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Abstract. Domain decomposition techniques provide a flexible tool for the numerical approximation of
partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with
different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal
discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of
hexahedral triangulations. As a result, standard efficient iterative solvers as multigrid methods can be easily
adapted to the nonconforming situation. We present the discretization errors in different norms for linear and
quadratic mortar finite elements with different Lagrange multiplier spaces. Numerical results illustrate the
performance of our approach.
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1. Introduction. The coupling of different discretization schemes or of nonmatching tri-
angulations can be analyzed within the framework of mortar methods. These nonconforming
domain decomposition techniques provide a more flexible approach than standard conform-
ing approaches. The nonconforming approach is of particular interest in many situations, for
example, in problems with discontinuous diffusion coefficients and local anisotropies, when
different parameters dominate different parts of the simulation domain or different discretiza-
tion schemes are used in different subdomains. A complex global domain can be decomposed
into several small subdomains of simple structure, and these subdomains can be meshed in-
dependently. To obtain a stable and optimal discretization scheme for the global problem,
the information transfer among the subdomains has to be analyzed. Mortar methods were
originally introduced to couple spectral and finite element approximations, see [4, 5]. An
optimal a priori estimate in the H1-norm for the mortar finite element method has been
established in [5, 6, 2, 3]. The analysis of three-dimensional mortar finite elements is given
in [3, 15, 7], and a hp version is studied in [17]. In the linear 3D case, the stability of the
mortar projection for the standard Lagrange multiplier space is established in [7], where also
a multigrid method for the saddle point problem is discussed. The main idea of the mortar
technique is to replace the strong continuity condition of the solution across the interface by
a weak one. Here, we consider mortar methods for second order finite elements in 3D. We
focus on Lagrange multiplier spaces for serendipity elements which yield locally supported
basis functions of the constrained mortar space.

The paper is organized as follows: In the rest of this section, we present our model
problem and briefly review the mortar method. In Section 2, we give some sufficient con-
ditions on Lagrange multiplier spaces for quadratic finite elements and show the optimality
of the approach. In Section 3, we present some examples of Lagrange multiplier spaces for
quadratic finite elements on hexahedral triangulations. In contrast to earlier approaches, we
use Lagrange multiplier spaces yielding a sparse inverse of the mass matrix. We also use the
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so-called dual Lagrange multiplier spaces which are biorthogonal to the trace of the finite el-
ement space at the interface. Unfortunately, a locally defined dual Lagrange multiplier space
containing the bilinear hat functions does not exist for serendipity elements. In that case, we
augment the space by face bubble functions and introduce a quasi-dual Lagrange multiplier
space yielding a sparse inverse mass matrix. Finally in Section 4, we present some numerical
results in 3D for different Lagrange multiplier spaces illustrating the flexibility and perfor-
mance of our approach. In particular, we consider the discretization errors in the L2-norm,
the energy norm and in a weighted L2-norm for the Lagrange multiplier.

We consider the following elliptic second order boundary value problem

−div(a∇u) + cu = f in Ω with u = 0 on ∂Ω, (1.1)

where 0 < a0 ≤ a ∈ L∞(Ω), f ∈ L2(Ω), 0 ≤ c ∈ L∞(Ω), and Ω ⊂ R3 is a bounded polyhe-
dral domain. The domain Ω is decomposed into K non-overlapping polyhedral subdomains
Ωk, k = 1, · · · , K, such that

Ω =
K
⋃

k=1

Ωk with Ωi ∩ Ωj = ∅ for i 6= j.

Here, we consider only geometrically conforming situations where the intersection between
the boundaries of any two different subdomains ∂Ωl ∩ ∂Ωk, k 6= l, is either empty, a common
edge or a face. We define Γ̄kl := ∂Ωk∩∂Ωl, 1 ≤ k, l ≤ K, the intersection of the boundaries of
two subdomains and select only disjoint and non-empty interfaces γk, 1 ≤ k ≤ N . Moreover,
each γk can be associated with a couple 1 ≤ k1 < k2 ≤ K such that γ̄k = ∂Ωk1 ∩ ∂Ωk2 . On
each subdomain, we define

H1
∗ (Ωk) := {v ∈ H1(Ωk), v|∂Ω∩∂Ωk

= 0}, k = 1, · · · , K

and consider the unconstrained product space X :=
∏K

k=1 H1
∗ (Ωk). The weak matching

condition on the skeleton Γ :=
⋃N

k=1 γk is realized by means of the H1/2-duality pairing.

Introducing the Lagrange multiplier space M :=
∏N

k=1 H−1/2(γk) on Γ, we find for v ∈ H1
0 (Ω)

∫

Γ

[v] µ dσ = 0, µ ∈ M.

This observation is the motivation for the discrete mortar formulation. Each subdomain Ωk

is associated with a shape regular family of hexahedral triangulations Tk;hk
, the meshsize of

which is bounded by hk. We denote the discrete space of conforming piecewise triquadratic
finite elements or of serendipity elements on Ωk associated with Tk;hk

by Xhk
⊂ H1

∗ (Ωk). Each
interface γk inherits a two-dimensional triangulation Sk;hk

either from Tk1;hk1
or Tk2;hk2

. The
subdomain from which the interface inherits its triangulation is called slave or non-mortar
side, the opposite one master or mortar side. In the following, we denote the index of the
slave side of γk by s(k) and the one of the master side by m(k). Hence, the elements of Sk;hk

are boundary faces of Ts(k);hs(k)
with a meshsize bounded by hs(k). Furthermore, we assume

that the mesh on Γ is globally quasi-uniform, and each element in Sk;hk
, k = 1, · · · , N, can be

affinely mapped to the reference element T̂ := (0, 1)×(0, 1). The discrete Lagrange multiplier

space Mh on Γ is defined as Mh :=
∏N

k=1 Mh(γk), where Mh(γk) is the discrete Lagrange
multiplier space on γk. Then, the discrete weak matching condition for vh ∈ Xh can be
written as

∫

γk

[vh] µi dσ = 0, 1 ≤ i ≤ nk, 1 ≤ k ≤ N, (1.2)
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where nk := dimMh(γk) and {µi}1≤i≤nk
forms a basis of Mh(γk). Here, [vh] is the jump of

the function vh on γk from the master side to the slave side. As usual, ‖ · ‖s,Ωk
and (·, ·)s,Ωk

denote the norm and the corresponding inner product on Hs(Ωk), respectively, and | · |s,Ωk

stands for the seminorm. The norm on H
1/2
00 (γk) and its dual space H−1/2(γk) will be denoted

by ‖ · ‖
H

1/2
00 (γk)

and ‖ · ‖−1/2,γk
, respectively. We define the broken norm ‖ · ‖s on X and the

broken dual norm ‖ · ‖M on M by

‖u‖2
s :=

K
∑

k=1

‖u‖2
s,Ωk

, and ‖µ‖2
M :=

N
∑

k=1

‖µ‖2
−1/2,γk

, respectively.

There are two main approaches to obtain the mortar solution uh ∈ Xh of a discrete variational
problem. The first one is based on the positive definite variational problem on the constrained
finite element space which is given by means of the global Lagrange multiplier space Mh

Vh := {vh ∈ Xh | b(vh, µh) = 0, µh ∈ Mh},

where b(vh, µh) :=
∑N

k=1

∫

γk
[vh] µh dσ, and Xh :=

∏K
k=1 Xhk

. We remark that the elements
of the space Vh satisfy a weak continuity condition on the skeleton Γ in terms of the discrete
Lagrange multiplier space Mh, and the nodal basis functions of Xh have to be modified
appropriately to obtain the basis functions of Vh. However, Vh is, in general, not a subspace
of H1

0 (Ω). The positive definite formulation of the mortar method can be given in terms of
the constrained space Vh: find uh ∈ Vh such that

a(uh, vh) = (f, vh)0, vh ∈ Vh, (1.3)

where, the bilinear form a(·, ·) is defined as a(v, w) :=
∑K

k=1

∫

Ωk
a∇v · ∇w + cv w dx. The

second approach is based on enforcing the weak continuity condition on the skeleton Γ as an
additional variational equation which leads to a saddle point problem on the unconstrained
product space Xh, see [2]: find (uh, λh) ∈ Xh × Mh such that

a(uh, vh)+ b(vh, λh) = (f, vh)0, vh ∈ Xh,
b(uh, µh) = 0, µh ∈ Mh.

