilidating and extending prior results and linking them with
T (b)-type results. This led to a number of developments in 2000:

1.) (K1) was solved in 2 dimensions (Hofmann and McIntosh [HMc] );

2.) (K1) was solved in all dimensions for small perturbations of real symmetric operators
(Auscher, Hofmann, Lewis and Tchamitchian [AHLT]), thus implying (K2).

Later in 2000, Hofmann, Lacey and McIntosh [HLMc] solved (K1) for all operators (∗)
which satisfy Gaussian heat kernel bounds. (This includes the 2-dimensional result, for
then the heat kernel bounds always hold [AMcT]). Auscher, Hofmann, Lacey, McIntosh
and Tchamitchian [AHLMcT] then solved (K1) for all operators (∗) in all dimensions.
The following year saw the solution of (K1) for higher order elliptic operators and systems
[AHMcT].
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1.4 Motivations and applications

Kato’s initial motivation was the study of partial differential equations:

1. In 1960s he studied parabolic evolution equations of the type

{
∂
∂tu(t) + Ltu(t) = 0

u(0) = u0 ∈ H

where Lt is the operator associated with the ω−sectorial form Jt : V × V → C.

If all Jt coincide, i.e. if J = Jt is independent of t, then the above equation has the
solution u(t) = e−tLu(0) where L = Lt.
But if Jt depends on t, then difficulties arise, because the domains D(Lt) vary with
t. Kato used the knowledge that, for α < 1

2 , the domains D(Lt
α) are independent

of t. But the results would have been clearer and stronger if he had D(Lt
1
2 ) = V for

all t ≥ 0.

In the case of elliptic operators Lt = −
n∑

j,k=1

∂
∂xj

(aj,k,t
∂
∂xk

) in H = L2(Rn) this is now

known.

2. The square root of a positive self-adjoint elliptic operator L = −
n∑

j,k=1

∂
∂xj

(aj,k
∂
∂xk

)

plays an important role also in the hyperbolic wave equation







∂2

∂t2
u(., t) + Lu(., t) = 0 , t > 0

u(., 0) ≡ 0
∂
∂tu(., 0) = g(.) ∈ L2(Rn) ,

for its solution is given by

u(., t) =
1

2

(

eit
√
Lf(.)− e−it

√
Lf(.)

)

where i
√
Lf = g

(
or f = −iL− 12 g ∈ Ẇ1,2(Rn), the completion ofW1,2(Rn) under

the norm ‖∇u‖; note that
√
L extends to an isomorphism from Ẇ1,2(Rn) to L2(Rn),

see the remark at the beginning of Section 2.2.
)
.

As was seen above, (K1) holds in this case. Moreover
√
L is 0-accretive, thus ±i

√
L

generates a contraction semigroup, i.e. ‖e±it
√
Lv‖2 ≤ ‖v‖2 for all v ∈ L2(Rn) and

t ≥ 0. Hence for all t ≥ 0

‖∇xu(., t)‖2 ' ‖
√
Lu(., t)‖2 ≤

1

2

(

‖eit
√
L
√
Lf‖2+‖e−it

√
L
√
Lf‖2

)

≤ ‖
√
Lf‖2 = ‖g‖2 .

This is called an “energy estimate”.

More generally, in the hyperbolic evolution equation, the 0-sectorial elliptic
forms Jt : W1,2(Rn) × W1,2(Rn) → C depend on t: Let Lt denote the associated
positive self-adjoint operators and let the mapping t 7→ Jt be smooth. In the 1970s

Kato considered the problem

{
∂2

∂t2
u(., t) + Ltu(., t) = g(., t) , t > 0

+ initial conditions
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by reducing it to a first order evolution equation: Let

v(., t) :=
∂

∂t
u(., t) and w(., t) :=

√

Ltu(., t) .

The above problem then is to solve

{ ∂
∂tv(., t) = −√Ltw(., t) + g(., t) and

∂
∂tw(., t) =

(
d
dt

√
Lt
)
1√
Lt
w(., t) +

√
Ltv(., t)

which means

∂

∂t

[
v

w

]

=
(
[

0 −√Lt
√
Lt 0

]

︸ ︷︷ ︸

=:St

+

[
0 0

0
(
d
dt

√
Lt
)
1√
Lt

]

︸ ︷︷ ︸

=:Bt

)
[
v

w

]

+

[
g

0

]

under initial conditions.
For t fixed, the operator St is skew-adjoint, and if Bt is bounded on L2(Rn) then
St + Bt + ‖Bt‖ is maximal accretive (and hence the generator of a C0-semigroup).
It follows (see [K]53) that the above problem in this case is uniquely solvable. It
therefore remains to show that Bt is bounded, i.e. that for |t| ≤ κ,

‖
( d

dt

√

Lt
) 1√

Lt
f‖2 ≤ c‖f‖2 for f ∈ L2(Rn) or equivalently,

that ‖ d
dt

√

Ltw‖2 ≤ c‖
√

Ltw‖2 ' ‖w‖Ẇ1,2(Rn) for w ∈ Ẇ1,2(Rn);

this is a homogeneous version of (K2). See [Mc]84 for details.
Today it is known that the desired estimate in fact holds true, by which Kato’s proof
can be completed.

3. On Rn+1
+ := Rn × (0,∞) consider the elliptic equation

{
∂2

∂t2
u(., t)− Lu(., t) = 0

u(., 0) = u0(.) ∈ D(
√
L)

where still L = −
n∑

j,k=1

∂
∂xj

(aj,k
∂
∂xk

). Then u(t, x) := e−t
√
Lu0(x) is the solution of

the equation satisfying the Neumann boundary condition

∂u

∂t

∣
∣
∣
t=0

= −
√
Lu0

Therefore the homogeneous version of (K1), i.e. the equality D(
√
L) = W1,2

0 (Rn)
with ‖

√
Lu(., 0)‖2 ' ‖∇xu(., 0)‖2, is equivalent to

∥
∥
∂u

∂t

∣
∣
t=0

∥
∥
2
' ‖∇xu0‖2 .

This alternative form of Kato’s question is also known as a “Rellich inequality” or a
“Dirichlet-Neumann inequality”.
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2 Operators that have a bounded holomorphic functional

calculus

As a tool for solving (K1) for elliptic forms in the case n = 1, a holomorphic functional
calculus can be applied; see [ADMc] and [AMcN] for a more detailed presentation of the
material in this section, and for further references.

2.1 Operators of type ω

Let X be a Banach space, let 0 ≤ ω < µ < π and assume T : D(T ) → X is a one-one
operator with dense domain D(T ) ⊂ X and dense range.

Definition: T is said to be “of type ω” if

(i) σ(T ) ⊂ Sω+ and

(ii) ∀µ > ω ∃cµ > 0 s.th. ‖(T − ζI)−1‖ ≤ cµ
|ζ| holds for each ζ /∈ Sµ+.

Let S◦µ+ denote the topological interior of Sµ+ and define

Ψ(S◦µ+) :=
{
ψ ∈ H∞(S◦µ+) : ∃c, s > 0 s.th. |ψ(ζ)| ≤ min{c|ζ|s, c|ζ|−s} for all ζ ∈ S◦µ+

}
.

For T of type ω and ψ ∈ Ψ(S◦µ+) then define

ψ(T ) :=
1

2πi

∫

γ

ψ(ζ)(ζI − T )−1dζ ∈ L(X ) ,

where the contour γ is defined for some ν ∈ (ω, µ) by γ(t) = −teiν if t ≤ 0 and γ(t) = te−iν

if t ≥ 0.

Definition: T “has a bounded H∞(S◦µ+) functional calculus” means that there exists
cµ > 0 such that

‖ψ(T )‖ ≤ cµ‖ψ‖∞ holds for all ψ ∈ Ψ(S◦µ+) .

For all f ∈ H∞(S◦µ+) one can then define f(T ) ∈ L(X ) such that ‖f(T )‖ ≤ cµ‖f‖∞, see
[ADMc].

2.2 Quadratic estimates

Now let X = H be a Hilbert space and suppose that T is an injective operator of type
ω < µ in H (note that in the Hilbert space case every such operator necessarily has dense
domain and dense range [CDMcY]). Given ψ ∈ Ψ(S◦µ+)\{0}, let ψt(ζ) := ψ(tζ) and define

‖u‖T,ψ :=
(
∞∫

0

∥
∥ψt(T )u

∥
∥2
dt

t

) 1
2

on the spaceH0T,ψ of all u ∈ H for which the integral is finite. ‖u‖T,ψ is called the quadratic
norm associated with T and ψ. This construction is a useful tool in relation to bounded
H∞ functional calculi.
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Theorem 2.1 a) The spaces H0
T,ψ

are independent of ψ and µ > ω, and ‖u‖T,ψ '
‖u‖T,ψ̃ holds for all ψ, ψ̃ ∈ Ψ(S◦µ+)\{0}. Henceforth we write H0

T
and ‖.‖T in place

of any one of these equivalent norms.

b) There exists a constant c > 0 such that ‖f(T )u‖T ≤ c‖f‖∞‖u‖T holds for all f ∈
H∞(S◦µ+) and every u ∈ H0

T
∩ D(f(T )).