(1.4)

It is clear that the choice of the discrete Lagrange multiplier space Mh plays an essential
role for the stability of the saddle point problem and the optimality of the discretization
scheme. In the next section, we state sufficient conditions on the Lagrange multiplier space
for quadratic finite elements to get optimal a priori estimates. Here, the nodal Lagrange
multiplier basis functions are defined locally and are associated with the interior nodes of the
mesh on γk, k = 1, · · · , N . We point out that we do not assume the meshes from the slave
and master side are matching on ∂γk, see Figure 1.1. Now, we group the degrees of freedom
of Xh associated with the skeleton Γ into two groups uh|Γ := (um, us), where um contains all
nodal values of uh on the master sides and all nodal values on the boundary of the interface
γk on the slave sides, and us consists of all nodal values of uh at the interior nodes of γk

on the slave sides, 1 ≤ k ≤ N , see Figure 1.1. The associated sets of nodes are called Nm

and Ns, respectively. Furthermore, we denote by Nh the set of all nodes in Xh and we set
Ni := Nh\(Nm ∪Ns). The corresponding nodal values of uh in Ni will be denoted by a block
vector ui. Then, (1.2) can be written in its algebraic form as

Msus + Mmum = 0. (1.5)

The entries of the mass matrices are given by mij :=
∫

γk
[φj ] µi dσ, where φj are the finite
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master sideinterface slave side

umus

Fig. 1.1: Decomposition into um and us for serendipity elements

element basis functions corresponding to the different groups of nodes, and µi denote the
basis functions of Mh. Since the basis functions have a local support, the mass matrices are
sparse. Formally, we can obtain the values on the slave side as us = −M−1

s Mmum. Although
Ms is a sparse matrix, the inversion of Ms is, in general, expensive, and M−1

s is dense. This
observation motivates our interest in Lagrange multiplier spaces which yield a sparse inverse
of the mass matrix Ms. A natural choice is a dual Lagrange multiplier space, see, e.g., [21],
having a diagonal mass matrix Ms. Then, the basis functions {µi}1≤i≤nk

of Mh(γk) and
{ϕi}1≤i≤nk

of the trace space W0,h(γk) having the zero boundary condition on ∂γk satisfy
the biorthogonality relation

∫

γk

µi ϕj dσ = δij

∫

γk

ϕj dσ, 1 ≤ i, j ≤ nk. (1.6)

We define the product space W0,h and the broken H
1/2
00 -norm on it as

W0,h :=

N
∏

k=1

W0,h(γk), and ‖v‖2
W :=

N
∑

k=1

‖v‖2

H
1/2
00 (γk)

, respectively.

2. A priori estimates. In this section, we give some assumptions on quadratic La-
grange multiplier spaces which guarantee optimal a priori estimates. Following a similar
approach as in [15], we impose the following assumptions on the discrete Lagrange multiplier
spaces for quadratic finite elements

[P0 ] dimMh(γk) = dimW0,h(γk), 1 ≤ k ≤ N .
[P1 ] There is a constant C independent of the triangulation such that

inf
µ∈Mh(γk)

‖v − µ‖0,γk
≤ Ch2

s(k)|v|2,γk
, v ∈ H2(γk), 1 ≤ k ≤ N.

[P2 ] There is a constant C independent of the triangulation such that

‖θ‖0,γk
≤ C sup

µ∈Mh(γk)\{0}

(θ, µ)0,γk

‖µ‖0,γk

, θ ∈ W0,h(γk), 1 ≤ k ≤ N.

It follows from assumption [P1] that P1(γk) ⊂ Mh(γk) for all k = 1, · · · , N, where P1(γk) is
the space of linear functions on γk. For each γk, the mortar projection Πk : L2(γk) → W0,h(γk)
is defined as

∫

γk

Πkv µ dσ :=

∫

γk

v µ dσ, µ ∈ Mh(γk). (2.1)
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The stability of the mortar projection is essential for the optimality of the best approximation
error.

Lemma 2.1. Under the assumptions [P0] and [P2], the mortar projection (2.1) is stable
in the L2-norm. Furthermore, if w ∈ H1

0 (γk)

‖Πkw‖1,γk
≤ C‖w‖1,γk

.

Proof: By assumption [P2], we find that if v ∈ W0,h(γk) satisfies (v, µ)0,γk
= 0 for all

µ ∈ Mh(γk), then v = 0. Hence, the mortar projection is well-defined by the assumptions
[P0] and [P2]. The L2-stability of Πk is standard, see, e.g., [15]. Now for w ∈ H1

0 (γk) using
the L2-stability and an inverse estimate, we find

‖Πkw‖1,γk
≤ ‖Πkw − Pw‖1,γk

+ ‖Pw‖1,γk
≤ C

(

1

hs(k)
‖Πk(w − Pw)‖0,γk

+ ‖w‖1,γk

)

≤ C

(

1

hs(k)
‖w − Pw‖0,γk

+ ‖w‖1,γk

)

≤ C‖w‖1,γk
,

where P denotes the L2-projection onto W0,h(γk).

Using Lemma 2.1 and an interpolation argument, we obtain for w ∈ H
1/2
00 (γk),

‖Πkw‖
H

1/2
00 (γk)

≤ C‖w‖
H

1/2
00 (γk)

.

In a next step, we provide the best approximation property of the space Vh. We use the ideas
and techniques introduced in [3, 5].

Lemma 2.2. Assume that the assumptions [P0]–[P2] hold. If u ∈ H1
0 (Ω) and u|Ωk

∈
H3(Ωk) for all k = 1, · · · , K, then there exists a constant C independent of the meshsizes
such that

inf
uh∈Vh

‖u − uh‖
2
1 ≤ C(1 + hmr)

K
∑

k=1

h4
k‖u‖

2
3,Ωk

,

where

hmr := max

{

hm(k)

hs(k)
, 1 ≤ k ≤ N

}

.

Proof: Since W0,h(γk) ⊂ H
1/2
00 (γk), each v ∈ W0,h(γk) can trivially be extended to a

function ṽ ∈ H1/2(∂Ωs(k)). Let Hhṽ ∈ H1(Ωs(k)) be the discrete harmonic extension of
ṽ on Ωs(k). Then, it is well known that ‖Hhṽ‖1,Ωs(k)

≤ C‖ṽ‖H1/2(∂Ωs(k))
≤ C‖v‖

H
1/2
00 (γk)

.

By means of this discrete harmonic extension, we define a discrete extension operator Ek :
W0,h(γk) → Xh for each γk as Ekv := Hhṽ on Ωs(k), and Ekv := 0 elsewhere. Then

‖Ekv‖1 ≤ C‖v‖
H

1/2
00 (γk)

, v ∈ W0,h(γk). (2.2)

Let Ihu ∈ Xh be the Lagrange interpolant of u in Xh. It is easy to see that v := Ihu +
∑N

k=1 EkΠk[Ihu] is an element of Vh. Then, we find

‖u − v‖1 ≤ ‖u − Ihu‖1 + ‖
N
∑

k=1

EkΠk[Ihu]‖1.
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By using (2.2) and a coloring argument, we have

‖
N
∑

k=1

EkΠk[Ihu]‖2
1 =

K
∑

l=1

‖
N
∑

k=1

EkΠk[Ihu]‖2
1,Ωl

≤ C

N
∑

k=1

‖Πk[Ihu]‖2

H
1/2
00 (γk)

.