Define the Hilbert space HT to be the completion of H0
T

under the norm ‖.‖T .

Theorem 2.2 Let µ > ν > ω ≥ 0. Let T be a one-one operator operator of type ω in H.
Then the following assertions are equivalent:

(i) T has a bounded H∞(S◦µ+)−functional calculus.

(ii) H ⊂ (HT ∩HT ∗) with ‖u‖T ≤ c‖u‖ (in this case we say that “T satisfies a quadratic
estimate”) as well as ‖u‖T ∗ ≤ c‖u‖ for some c > 0 and each u ∈ H.

(iii) H = HT with ‖u‖ ' ‖u‖T .

(iv) T has a bounded H∞(S◦ν+)−functional calculus.

Note that it is not true in all Banach spaces that one can reduce the angle; in Lp(R)
(1 < p <∞, p 6= 2) this is still an open question.

It has been shown in Section 1.1 that every ω-accretive operator T is of type ω.

In case ω = 0, T is non-negative self-adjoint and has a bounded Borel functional calculus,
so it has a bounded H∞(S◦ε+)−functional calculus for each ε > 0, and ‖f(T )‖ ≤ 1 · ‖f‖∞.
If ω = π

2 , there is a similar result:

Theorem 2.3 Let T be maximal accretive. Then T has a bounded H∞(S(π
2
+ε)+) func-

tional calculus for all ε > 0, and ‖f(T )‖ ≤ ‖f‖∞ for all f ∈ H∞(S◦(π
2
+ε)+).

This can be proved with von Neumann’s Theorem and the transform V := I−T
I+T ∈ L(H),

as
‖u‖2 − ‖V u‖2 = Re

(
(I − V )u, (I + V )u

)
= Re

(
T (I + V )u, (I + V )u

)
≥ 0

and thus ‖V ‖ ≤ 1; see [ADMc] for an alternative (direct) proof.

Theorems 2.2 and 2.3 now yield

Corollary 2.4 If T is ω-accretive and 0 ≤ ω < ν ≤ π
2 , then T has a bounded H∞(S◦ν+)

functional calculus.

A new result has been obtained by Crouzeix and Delyon [CD]: They showed that for all
µ ∈ (ω, π2 ) and all f ∈ H∞(S◦µ+) one has the bound

‖f(T )‖ ≤ min
{π − ω

ω
, 2 +

2√
3

}

‖f‖∞ .

This generalizes the result ‖f(T )‖ ≤ ‖f‖∞ for maximal accretive operators (ω = π
2 ).
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Example 2.5 Let L be an elliptic operator of the form L = −
n∑

j,k=1

∂
∂xj

(
aj,k

∂
∂xk

)
, where

the matrix-valued function a = (aj,k) satisfies condition (¦) in Section 1.3. Then

(∫ ∞

0

∥
∥
√
tLe−tLu

∥
∥2
dt

t

)1/2
' ‖u‖2

holds for all u ∈ L2(Ω): Indeed, as L is ω−accretive for some ω ∈ (0, π2 ), it has a bounded
H∞(S◦µ+) functional calculus (µ > ω), so Theorem 2.2 with the choice ψ(ζ) =

√
ζe−ζ

yields the equivalence.

2.3 Operators of double type ω

Let Sω− := −Sω+ and S◦ω− := −S◦ω+. Define the open and closed double sectors Sω :=
Sω+ ∪ Sω− and S0ω := S◦ω+ ∪ S◦ω−, and the function spaces Ψ(S0ω) ⊂ H∞(S0ω) on them
exactly as before.

Definition: The operator T is said to be “of double type ω”, if

(i) σ(T ) ⊂ Sω and

(ii) ∀µ > ω ∃cµ > 0 s.th. ‖(T − ζI)−1‖ ≤ cµ
|ζ| holds for each ζ /∈ Sµ.

Most of the results for injective operators of (simple) type ω generalize directly to the
case when T is a one-one operator of double type ω. The main result is, that T has
an H∞(S0µ)−functional calculus if and only if HT = H with equivalence of norms. See
[AMcN]197 for details of this and for what is to follow.