We note that the constant C does not depend on the number of subdomains. Applying the
L2-stability of Πk and an inverse estimate, we get

‖Πk[Ihu]‖2

H
1/2
00 (γk)

≤
C

hs(k)
‖[Ihu]‖2

0,γk
≤

C

hs(k)

(

‖(u − Ihu)|Ωm(k)
‖2
0,γk

+ ‖(u − Ihu)|Ωs(k)
‖2
0,γk

)

≤
C

hs(k)

(

h5
m(k)‖u‖

2
3,Ωm(k)

+ h5
s(k)‖u‖

2
3,Ωs(k)

)

.

Summing over all k = 1, · · · , N , we obtain

‖
N
∑

k=1

EkΠk[Ihu]‖2
1 ≤ C

(

hmr

N
∑

k=1

h4
m(k)‖u‖

2
3,Ωm(k)

+

N
∑

k=1

h4
s(k)‖u‖

2
3,Ωs(k)

)

.

Finally, the lemma follows by using the interpolation property of Ihu.

We remark that in contrast to a convergence theory of mortar finite elements in 2D, the
constant in the right hand side depends on the ratio of the meshsizes of master and slave

sides. This results from the fact that we cannot exploit the H
1/2
00 - stability of Πk. We observe

that due to the possible non-matching meshes on ∂γk, we cannot guarantee that [Ihu]|γk
is

in H
1/2
00 (γk). However, if the meshes on the wirebasket are matching and u is continuous, we

find [Ihu]|γk
∈ H

1/2
00 (γk) and thus the H

1/2
00 -stability of Πk can be directly applied. In that

case, the ratio does not enter in the upper bound, see [15]. Working with mesh dependent
norms and a trivial extension shows that the global ratio hmr can be replaced by a local one.

Theorem 2.3. Let u and uh be the solutions of Problem (1.1) and (1.3), respectively.
Assume that u ∈ H1

0 (Ω), u|Ωk
∈ H3(Ωk) for k = 1, · · · , K, and [a ∂u

∂n ] = 0 on Γ. Under the

assumptions [P0]–[P2], there exists a constant C independent of the meshsizes such that

‖u − uh‖
2
1 ≤ C(1 + hmr)

K
∑

k=1

h4
k‖u‖

2
3,Ωk

.

Proof: The bilinear form a(·, ·) is continuous on X , and it is coercive on

B :=

{

v | v ∈ H1
∗ (Ωk), 1 ≤ k ≤ K, and

∫

γk

[v] dσ = 0, 1 ≤ k ≤ N

}

,

see [5, 14]. Hence, assumption [P1] assures that Vh ⊂ B. Thus, Strang’s Lemma [9] can be
applied, and we get

‖u − uh‖1 ≤ C

(

inf
vh∈Vh

‖u − vh‖1 + sup
vh∈Vh\{0}

|a(u − uh, vh)|

‖vh‖1

)

. (2.3)

The first term in the right side of (2.3) denotes the best approximation error and the second
one stands for the consistency error. Lemma 2.2 guarantees the required order for the best
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approximation error. Thus it is sufficient to consider the consistency error in more detail.
Now, a(u − uh, vh) can be written as

a(u − uh, vh) =

∫

Γ

a
∂u

∂n
[vh] dσ =

N
∑

k=1

(

a
∂u

∂nk
, [vh]

)

0,γk

, vh ∈ Vh.

Here, ∂u
∂n is the outward normal derivative of u on Γ from the master side, and ∂u

∂n = ∂u
∂nk

on

γk. Using the definition of Vh, we find for µ ∈ Mh(γk)
(

a
∂u

∂nk
, [vh]

)

0,γk

=

(

a
∂u

∂nk
− µ, [vh]

)

0,γk

≤ inf
µ∈Mh(γk)

‖a
∂u

∂nk
− µ‖(H1/2(γk))

′‖[vh]‖1/2,γk
.

Due to assumption [P1], we find that the best approximation error of Mh(γk) in the H1/2-dual
norm is bounded by Ch2

s(k)‖
∂u
∂nk

‖3/2,γk
. We note that the H1/2-dual norm is stronger than

the H−1/2-norm. Now the trace theorem yields the upper bound for the consistency error
(

a
∂u

∂nk
, [vh]

)

0,γk

≤ Ch2
s(k)‖u‖3,Ωs(k)

(

‖vh‖1,Ωm(k)
+ ‖vh‖1,Ωs(k)

)

.

See [15, Theorem 3.1] for the linear case. Now, using the Cauchy–Schwarz inequality and
summing over all k = 1, · · · , N , we find for vh ∈ Vh

|a(u − uh, vh)| ≤ C‖vh‖1

(

K
∑

k=1

h4
k‖u‖

2
3,Ωk

)1/2

.

To obtain an a priori estimate for the Lagrange multipliers, we follow exactly the same lines
as in [2].

Lemma 2.4. Assume that the Lagrange multiplier space Mh satisfies the assumptions
[P0]–[P2]. Then for µ ∈ Mh, there exists a vµ ∈ Xh such that

‖vµ‖1 ≤ C‖µ‖M , ‖µ‖2
M ≤ Cb(vµ, µ) and ‖[vµ]‖W ≤ C‖µ‖M .

Proof: By means of the stability of the mortar projection, we get for µ ∈ Mh(γk)

‖µ‖−1/2,γk
= sup

ϕ∈H
1/2
00 (γk)\{0}

(µ, ϕ)0,γk

‖ϕ‖
H

1/2
00 (γk)

≤ C sup
ϕ∈H

1/2
00 (γk)\{0}

(µ, Πkϕ)0,γk

‖Πkϕ‖
H

1/2
00 (γk)

= C sup
ϕ∈W0,h(γk)\{0}

(µ, ϕ)0,γk

‖ϕ‖
H

1/2
00 (γk)

≤ C(µ, ϕ̃k)0,γk
(2.4)

for some ϕ̃k ∈ W0,h(γk) with ‖ϕ̃k‖H
1/2
00 (γk)

= 1. Now, we extend ϕ̃k ∈ W0,h(γk) to Xh by

using the extension operator Ek as defined in Lemma 2.2 to get Ekϕ̃k =: vk ∈ Xh. Then, we
have

‖vk‖1 ≤ C‖ϕ̃k‖H
1/2
00 (γk)

and 0 ≤ (µ, ϕ̃k)0,γk
= b(vk, µ).

Setting vµ :=
∑N

k=1 b(vk, µ)vk and using the fact that ‖vk‖1 ≤ C, we get

‖vµ‖
2
1 =

K
∑

l=1

‖
N
∑

k=1

b(vk, µ)vk‖
2
1,Ωl

≤ C

N
∑

k=1

b(vk, µ)2 ≤ C

N
∑

k=1

‖µ‖2
−1/2,γk

= C‖µ‖2
M .
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To obtain the upper bound for ‖µ‖M , we sum the equation (2.4) over all interfaces γk, k =
1, · · · , N and find

‖µ‖2
M ≤ C

N
∑

k=1

b(vk, µ)2 = Cb(vµ, µ).

Finally, the third assertion follows from

‖[vµ]‖2
W =

N
∑

k=1

b(vk, µ)2‖[vk]‖2

H
1/2
00 (γk)

=

N
∑

k=1

b(vk, µ)2 ≤
N
∑

k=1

‖µ‖2
−1/2,γk

‖[vk]‖2
H

1/2
00 (γk)

= ‖µ‖2
M .