Theorem 2.6 Let 0 ≤ ω < µ < π
2 , let S be a one-one self-adjoint operator in H and let

B be bounded, invertible and ω-accretive. Define T := BS and L := SBS. Then

a) T is a one-one operator of double type ω with D(T ) = D(S), and T 2 is a one-one
operator of type 2ω with D(T 2) = D(L);

b) L is ω−accretive and associated with the form J [u, v] = (BSu, Sv) on V × V where
V = D(S). Thus D(

√
L) =

[
H,D(L)

]

1
2
=
[
H,D(T 2)

]

1
2
;

c) if T has a bounded H∞(S0µ) functional calculus, then

1.) T 2 has a bounded H∞(S02µ+) functional calculus;

2.) sgn(T ) =
√
T 2

T = T√
T 2

is bounded, where the function sgn ∈ H∞(S0π
2
) is defined

by

sgn(ζ) =

{
1 if Re ζ > 0
−1 if Re ζ < 0

}

=

√
ζ2

ζ = ζ√
ζ2
, and the equality of the domains

D(T ) = D(
√
T 2) =

[
H,D(T 2)

]

1
2
holds with ‖Tu‖ ' ‖

√
T 2u‖, and thus

3.) D(
√
L) =

[
H,D(T 2)

]

1
2
= D(T ) = D(S) = V with

‖
√
Lu‖ ' ‖Tu‖ ' ‖Su‖ = ‖u‖V

so that (K1) holds for L.
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Concerning b), we need the equivalence ‖u‖ '
√

Re (Bu, u). Indeed, let A = 1
2(B + B∗)

denote the self-adjoint part of B. For each u ∈ H then Re (Bu, u) = (Au, u) = ‖
√
Au‖2,

and thus, by B’s ω-accretivity,

|(Bu, u)| ≤ 1

cosω
Re (Bu, u) = c ‖

√
Au‖2 .

It follows that |(Bv, u)| ≤ c ‖
√
Av‖‖

√
Au‖ holds for all u, v ∈ H, and the particular choice

u = Bv yields

‖u‖2 ≤ c ‖
√
AB−1u‖‖

√
Au‖ = c |(AB−1u,B−1u)| 12 ‖

√
Au‖

≤ c̃‖u‖‖
√
Au‖ whence

1

c̃
‖u‖ ≤ ‖

√
Au‖ =

√

Re (Bu, u) ≤
√

‖B‖‖u‖ .

We conclude that, if T = BS has a bounded H∞ functional calculus, then L = SBS
satisfies (K1); the converse implication holds true as well, see [AMcN]197.

3 Kato’s questions for elliptic forms

3.1 The one-dimensional problem

A motivating example for the above results is the Kato problem in case of elliptic forms
in dimension n = 1:

Let H = L2(R) = L2(R,C), S := D = 1
i
d
dx with D(D) = H1(R) = W1,2(R). Let

B : L2(R) → L2(R) with Bu = bu, where b, 1b ∈ L∞(R) and b(x) ∈ Sω+ for almost all
x ∈ R.
Then (Tu)(x) = 1

i b(x)
d
dxu(x), and (Lu)(x) = − d

dxb(x)
d
dxu(x) is a one-dimensional elliptic

operator.
As D is one-one and selfadjoint and as the operator of multiplication by b is a bounded
invertible ω-accretive operator in L2(R), by Theorem 2.6 a) the operator T is one-one of
double type ω in L2(R). So once we show that T and T ∗ satisfy quadratic estimates, then
we have by Theorem 2.6 b) that L satisfies (K1). To show that this in fact is true, much
deeper harmonic analysis is required. See [ADMc] for an indication of how this can be
achieved by applying a T (b)-type result of Semmes [S].

At the same time this gives an affirmative answer to the following “Calderón question”:

Let g : R → C be a Lipschitz continuous function such that b := 1
g′ has the properties as

above. Let γ := {g(x) : x ∈ R} denote the corresponding curve and

L2(γ) =
{

V : γ → C : ‖V ‖2 :=
(
∫

γ
|V (z)|2|dz|

) 1
2 <∞

}

C
γ

R

Lipschitzg

z

x
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For U ∈ L2(γ) define

CγU(z) :=
1

πi
p.v.

∫

γ

1

z − ζ U(ζ)dζ =
1

πi
lim
ε→0+

∫

{ζ∈γ:|ζ−z|>ε}

1

z − ζ U(ζ)dζ .

Calderón’s question, also dating back to the 1960’s, was

(Cd) Is Cγ : L2(γ)→ L2(γ) a bounded operator ?

(In case of ‖b(x)− 1‖∞ sufficiently small this was confirmed by Calderón himself [C].)

On the other hand, for U ∈ L2(γ) define

DγU(z) := −i lim
h→0+
z+h∈γ

U(z + h)− U(z)

h

whenever the limit exists. Then, if DγU ∈ L2(γ), for u(x) := U(g(x)) ∈ L2(R) we have
(Du)(x) = 1

i
d
dxu(x) =

(
DγU

)
(g(x))g′(x), i.e.

(
DγU

)
(g(x)) =

1

g′(x)
(Du)(x) = b(x)(Du)(x) = (Tu)(x) .