We note that the bilinear form b(·, ·) on Xh ×Mh is not continuous with respect to the ‖ · ‖1

and ‖ · ‖M norm. However the uniform inf-sup condition for µh ∈ Mh can be established
on a subspace of Xh. Restricted to this subspace the bilinear form b(·, ·) is continuous and
thus the standard saddle point theory can be applied, see, e.g., [10]. Combining the previous
results, an a priori bound for the Lagrange multiplier can be obtained.

Corollary 2.5. Under the assumptions of Theorem 2.3, we have

‖λ − λh‖
2
M ≤ C

K
∑

k=1

h4
k‖u‖

2
3,Ωk

.

3. Quadratic Lagrange multiplier spaces in 3D. In this section, we consider dif-
ferent possibilities for Lagrange multiplier spaces in 3D for quadratic finite elements with
suppϕi = suppµi. In particular, we focus on the standard finite elements and serendipity
elements and restrict ourselves to hexahedral triangulations. These two finite element spaces
have different degrees of freedom on the interface and therefore, the Lagrange multiplier
spaces have to be considered separately.

3.1. A dual Lagrange multiplier space for triquadratic finite elements. In the
case of a hexahedral triangulation, a dual Lagrange multiplier space in 3D for trilinear and
triquadratic finite elements can be formed by taking the tensor product of the dual Lagrange
multiplier space in 2D. Let ϕ̂0, ϕ̂1 and ϕ̂2 be the nodal quadratic finite element basis functions
on the reference element (0, 1) in one dimension, where ϕ̂0 and ϕ̂1 are the basis functions
corresponding to the left and the right vertices of the reference element, and ϕ̂2 is the basis
function corresponding to the midpoint of the reference element. Then, the quadratic dual
Lagrange multiplier basis functions on the reference element are defined by

λ̂0(t) := ϕ̂0(t) −
3

4
ϕ̂2(t) +

1

2
, λ̂1(t) := ϕ̂1(t) −

3

4
ϕ̂2(t) +

1

2
and λ̂2(t) :=

5

2
ϕ̂2(t) − 1.

The Lagrange multiplier basis functions for the element touching a crosspoint have to be
modified. In particular, if t = 0 is a crosspoint, we have

λ̂2(t) := −2t + 2, λ̂1(t) := 2t − 1,

and if t = 1 is a crosspoint, we set

λ̂2(t) := 2t, λ̂0(t) := 1 − 2t.
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Furthermore, for a linear hat function φl
p at an interior vertex p, we find

φl
p(t) = µp(t) +

1

2
(µe1(t) + µe2(t)), (3.1)

where µp is the Lagrange multiplier basis function corresponding to the vertex p and µe1 and
µe2 are the basis functions associated with the midpoints of the two adjacent edges. If p
is a crosspoint, we have φl

p(t) = 1
2µe(t), where µe is the Lagrange multiplier basis function

corresponding to the midpoint of the edge containing the crosspoint. Then, the Lagrange
multiplier basis functions on the reference face F̂ = (0, 1) × (0, 1) having a tensor product
structure are defined as

λ̂ij(x, y) := λ̂i(x)λ̂j(y).

Here, λ̂00(x, y), λ̂10(x, y), λ̂11(x, y) and λ̂01(x, y) are the Lagrange multipliers correspond-

ing to the four vertices (0, 0), (1, 0), (1, 1) and (0, 1), and λ̂20(x, y), λ̂12(x, y), λ̂21(x, y) and

λ̂02(x, y) are the ones corresponding to the midpoints (0.5, 0), (1, 0.5), (0.5, 1) and (0, 0.5) of

the four edges, respectively, and finally λ̂22(x, y) is the one corresponding to the center of
gravity (0.5, 0.5) of the reference face. The Lagrange multiplier basis functions are associated
with the vertices, midpoints of the edges and the center of gravity of faces in Sk;hk

, 1 ≤ k ≤ N .
The global basis functions µi are obtained by using an affine mapping and gluing the local
ones together. All nodes on the boundary ∂γk of γk are crosspoints and do not carry a degree
of freedom for the Lagrange multiplier space. We note that we have to use the modification
at the crosspoints to compute the tensor product for the Lagrange multipliers corresponding
to the faces touching ∂γk. Observing (3.1), we find that the bilinear hat function at each
vertex is contained in the Lagrange multiplier space Mh(γk). We point out that this is also
valid on ∂γk, although there are no degrees of freedom. Hence, assumption [P1] is satisfied.
Assumption [P0] is trivially satisfied by construction. Now, we verify assumption [P2]. Let
ϕ :=

∑nk

k=1 akϕk be in W0,hk
(γk) and set µ :=

∑nk

k=1 akµk. In the following, we assume that
ϕ̂i and µ̂i are obtained from ϕi and µi by an affine mapping from the face F to the reference
face F̂ . Now, by using the biorthogonality relation (1.6) and the quasi-uniformity assumption,
we get

(ϕ, µ)0,γk
=

nk
∑

i,j=1

aiaj(ϕi, µj)0,γk
=

nk
∑

i=1

a2
i

∫

γk

ϕi dσ ≥ C

nk
∑

i=1

a2
i h

2
s(k) ≥ C‖ϕ‖2

0,γk
.

Taking into account the fact that ‖ϕ‖2
0,γk

≡ ‖µ‖2
0,γk

≡
∑nk

i=1 a2
i h

2
s(k), we find that assumption

[P2] is satisfied. Figure 3.1 shows the three different types of Lagrange multipliers on the
reference face.

3.2. A non-existence result for serendipity elements. Here, we provide a non-
existence result for a dual Lagrange multiplier space for serendipity elements. A similar
result for simplicial triangulations and quadratic finite elements is given in [16]. We denote
by W 1

h (γk) the finite element space of piecewise bilinear hat functions on γk. In case of
standard triquadratic finite elements, the dual Lagrange multiplier space with tensor product
structure contains W 1

h (γk). Unfortunately, there exists no dual Lagrange multiplier space
yielding optimal a priori estimates with suppϕi = suppµi, where ϕi are the serendipity
nodal finite element basis functions on the interface γk.

Lemma 3.1. Under the assumption that suppϕi = suppµi, there exists no dual Lagrange
multiplier space Mh(γk) such that W 1

h (γk) ⊂ Mh(γk).
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Fig. 3.1: The Lagrange multipliers corresponding to a vertex (left), to an edge (middle) and
to the center of gravity (right)

Proof: We prove this by contradiction. Assume that

∑

i

αiµi = φl
p, (3.2)

where φl
p is the bilinear hat function associated with the interior vertex p having the coor-

dinates (0, 0), see Figure 3.2. Suppose the coordinates of the four corners of the face F1 be
(−1, 0), (0, 0), (0, 1) and (−1, 1), and of the face F2 be (0, 0), (1, 0), (1, 1) and (0, 1).

F1 F2

ϕj0 at (0, 1)

φl
p at (0, 0)

Fig. 3.2: 2D interface of 3D hexahedral triangulation

Because of the duality, the functions µi are biorthogonal to the finite element basis
functions ϕi on the interface. Hence, after multiplying (3.2) by some finite element basis
function ϕj and integrating over the interface γk, we get

αj =

∫

γk
ϕjφ

l
p dσ

∫

γk
ϕj dσ

.

Let j0 be the interior vertex with coordinates (0, 1) such that j0 and p share one edge, see
Figure 3.2. Then, we find

∫

γk

ϕj0φ
l
p dσ =

∫

T1

ϕj0φ
l
p dσ +

∫

T2

ϕj0φ
l
p dσ = −

1

18
,

and thus αj0 6= 0. Since the basis functions µi are locally linearly independent, we obtain
suppµj0 ⊆ supp

∑

i αiµi. By construction, we find suppµj0 ( suppφl
p, which contradicts

(3.2).
10



3.3. Lagrange multiplier spaces for serendipity elements. The previous subsec-
tion shows that there does not exist a dual Lagrange multiplier space for serendipity elements
containing the bilinear hat function at each vertex and satisfying suppϕi = suppµi. Here,
we consider two different Lagrange multiplier spaces for serendipity elements. The essential
point is that the Lagrange multiplier space should lead to an optimal and stable discretiza-
tion scheme. For this purpose, the assumptions [P0]–[P2] are crucial. The first idea is to
choose a standard Lagrange multiplier space, see [5, 6]. In this case, the basis functions for
each interior face F ∈ Sk;hk

of the interface γk (i.e., F ∈ Sk;hk
with ∂F ∩ ∂γk = ∅) are

serendipity basis functions in 2D. All nodes on ∂γk do not carry a degree of freedom for the
Lagrange multipliers. Therefore, in order to satisfy assumption [P1], it is necessary to modify
the definition of the basis functions for the faces touching the boundary ∂γk of the interface
γk. Suppose a face F ∈ Sk;hk

with ∂F ∩ ∂γk 6= ∅ has n degrees of freedom for the Lagrange
multipliers. Then, the local Lagrange multiplier basis function µi at a node xi of F is chosen
to be a polynomial of minimal degree such that µi(xj) = δij for all xj , j = 1, · · · , n. Here,
δij is the Kronecker delta. These Lagrange multiplier basis functions are continuous. Work-
ing with a continuous Lagrange multiplier space which locally contains the linear functions
has the advantage that assumption [P1] is satisfied. Assumption [P0] is trivially satisfied by
construction. To verify assumption [P2], we take ϕ :=

∑nk

k=1 akϕk in W0,h(γk) and define
µ :=

∑nk

k=1 akµk. Then

(ϕ, µ)0,γk
=

nk
∑

i,j=1

aiaj(ϕi, µj)0,γk
=

nk
∑

i,j=1

aiaj

∫

γk

ϕi µj dσ.

Computing the local mass matrices on the reference face for the different boundary cases,
we find that all eigenvalues of the local mass matrices are greater than 1

100 and smaller than
6
11 . Then (ϕ, µ)0,γk

, ‖ϕ‖2
0,γk

and ‖µ‖2
0,γk

are equivalent to
∑nk

i=1 h2
s(k)a

2
i , which guarantees

assumption [P2]. The coupling of the local mass matrices yields a global mass matrix which
is sparse but has a band structure of band-width O(1/h). Thus, the inverse of the global
mass matrix Ms on the slave side is dense. As a consequence, we obtain a stiffness matrix
associated with the variational problem (1.3), which is not sparse. Then we cannot apply
static condensation, and the multigrid method discussed in [22] cannot be used.

To overcome this difficulty, we generalize the concept of dual Lagrange multipliers. The
idea is to use a Lagrange multiplier space which yields a sparse inverse of the global mass
matrix Ms on the slave side. Such a Lagrange multiplier space will be called a quasi-dual
Lagrange multiplier space. Working with the tensor product dual basis functions associated
with the degrees of freedom of serendipity elements yields a diagonal mass matrix Ms and
the conditions [P0] and [P2] are satisfied. However, [P1] is not satisfied, and although the
discretization scheme is stable, no optimal a priori bounds can be obtained. Now in a first
step, we enrich the Lagrange multiplier space to guarantee [P1]. As a result, condition [P0] is
lost and thus the inf-sup condition for the Lagrange multiplier space. Therefore, we have to
augment the trace space in a second step. The second step can be viewed as a stabilization
technique and is well known within the framework of three-field approaches, see, e.g., [11],
[12] and [13]. This step guarantees that after enriching the Lagrange multiplier space, the
conditions [P0]–[P2] are satisfied. To perform the second step, we enrich each non-empty face
F ⊆ ∂T ∩ Γ of the element T of the slave side with a bubble function. The bubble function
b ∈ H1(T ) corresponding to the face F of T has the property that b|∂T\F

= 0 and
∫

F
b dσ 6= 0.

We define Ks := {T ∈ Ts(k);hs(k)
, 1 ≤ k ≤ N | ∂T ∩ Γ contains at least one face of T}. Now,

the space of bubble functions Bh is formed by Ns bubbles, where Ns is the number of faces in
∪N

k=1Sk;hk
, and each of them is associated to a face F of an element T ∈ Ks, where F ⊆ ∂T∩Γ.
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This leads to one additional degree of freedom for each non-empty face F ⊆ ∂T ∩Γ of T ∈ Ks.
There are many possibilities to define such a bubble function. Here, the triquadratic nodal
finite element function associated with the center of gravity of the face is used as a bubble
function corresponding to this face. Although we need only the restriction of the bubble
functions to the associated face to satisfy assumption [P0], each bubble function is supported
on the whole element. Now, the modified unconstrained product space Xt

h can be written
as Xt

h = Xs
h ⊕ Bh, where Xs

h is the unconstrained product space associated with serendipity
elements. In the sequel, the space Xt

h will be called augmented serendipity space and the
corresponding elements augmented serendipity elements. This leads to a mass matrix Ms on
the slave side having a special structure. Suppose ϕ̂i and λ̂i, 1 ≤ i ≤ 9 be the local basis
functions of the standard triquadratic finite elements and their dual Lagrange multipliers,
respectively. Here, the first four basis functions correspond to the vertices, the second four
ones correspond to the midpoints of the edges, and the last one corresponds to the center of
gravity of the reference face F̂ . Then, the local basis functions of serendipity elements can be
written as ϕ̂s

i = ϕ̂i + αiϕ̂9, 1 ≤ i ≤ 8, where αi = − 1
4 for 1 ≤ i ≤ 4 and αi = 1

2 for 5 ≤ i ≤ 8.

Using the biorthogonality of ϕ̂i and λ̂i, we have
∫

F̂

ϕ̂s
i λ̂j dσ =

∫

F̂

(ϕ̂i + αiϕ̂9) λ̂j dσ = δij

∫

F̂

ϕ̂i dσ + αiδ9j

∫

F̂

ϕ̂9 dσ.

In fact, the mass matrix on the reference face F̂ is

MF̂ =













































1
36 0 0 0 0 0 0 0 0

0 1
36 0 0 0 0 0 0 0

0 0 1
36 0 0 0 0 0 0

0 0 0 1
36 0 0 0 0 0

0 0 0 0 1
9 0 0 0 0

0 0 0 0 0 1
9 0 0 0

0 0 0 0 0 0 1
9 0 0

0 0 0 0 0 0 0 1
9 0

− 1
9 − 1

9 − 1
9 − 1

9
2
9

2
9

2
9

2
9

4
9













































. (3.3)

To show the consequence of our new Lagrange multiplier space, we consider the global mass
matrix Ms on the slave side in more detail. In the following, we use the same notation for
the vector representation of the solution and the solution as an element in Xt

h and Mh. The
matrix A is the stiffness matrix associated with the bilinear form a(·, ·) on Xt

h × Xt
h, and

the matrices B and BT are associated with the bilinear form b(·, ·) on Xt
h × Mh. Then, the

algebraic formulation of the saddle point problem (1.4) is given by

[

A BT

B 0

] [

uh

λh

]

=

[

fh

0

]

. (3.4)