Thus Dγ is an injective operator of double type ω in L2(γ), and once we have shown that
T has a bounded functional calculus, then Dγ has the same property. Hence in this case,
sgn(Dγ) is a bounded operator on L2(γ). But one can show that sgn(Dγ) = Cγ , so that
Calderón’s question (Cd) is also a consequence of the fact that T has a bounded H∞

calculus.

We remark that both the one-dimensional Kato question and the Calderón question were
initially answered by Coifman, McIntosh and Meyer [CMcM] using multilinear expansions
and quadratic estimates, before the development of the H∞ functional calculus or of T (b)
theorems. Indeed these general methods were in part an outgrowth. However it is worth
noting that an understanding of the inter-relationship between the questions of Kato and
Calderón was a key stimulus in the solution of both.

3.2 The n-dimensional Kato problem

Let n ≥ 2 and H = L2(Rn). As in Section 1.3, define the form

J [u, v] =

∫

Rn

n∑

j,k=1

aj,k(x)
∂u

∂xk
(x)

∂v

∂xj
(x)dx

with associated ω-accretive operator Lu(x) = − div(a∇u)(x) = −
n∑

j,k=1

∂
∂xj

(
aj,k

∂u
∂xk

)
(x),

where the matrix-valued function a(x) = (aj,k(x)) ∈ L∞(Rn)n×n has the property (¦)
described in section 1.3.

For this operator L, Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [AHLMcT]
proved (K1):

Theorem 3.1 D(
√
L) = V with ‖

√
Lu‖2 ' ‖∇u‖2 .
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In an earlier work Hofmann, Lacey and McIntosh [HLMc] had derived this result under
the additional assumption of heat kernel bounds (G):

(G) e−t
2Lu(x) =

∫

Rn

kt2(x, y)u(y)dy for all u ∈ L2(Rn),

where the heat kernel kt2(x, y) satisfies the “Gaussian properties”

1.) |kt2(x, y)| ≤
β

tn
e−

|x−y|2

αt2 for some α, β > 0 and

2.)
∣
∣kt2(x+ h, y)− kt2(x, y)

∣
∣+
∣
∣kt2(x, y + h)− kt2(x, y)

∣
∣ ≤ β

|h|α
tα+n

e−
|x−y|2

αt2 .

What follows is an outline of the proof under this additional assumption.

As L∗ is of the same form, only the direction ‖
√
Lu‖2 . ‖∇u‖2 has to be shown. (Note that

V ⊂ D(
√
L
∗
) with ‖

√
L
∗
u‖2

‖∇u‖2 ≤ c implies that ‖∇u‖2 ≤ |J [u,u]|
κ‖∇u‖2 ≤

c
κ
|(
√
Lu,
√
L
∗
u)|

‖
√
L
∗
u‖2

≤ c
κ‖
√
Lu‖2

holds for all u in the domain of L. Since D(L) is a core for D(
√
L), the completeness of V

yields the inequality for all u ∈ D(
√
L).)

The estimate ‖
√
Lu‖2 . ‖∇u‖2 is proved in several steps, developing the implication chain

(K1)⇐ (Q)⇐ (C)⇐ (Cε)⇐ (C′ε)

and finally showing the validity of (C′ε). The above abbreviations mean:

(Q)

∞∫

0

∫

Rn

|tLe−t2Lu(x)|2dxdt
t

. ‖∇u‖22 .

(C) There exists c > 0 such that

∫∫

RQ

|γt(x)|2
d(x, t)

t
=

`(Q)∫

0

∫

Q

|tLe−t2Lϕ(x)|2 dxdt
t

≤ c |Q|

holds for all cubes Q ⊂ Rn with sides parallel to the axes, where

`(Q) := side-length of Q,

RQ := Q× [0, `(Q)],

|Q| := volume of Q,

ϕ : Rn → Rn, ϕ(x) := (ϕ1(x), . . . , ϕn(x)) := x and γt : Rn → Cn for t > 0 is defined

by
(
γt(x)

)

j
:=
(
tLe−t

2Lϕ(x)
)

j
:= tL

∫

Rn

kt2(x, y)ϕj(y)dy;

from condition (G) one then can conclude that M := sup{‖γt‖∞ : t > 0} <∞.
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(Cε) There exists c > 0 such that

∫∫

(x,t)∈RQ
γt(x)∈Kν

|γt(x)|2
d(x, t)

t
≤ c|Q|

holds for a small ε > 0 to be determined later, all cubes Q ⊂ Rn as above and all

unit vectors ν ∈ Cn with corresponding cone Kν :=
{
z ∈ Cn :

∣
∣
z

|z| − ν
∣
∣ < ε

}
.