We recall the grouping of the degrees of freedom of Xt
h introduced in Section 1. After

augmenting the serendipity space with the space of bubble functions Bh, we further decompose
the degrees of freedom associated with the interior nodes of γk, 1 ≤ k ≤ N , on the slave side
into two groups (us, ub). Here, the block vector us contains all nodal values of u at the interior
nodes of γk, 1 ≤ k ≤ N , corresponding to the vertices and edges on the slave side, and ub

stands for all nodal values corresponding to the bubble functions on the slave side. With
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this decomposition, we can write uT
h = (uT

i , uT
m, uT

s , uT
b ). The block vector λh containing the

nodal values of the Lagrange multiplier is similarly decomposed with λT
h = (λT

s , λT
b ). In terms

of this decomposition, we can rewrite the algebraic form of the saddle point problem (3.4) as
















Aii Aim Ais Aib 0 0
Ami Amm Ams Amb MT

m MT
bm

Asi Asm Ass Asb Ds MT
bs

Abi Abm Abs Abb 0 Db

0 Mm Ds 0 0 0
0 Mbm Mbs Db 0 0

































ui

um

us

ub

λs

λb

















=

















fi

fm

fs

fb

0
0

















. (3.5)

Recalling the algebraic structure (1.5) of the bilinear form b(·, ·) restricted to Xt
h × Mh, we

have

B =

[

0 Mm Ds 0

0 Mbm Mbs Db

]

,

where Db and Ds are diagonal matrices, and Mbs, Mm and Mbm are rectangular matrices.
The matrix Db is diagonal due to the fact that the bubble functions are supported only in
one face, and the diagonal form of Ds follows from the structure of the local mass matrix,
see (3.3). Hence, the global mass matrix Ms on the slave side and its inverse M−1

s can be
written as

Ms =

[

Ds 0

Mbs Db

]

and M−1
s =

[

Ds
−1 0

−D−1

b
MbsD

−1
s Db

−1

]

.

The great benefit of this Lagrange multiplier space is that the inverse of the mass matrix
Ms can be computed very easily, and the inverse is sparse. Thus, the solution on the slave
side depends locally on the solution on the master side. Here, we have to invert only two
diagonal matrices and scale Mbs to compute the inverse of the mass matrix Ms. The stiffness
matrix associated with the variational problem (1.3) is sparse, and efficient iterative solver
like multigrid can easily be adapted to the nonconforming situation. Furthermore, the de-
grees of freedom corresponding to the bubble functions can locally be eliminated by static
condensation. Since the matrix Db is diagonal, the sixth and the fourth line of the system
(3.5) give

ub = −D−1
b (Mbmum + Mbsus), and

λb = D−1
b

[

fb − Abiui − (Abm − AbbD
−1
b Mbm)um − (Abs − AbbD

−1
b Mbs)us

]

.

Now, we eliminate ub and λb from the system (3.5) and obtain a new system

Âûh = F̂h,

where ûT
h = (uT

i , uT
m, uT

s , λT
s ). Defining M1 := D−1

b Mbm and M2 := D−1
b Mbs, we have

Â =









Aii Aim − AibM1 Ais − AibM2 0
Ami − MT

1 Abi Amm−AmbM1−MT
1 (Abm−AbbM1) Ams−AmbM2−MT

1 (Abs−AbbM2) MT
m

Asi − MT
2 Abi Asm−AsbM1−MT

2 (Abm−AbbM1) Ass−AsbM2−MT
2 (Abs−AbbM2) Ds

0 Mm Ds 0









,

and the right hand side can be written as

F̂h =









fi

fm − MT
1 fb

fs − MT
2 fb

0









.
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We observe that the matrix Â is symmetric, if A is symmetric and it has exactly the same
structure as the saddle point matrix arising from mortar finite element method with a dual
Lagrange multiplier space, see [21]. Because of this structure of the algebraic system, we can
apply the multigrid method proposed in [22].

Remark 3.2. There is also a possibility to use wavelets to get a mass matrix of special
structure so that the inversion can be cheaper, and the inverse is sparse. In [18], locally
supported and piecewise polynomial wavelets are studied on non-uniform meshes which give a
lower triangular mass matrix with higher order finite elements in triangular meshes.

4. Numerical results. Here, we present some numerical examples in 3D for linear and
quadratic mortar finite elements. We consider three different cases for quadratic mortar
finite elements. The first one is the standard triquadratic finite element space with the dual
Lagrange multiplier space introduced in Subsection 3.1. The second one is the serendipity
space with a standard Lagrange multiplier space given in Subsection 3.2. Finally, the third one
is the augmented serendipity space associated with the tensor product Lagrange multiplier
space, which is a quasi-dual Lagrange multiplier space. Our numerical results show the
same asymptotic behavior as predicted by the theory. The implementation is based on the
finite element toolbox ug, [1]. We do not discuss and analyze an iterative solver for the
arising linear systems. Working with dual or quasi-dual Lagrange multiplier spaces has the
advantage that the flux can locally be eliminated, and static condensation yields a positive
definite system on the unconstrained product space. In [22, 21], the modification of the system
has been carried out and a local modification of the transfer operators of lower complexity
has been proposed. The introduced multigrid has a level-independent convergence rate and is
of optimal complexity. Unfortunately, in the case of a standard Lagrange multiplier space no
local elimination of the flux can be carried out. Following the approach in [22], the sparsity
of the modified system and the efficiency of the multigrid solver is lost. In that case, we
apply a multigrid method for saddle point problems. This technique has been considered for
mortar elements in [19] and further analyzed in [8, 20]. It turns out that we do not have to
work in a positive definite subspace, and the smoother can be realized by an inner and outer
iteration scheme. As in the other approach, level-independent multigrid convergence rates
can be established. However, the numerical solution process is slower if we have to work with
the saddle point approach. We point out that the more efficient multigrid method for the
modified positive definite system can only be applied when the inverse of Ms is sparse, whereas
the saddle point multigrid method is more general. We present some numerical results in 3D
illustrating the performance of the different Lagrange multiplier spaces. In particular, we
compare the discretization errors in the L2- and H1- norm for the solution for linear and
quadratic mortar finite elements. The discretization errors in the flux across the interface are
compared in a mesh-dependent Lagrange multiplier norm, which is defined by

‖µ − µh‖
2
h :=

N
∑

m=1

∑

F∈Sm;hm

hF ‖µ − µh‖
2
0,F ,

where hF is the diameter of the face F . For all our examples, we have used uniform refine-
ment. In each refinement step, the elements are refined into eight subelements. We denote
by X l

h and Xf
h the unconstrained finite element spaces associated with the standard finite

element spaces for the trilinear and the triquadratic case, respectively. Similarly, Xs
h and

Xt
h are the unconstrained finite element spaces associated with the serendipity elements and

the augmented serendipity elements as defined in the previous section, respectively. The
corresponding finite element solutions are denoted by ul

h, uf
h, us

h and ut
h, respectively.
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Remark 4.1. We note that the concept of dual Lagrange multiplier spaces can be general-
ized to distorted hexahedral meshes. In that case, the mapping between the actual element and
the reference element has a non-constant Jacobian. As a consequence, we have to compute
for each face on the interface a biorthogonal basis with respect to the local nodal one. This
can be easily done by solving a local mass matrix system. By construction, the sum of the
local dual Lagrange multiplier basis functions is one. Defining the global Lagrange multiplier
basis functions by gluing the local ones together, we find that the constants are included in the
Lagrange multiplier space. As a consequence, it is easy to verify that the discretization error
is of order h for lowest order finite elements.

In our Example 1, we choose a L-shaped domain. The domain Ω := ((0, 1)2 × (0, 2)) ∪
([1, 2) × (0, 1)2) is decomposed into three cubes, Ω1 := (0, 1)3, Ω2 := (0, 1)2 × (1, 2) and
Ω3 := (1, 2) × (0, 1)2. We have shown the decomposition of the domain and the initial
triangulation in the left picture of Figure 4.1, and the isolines of the solution at the interface
z = 1 are shown in the right. Here, we solve a Poisson problem −∆u = f with the right
hand side function f and the Dirichlet boundary conditions determined by the exact solution

u(x, y, z) =
(

(x − 1)2 + (z − 1)2
)5/6

cos
(

6 y2 + x2 + 6
)

.

Fig. 4.1: Decomposition of the domain and initial triangulation (left), isolines of the solution
at the interface z = 1 (right), Example 1

We have tabulated the discretization errors in different norms in Tables 4.1–4.3. Here,
the solution is not H3-regular. Since the solution u ∈ H8/3−ǫ(Ω) for ǫ > 0, we expect the
convergence of order one in the H1-norm for the linear case. In the quadratic case, we cannot
expect a convergence of order two in this norm. In all three cases of quadratic finite elements,
we observe asymptotic rates in the L2- and H1-norm, which are better than predicted by
the theory. The quantitative results are almost the same in these norms. Theoretically, the
errors in the weighted Lagrange multiplier norm for the quadratic and linear case are expected
to be of order h2 and h in the optimal case, respectively. Here, we observe better rates of
convergence for the errors in the weighted Lagrange multiplier norm. The better convergence
rates are due to the fact that the error in the H1-norm is equally distributed and the Lagrange
multiplier space has an O(h5/2) and O(h3/2) approximation property in the considered norm.

Table 4.1

Discretization errors in the L2-norm, (Example 1)

level # elem. ‖u − ul
h‖0 ‖u − uf

h‖0 ‖u − us
h‖0 ‖u − ut

h‖0

0 10 1.327466e+00 7.318159e-01 8.066003e-01 7.957931e-01
1 80 8.047675e-01 1.748627e-01 2.039559e-01 2.008262e-01
2 640 2.057468e-01 4.863715e-02 4.936495e-02 4.910636e-02
3 5120 6.722455e-02 6.422065e-03 6.451969e-03 6.443622e-03
4 40960 1.766195e-02 8.056078e-04 8.064556e-04 8.066527e-04
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Table 4.2

Discretization errors in the H1-norm, (Example 1)

level # elem. ‖u − ul
h‖1 ‖u − uf

h‖1 ‖u − us
h‖1 ‖u − ut

h‖1

0 10 1.021784e+00 8.085453e-01 8.194130e-01 8.049068e-01
1 80 8.094756e-01 3.934127e-01 4.259780e-01 4.159907e-01
2 640 4.221967e-01 1.803404e-01 1.831986e-01 1.814987e-01
3 5120 2.479979e-01 4.695275e-02 4.711321e-02 4.701404e-02
4 40960 1.277419e-01 1.173059e-02 1.173325e-02 1.173569e-02

Table 4.3

Discretization errors in the weighted Lagrange multiplier norm, (Example 1)

level # elem. ‖λ − λl
h‖h ‖λ − λf

h‖h ‖λ − λs
h‖h ‖λ − λt

h‖h

0 10 9.992731e-01 5.988951e+00 4.678395e+00 7.046350e+00
1 80 2.416457e+00 1.831235e+00 3.100680e+00 2.018278e+00
2 640 8.795363e-01 5.338894e-01 7.909840e-01 6.360541e-01
3 5120 4.481377e-01 7.548844e-02 9.720802e-02 1.002547e-01
4 40960 1.720963e-01 1.157310e-02 1.577079e-02 1.684356e-02

In Example 1, there is not any significant difference in the accuracy between the different
quadratic mortar solutions neither in the L2-norm nor in the H1-norm. However, a quanti-
tative difference can be seen for the discretization errors in the weighted Lagrange multiplier
norm. In this norm, the standard triquadratic finite elements with the tensor product La-
grange multiplier space gives the best results, whereas the difference between the augmented
serendipity elements with the quasi-dual Lagrange multiplier space and the serendipity ele-
ments with the standard Lagrange multiplier space is quite negligible.

For the next three examples, we consider only linear and serendipity elements. In our
second example, the domain Ω := (0, 1)2 × (0, 2.5) is decomposed into three subdomains
Ω1 := (0, 1)3, Ω2 := (0, 1)2 × (1, 2), and Ω3 := (0, 1)2 × (2, 2.5). The right hand side f and
the boundary conditions of −∆u = f are chosen such that the exact solution is given by
u(x, y, z) = 5(z − 1.4)((x− 0.5)2 + 4(y − 0.3)3) + z(z − 1) sin(4πxy)(2(x− y)2 + (y + x− 1)2).
In Figure 4.2, we have shown the decomposition of the domain, the initial nonmatching
triangulation and the isolines of the solution at the interface z = 2. Here, we have three

Fig. 4.2: Decomposition of the domain and initial triangulation (left), isolines of the solution
at the interface z = 2 (right), Example 2

subdomains and two interfaces. The middle cube is taken as the slave side. We start with a
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nonconforming coarse initial triangulation having 23 elements. The discretization errors along
with their order of convergence at every refinement step in different norms are given in Tables
4.4–4.6. As before, we get the correct asymptotic rates for both cases of serendipity elements.
The errors in the L2- and H1-norm are almost the same for both approaches. In the weighted
Lagrange multiplier norm, the serendipity elements yield smaller errors than the augmented
serendipity elements. However, the difference is quite negligible, and the asymptotic rate of
convergence is optimal in both cases.

Table 4.4

Discretization errors in the L2-norm, (Example 2)

level # elem. ‖u − ul
h‖0 ‖u − us

h‖0 ‖u − ut
h‖0

0 23 8.911337e-01 1.745670e-01 1.760480e-01 0
1 184 2.582954e-01 1.79 2.997997e-02 2.54 3.010899e-02 2.55
2 1472 6.366337e-02 2.02 3.664595e-03 3.03 3.671731e-03 3.04
3 11776 1.607229e-02 1.99 4.466631e-04 3.04 4.462098e-04 3.04
4 94208 4.031862e-03 2.00 5.393667e-05 3.05 5.391429e-05 3.05

Table 4.5

Discretization errors in the H1-norm, (Example 2)

level # elem. ‖u − ul
h‖1 ‖u − us

h‖1 ‖u − ut
h‖1

0 23 8.170532e-01 5.517577e-01 5.290887e-01 0
1 184 5.643329e-01 0.53 1.478160e-01 1.90 1.482833e-01 1.84
2 1472 2.626420e-01 1.10 3.915936e-02 1.92 3.920488e-02 1.92
3 11776 1.293053e-01 1.02 9.352708e-03 2.07 9.332480e-03 2.07
4 94208 6.446694e-02 1.00 2.295583e-03 2.03 2.293897e-03 2.02

Table 4.6

Discretization errors in the weighted Lagrange multiplier norm, (Example 2)

level # elem. ‖λ − λl
h‖h ‖λ − λs

h‖h ‖λ − λt
h‖h

0 23 7.433164e+00 2.762317e+01 2.758347e+01 0
1 184 5.657720e+00 0.39 2.006842e+00 3.78 3.320707e+00 3.05
2 1472 1.855735e+00 1.61 7.048806e-01 1.51 8.042462e-01 2.05
3 11776 4.868778e-01 1.93 1.001359e-01 2.82 1.151919e-01 2.80
4 94208 1.832775e-01 1.41 1.564914e-02 2.68 1.879805e-02 2.62

In our third example, we consider a domain Ω := (0, 2) × (0, 1) × (0, 2), which is de-
composed into four subdomains Ω1 := (0, 1)3, Ω2 := (0, 1)2 × (1, 2), Ω3 := (1, 2) × (0, 1)2 and
Ω4 := (1, 2)× (0, 1)× (1, 2). We have shown the decomposition of the domain and the initial
triangulation in the left picture of Figure 4.3, the isolines of the solution on the plane y = 1