(C′ε) There exists c > 0 and η ∈ (0, 1) such that for all cubes Q ⊂ Rn and all unit vectors

ν there exist some disjoint dyadic subcubes Qn such that |
⋃

n

Qn| < η|Q| and

EQ := RQ\
⋃

n

RQn is a “good” set in the sense that

∫∫

(x,t)∈EQ
γt(x)∈Kν

|γt(x)|2
d(x, t)

t
≤ c |Q| .

0

νK

ε

ν

ε

(i) The implication “(Q)⇒(K1)” holds because

∫ ∞

0

∫

Rn

∣
∣tLe−t

2Lu(x)
∣
∣2
dxdt

t
=

∫ ∞

0

∥
∥t
√
Le−t

2L(
√
Lu)

∥
∥2

2

dt

t

=
1

2

∫ ∞

0

∥
∥
√
τLe−τL(

√
Lu)

∥
∥2

2

dτ

τ

' ‖
√
Lu‖22 (by Example 2.5).

(ii) In order to show “(C)⇒(Q)”, methods of harmonic analysis are used. Let φ ∈
C∞0 (Rn) with

∫
φ = 1 and define φt(x) := 1

tnφ(
x
t ) for positive t. The operator Pt is

then defined by

Ptv(x) :=
1

tn

∫

Rn

φ
(x− y

t

)
v(y)dy = (φt ∗ v)(x) .

As by assumption (C) dµ := |γt(x)|2 d(x,t)t defines a Carleson measure µ on Rn×R+,
Carleson’s Theorem gives

∞∫

0

∫

Rn

∣
∣γt(x)

∣
∣2
∣
∣Pt∇u

∣
∣2
dxdt

t
=

∫

Rn×R+

∣
∣Pt∇u

∣
∣2dµ(t, x)

=

∫

Rn×R+

∣
∣(φt ∗ ∇u)(x)

∣
∣2dµ(x, t) . ‖∇u‖22 .



16

On the other hand it can be shown that the functions bt, defined by

bt(x) := (tLe−t
2Lu)(x)−[γt(x).(Pt∇u)(x)] (where v.w denotes the dot product in Cn)

satisfy
∞∫

0

∫

Rn

|bt(x)|2
dxdt

t
. ‖∇u‖22 .

Hence

(
∞∫

0

∫

Rn

∣
∣tLe−t

2Lu(x)
∣
∣2
dxdt

t

) 1
2
=
(
∞∫

0

∫

Rn

∣
∣bt(x)+[γt(x).(Pt∇u)(x)]

∣
∣2
dxdt

t

) 1
2

≤
(
∞∫

0

∫

Rn

∣
∣bt(x)

∣
∣2
dxdt

t

) 1
2
+
(
∞∫

0

∫

Rn

∣
∣γt(x)

∣
∣2
∣
∣Pt∇u(x)

∣
∣2
dxdt

t

) 1
2

. ‖∇u‖2 .

(iii) It is clear that (C) is implied by (Cε).

(iv) If (C′ε) holds, then repeating the argument one gets that

∫∫

(x,t)∈RQ
γt∈Kν

.. =

∫∫

(x,t)∈EQ
γt∈Kν

..+
∑

n

∫∫

(x,t)∈RQn
γt∈Kν

..

≤ c|Q|+
∑

n

(∫∫

(x,t)∈EQn
γt∈Kν

..+
∑

j

∫∫

..
)

≤ c|Q|+
∑

n

(

c|Qn|+
∑

j

(

c|Qn,j |+
∑

k

∫∫

..
))

≤ c|Q|
(
1 + η + η2 + ...

)
=

c

1− η |Q| , i.e. (Cε) holds.

The aim now is to prove (C′ε) for some positive ε (that will be determined later). Let
F (ε) : Rn → Cn be

F (ε)(x) := (e−ε
2Lϕ)(x) =

(
(e−ε

2Lϕ1)(x), . . . , (e
−ε2Lϕn)(x)

)T
,

which can be defined by the heat kernel, see (C). Without loss of generality Q can be
assumed to have side-length `(Q) = 1. The following will be used:

Properties 3.2 There exists a constant c independent of ε such that

(α)
∫

5Q

|∇F (ε)|2 ≤ c

(β)
∫

5Q

|LF (ε)|2 ≤ c
ε2

(γ) ‖F (ε) − ϕ‖∞ = ‖(e−ε2L − I)ϕ‖∞ ≤ cε and thus
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(δ) |
∫

Q

(∇F (ε) − I)dx| ≤ cε (note that ∇F (ε) =
(
∇(e−ε

2Lϕ1), . . . ,∇(e−ε
2Lϕn)

)T
is a

matrix).

For any fixed ν ∈ Cn with |ν| = 1 define F
(ε)
ν : Rn → C by

F (ε)ν = F (ε). ν = e−ε
2Lϕ . ν

The above properties then can be transferred:

Properties 3.3 There exists a constant c not depending on ε such that

(α′)
∫

5Q

|∇F (ε)ν |2 ≤ c

(β′)
∫

5Q

|LF (ε)ν |2 ≤ c
ε2

(δ′) |
∫

Q

(ν .∇F (ε)ν (x)− 1)dx| = |
∫

Q

(ν .∇F (ε)ν (x)dx− 1| ≤ cε and hence

Re

∫

Q
ν .∇F (ε)ν (x)dx ≥ 1− cε .

Now “good” subsets of RQ are going to be distinguished: Let {Q′k} be the set of all
pairwise disjoint maximal dyadic (i.e. arised from bisections of the sides) subcubes of Q
for which

Re

∫

Q′
k

ν .∇F (ε)ν (x)dx ≤ 3

4
|Q′k| .

Moreover, let {Q′′k} be the set of all disjoint maximal dyadic subcubes Q′′k ⊂ Q for which

∫

Q′′
k

|∇F (ε)ν (x)|dx ≥ 1

8ε
|Q′′k| .

Define B := B1 ∪ B2 =
⋃

kQk with B1 :=
⋃

kQ
′
k and B2 :=

⋃

kQ
′′
k and {Qk} :=

{Q′k} ∪ {Q′′k}. Set EQ := RQ\
(⋃

k RQk
)
. (Note that the defined sets depend on ε.)
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Q 1

2

Q

Q

E

QR

t

Q

Q
2

R

1
RQ

The following theorem is used both to determine ε and as a tool in the further proof; recall
that |Q| = 1.

Properties 3.4 (I) For an appropriate choice of ε > 0 there exists η ∈ (0, 1) not
depending on Q or ν such that

|B1 ∪B2| < 1− η .

(II) If (x, t) ∈ EQ and z ∈ Kν , then

|z| ≤ 2|z .Ax,t(∇F (ε)ν )|

where
(
Ax,t(∇F (ε)ν )

)

j
:= 1

Q(x,t)

∫

Q(x,t)(∇F
(ε)
ν )j(y)dy and Q(t, x) ⊂ Q is the smallest

dyadic cube such that (x, t) ∈ RQ(x,t).

Proof: (I) By Properties 3.3 there is a constant c such that for arbitrary ε > 0

√
c ≥

(∫

2Q

∣
∣∇F (ε)ν

∣
∣2
) 1
2 ≥

(∫

Q

∣
∣∇F (ε)ν

∣
∣2
) 1
2 ≥

∫

Q

|∇F (ε)ν | .

Moreover, by the choice of B2 we have

∫

Q

|∇F (ε)ν | ≥
∫

B2

|∇F (ε)ν | =
∑

k

∫

Q′′
k

|∇F (ε)ν | ≥
∑

k

1

8ε
|Q′′k| =

1

8ε
|B2| .

Hence |B2| ≤
√
c8ε.
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This, Properties 3.3, and the specifying conditions of B1 now yield

1− cε ≤ Re

∫

Q

ν.∇F (ε)ν = Re

∫

Q\B

ν.∇F (ε)ν + Re

∫

B1

ν.∇F (ε)ν + Re

∫

B\B1

ν.∇F (ε)ν

≤
∣
∣Q\B

∣
∣
1
2

(∫

Q

|∇F (ε)ν |2
) 1
2
+

3

4
|B1|+ |B2|

1
2

(∫

Q

|∇F (ε)ν |2
) 1
2

≤ √
c
∣
∣Q\B

∣
∣
1
2 +

3

4
+

√√
c8ε
√
c

and therefore

(•) |Q\B| ≥
( 1

4
√
c
−√cε−

√√
c8ε
)2
≥ 1

(8
√
c)2

=: η for sufficiently small ε > 0 .

(II) Abbreviate
(
Ax,t(∇F (ε)ν )

)

j
=: Vj(x, t) and let V (x, t) = (V1(x, t) . . . , Vn(x, t)) denote

the corresponding vector in Cn.

It follows from (x, t) ∈ EQ that Q(x, t) /∈ {Qk} and thus that

(a)
1

|Q(x, t)| Re

∫

Q(x,t)

ν.∇F (ε)ν >
3

4

(
i.e. Re ν.V ≥ 3

4

)
and

(b)
1

|Q(x, t)|

∫

Q(x,t)

|∇F (ε)ν | ≤ 1

8ε

(
and hence |V | ≤ 1

8ε

)
.