2 in
the middle, and the flux of the exact solution at the interface x = 1 is shown in the right one.
Here, Ω2 and Ω3 are taken to be the slave sides and the rest are master sides. In this example,
we have one interior macro-edge on which the initial triangulations are non-matching. The
problem for this example is given by a reaction-diffusion equation

−div(a∇u) + u = f in Ω,
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where a is chosen to be 1 in Ω1 and Ω4, and a = 10 in Ω2 and Ω3. We have chosen the exact so-
lution u(x, y, z) = (x − 1) y (z − 1) exp(− (x − 1)

2 − y2 − (z − 1)
2
) cos (2 x + 2 y + 2 z) /a and

the right hand side f and the Dirichlet boundary conditions are determined from the exact
solution. We remark that the exact solution u has a jump in the normal derivative across

Fig. 4.3: Decomposition of the domain and initial triangulation (left), isolines of the solution
at the plane y = 1

2 (middle) and flux of the exact solution at the interface x = 1 (right),
Example 3

the interface, whereas the flux is continuous. We have given the discretization errors together
with their order of convergence in each refinement step in Tables 4.7–4.9. As in the other
examples, we get the same asymptotic rates for the L2- and H1-norm and better convergence
rates in the weighted Lagrange multiplier norm. In contrast to the other examples, we observe
numerically a higher convergence order in the weighted Lagrange multiplier norm.

Table 4.7

Discretization errors in the L2-norm, (Example 3)

level # elem. ‖u − ul
h‖0 ‖u − us

h‖0 ‖u − ut
h‖0

0 22 4.636300e-01 1.237718e-01 1.233229e-01
1 176 1.218875e-01 1.93 1.220035e-02 3.34 1.220072e-02 3.34
2 1408 3.082112e-02 1.98 1.164306e-03 3.39 1.164276e-03 3.39
3 11264 7.712933e-03 2.00 1.422899e-04 3.03 1.422876e-04 3.03
4 90112 1.928288e-03 2.00 1.773015e-05 3.00 1.773010e-05 3.00

Table 4.8

Discretization errors in the H1-norm, (Example 3)

level # elem. ‖u − ul
h‖1 ‖u − us

h‖1 ‖u − ut
h‖1

0 22 6.295650e-01 2.218643e-01 2.205473e-01
1 176 3.009651e-01 1.06 4.609256e-02 2.27 4.607911e-02 2.26
2 1408 1.482825e-01 1.02 1.029429e-02 2.16 1.029336e-02 2.16
3 11264 7.379459e-02 1.01 2.523696e-03 2.03 2.523642e-03 2.03
4 90112 3.684966e-02 1.00 6.289388e-04 2.00 6.289362e-04 2.00
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Table 4.9

Discretization errors in the weighted Lagrange multiplier norm, (Example 3)

level # elem. ‖λ − λl
h‖h ‖λ − λs

h‖h ‖λ − λt
h‖h

0 22 8.588035e-02 6.184646e-02 8.310643e-02
1 176 5.194191e-02 0.73 5.220039e-03 3.57 9.849865e-03 3.08
2 1408 2.538350e-02 1.03 4.361169e-04 3.58 7.810953e-04 3.66
3 11264 1.012701e-02 1.33 4.506948e-05 3.27 6.918887e-05 3.50
4 90112 3.755812e-03 1.43 5.074655e-06 3.15 6.546292e-06 3.40

In our last example, we have used a U-shaped domain Ω decomposed into five subdomains
Ωk, k = 1, · · · , 5, and the problem is given by a Poisson equation −∆u = f . Here, Ω1 :=
(0, 1)3, Ω2 := (0, 1)2 × (1, 2.4), Ω4 := (2, 3) × (−0.2, 1.2)× (0, 1), Ω5 := (2, 3) × (−0.2, 1.2) ×
(1, 2), and Ω3 is a hexahedral pyramidal frustum joining the domain Ω1 and Ω4, see the left
picture of Figure 4.4. Here, we choose the right hand side function f and Dirichlet boundary
condition on ∂Ω so that we obtain the exact solution

u(x, y, z) = exp (−
1

4
(x2 + y2 + z2)) (cos (5 x + z) + 3 sin (4 y + z)) .

The isolines of the solution at the plane z = 1 are given in the right picture of Figure 4.4.
We have given the discretization errors in different norms in Tables 4.10–4.12. As before, we
get optimal convergence rates in the L2- and H1-norms for both quadratic approaches and
better convergence behavior in the weighted Lagrange multiplier norm.

Fig. 4.4: Decomposition of the domain and initial triangulation (left) and isolines of the
solution at the plane z = 1 (right), Example 4

Table 4.10

Discretization errors in the L2-norm, (Example 4)

level # elem. ‖u − ul
h‖0 ‖u − us

h‖0 ‖u − ut
h‖0

0 26 7.310111e-01 3.478550e-01 3.166037e-01
1 208 3.398657e-01 1.10 4.304959e-02 3.01 4.209598e-02 2.91
2 1664 8.175747e-02 2.06 5.991830e-03 2.84 5.949794e-03 2.82
3 13312 2.027467e-02 2.01 7.579318e-04 2.98 7.564277e-04 2.98
4 106496 5.037341e-03 2.01 9.456858e-05 3.00 9.451905e-05 3.00
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Table 4.11

Discretization errors in the H1-norm, (Example 4)

level # elem. ‖u − ul
h‖1 ‖u − us

h‖1 ‖u − ut
h‖1

0 26 8.982209e-01 5.699839e-01 4.440725e-01
1 208 5.597470e-01 0.68 1.391079e-01 2.03 1.308973e-01 1.76
2 1664 2.683965e-01 1.06 3.643727e-02 1.93 3.576211e-02 1.87
3 13312 1.327426e-01 1.02 9.024865e-03 2.01 8.980617e-03 1.99
4 106496 6.597358e-02 1.01 2.239350e-03 2.01 2.236550e-03 2.01

Table 4.12

Discretization errors in the weighted Lagrange multiplier norm, (Example 4)

level # elem. ‖λ − λl
h‖h ‖λ − λs

h‖h ‖λ − λt
h‖h

0 26 8.792140e+00 1.351765e+01 1.416514e+01
1 208 5.592290e+00 0.65 2.113658e+00 2.68 1.567016e+00 3.18
2 1664 1.963516e+00 1.51 3.166530e-01 2.74 3.365031e-01 2.22
3 13312 7.490561e-01 1.39 4.610005e-02 2.78 5.699660e-02 2.56
4 106496 2.745105e-01 1.45 7.388080e-03 2.64 9.779245e-03 2.54

In all our examples, we observe optimal asymptotic convergence rates as predicted by
the theory. Although we see the same qualitative behavior, some quantitative differences
can be observed in the weighted Lagrange multiplier norm. In this norm, the serendipity
elements with the standard Lagrange multiplier space gives better results. However, there
is not any essential difference in the discretization errors between different quadratic mortar
solutions. Since we enrich the skeleton Γ by bubble functions from the slave side, Xt

h has more
degree of freedom than Xs

h. However, these bubble functions can locally be eliminated from
the algebraic formulation of the saddle point problem leading to a system matrix, which is
similar to the algebraic form of the saddle point problem arising from the mortar discretization
with a dual Lagrange multiplier space. Furthermore, the growth rate of the number of bubble
functions is only a factor of four in each refinement step, and restricted to the skeleton. This
is negligible since we can work with an efficient multigrid solver in case of the augmented
serendipity space with the quasi-dual Lagrange multiplier space. Although we can work with
the efficient multigrid solver in case of standard triquadratic finite elements, the approach is
not as optimal as the augmented serendipity approach due to the higher number of degrees
of freedom. It turns out that the most efficient approach is the one given by the augmented
serendipity elements. The discretization errors are as good as in the other cases, and the
numerical solution is cheaper.
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