This yields (note that Kν = {z ∈ C : |z − ν(z.ν)| < ε|z|})

|z.V | ≥
∣
∣
∣(ν.V )(z.ν)

∣
∣
∣−
∣
∣
∣

(

z − ν(z.ν)
)

.V
∣
∣
∣

≥ 3

4

∣
∣z.ν| − ε|z| 1

8ε
≥
(3

4
− 1

8

)

|z|

≥ 1

2
|z|.

Therefore Properties 3.4 is proved.

Now fix an ε so that the lower bound (•) holds.

The proof of (C′ε) then is the following: With η defined in 3.4 we have

(∫∫

(x,t)∈EQ
γt(x)∈Kν

|γt(x)|2
d(x, t)

t

) 1
2 ≤

(

2

∫∫

RQ

∣
∣γt(x) .Ax,t(∇F (ε)ν )

∣
∣2
d(x, t)

t

) 1
2

by 3.4 (II)

≤
√
2
(∫∫

RQ

∣
∣γt(x) .Pt∇F (ε)ν

∣
∣2
d(x, t)

t

) 1
2

+
√
2M
(∫∫

RQ

∣
∣(Pt −Ax,t)∇F (ε)ν

∣
∣2
d(x, t)

t

) 1
2
,
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where the convolution operator Pt was defined in (ii), the proof of “(C)⇒(Q)”.
Call the right-hand integrals I1 and I2, respectively. It can be shown then that

I2 ≤
∫

5Q

|∇F (ε)ν (x)|2dx ≤ c ,

whereas similarly to the fact mentioned in (ii) one can derive

√

I1 =
(∫∫

RQ

∣
∣
∣tLe−t

2Lϕ(x). Pt∇F (ε)ν (x)
∣
∣
∣

2d(x, t)

t

) 1
2

≤
(∫∫

RQ

∣
∣
∣tLe−t

2L F (ε)ν (x)
︸ ︷︷ ︸

e−ε
2Lϕ(x).ν

∣
∣
∣

2 d(x, t)

t

) 1
2
+ C

≤
(

1∫

0

∫

Q

∣
∣tLe−(t

2+ε2)Lϕ(x)
∣
∣2
dxdt

t

) 1
2
+ C

<
(

2∫

ε

∫

Q

∣
∣τLe−τ

2Lϕ(x)
∣
∣

︸ ︷︷ ︸

=|γt(x)|≤M

2 dxdτ

τ

) 1
2
+ C by substitution τ 2 = t2 + ε2

< C(ε) .

This completes the outline of the proof. For further details, see the papers [HLMc] and
[AHLMcT].
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2 v), Collège de France Seminar, Volume III, edited by H. Brezis

and J.L.Lions, Pitman Advanced Publishing Program, research Notes in
Math. 70 (1982), 252-267.

[Mc]84 Alan McIntosh, Square roots of operators and applications to hyperbolic
p.d.e.’s, Miniconference on Operator Theory and Partial Differential Equa-
tions 1983, Proc. of the Centre for Mathematical Analysis, Australian
National University, Canberra 5 (1984), 124-136.

[Mc]85 Alan McIntosh, Square roots of elliptic operators, Journal of Functional
analysis 61 (1985), 307-327.

[Mc]86 Alan McIntosh, Operators which have an H∞ functional calculus, Minicon-
ference on Operator Theory and Partial Differential Equations 1986, Proc.
of the Centre for Mathematical Analysis, Australian National University,
Canberra 14 (1986), 210-231.

[Mc]90 Alan McIntosh, The square-root problem for elliptic operators, Functional
Analytic Methods for Partial Differential Equations, Lecture Notes in
Mathematics, Springer-Verlag, Berlin, 1450 (1990), 122-140.

[Mc]96 Alan McIntosh, Clifford algebras, Fourier theory, singular integrals, and
harmonic functions on Lipschitz domains, Chapter 1 in Clifford Analysis
and Related Topics, edited by John Ryan (1996), CRC Press, 89-101.

[McN] Alan McIntosh and Andrea Nahmod, Heat kernel estimates and functional
calculi of −b∆, Math. Scand. 87 (2000), 287-319.

[McY] Alan McIntosh and Atsushi Yagi, Operators of type ω without a bounded
H∞ calculus, Miniconference on Operator Theory and Partial Differential
Equations 1989, Proc. of the Centre for Mathematical Analysis, Australian
National University, Canberra 24 (1989), 159-172.

[S] Stephen Semmes, Square function estimates and the T(b) theorem, Proc.
A.M.S. 110 (1990), 721-726.

[St]70 Elias M. Stein, Singular Integrals and Differentiability Properties of Func-
tions, Princeton University Press, 1970.

[St]93 Elias M. Stein, Harmonic Analysis, Princeton University Press, 1993.


