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Finite Element Techniques for Removing the
Mixture of Gaussian and Impulsive Noise

Bishnu P. Lamichhane

Abstract—The finite element method has become a very pow-
erful and popular tool to solve boundary value problems coming
from science and engineering. Here, we consider a scattereddata
fitting method based on the finite element method and apply the
method to remove the mixture of Gaussian and impulsive noise
from an image. Numerical results show the performance of the
approach.

Index Terms—Finite element interpolation and smoothing,
Delaunay triangulation, Voronoi diagram, scattered data inter-
polation, impulsive and Gaussian noise

I. I NTRODUCTION

An interesting problem in image processing is to recover a
clear image out of a noisy image. In real situations, a noise
model is not known a priori. Nevertheless, the most common
noise type encountered in real applications are impulsive noise,
Gaussian noise or mixture of both. We refer to [1]–[3] for more
details on digital image processing.

Here, we consider finite element techniques to denoise a
digital image corrupted with the mixture of impulsive and
Gaussian noise- so called ’mixed noise’. Recently, finite
element methods have been applied in different areas of
image processing [4]–[8]. As the finite element method is
successfully used to remove high density impulsive noise, see,
e.g., [6], [9], we show that finite element methods are also
suitable for removing high density impulsive noise as well as
the mixture of Gaussian and impulsive noise from an image.
The removal of an impulsive noise is based on first identifying
the noisy and pure pixels of the image and then fitting a
suitable surface using only pure pixels of the image. The
interpolation is based on Delaunay triangulation and Voronoi
diagrams [10]–[12], whereas we use finite element smoothing
based on minimization of a functional involving the gradient
of a piecewise polynomial function to recover a clear image
when the image is corrupted with the mixture of Gaussian
and impulsive noise. Our finite element smoothing is closely
related to the steady state solution of linear diffusion with
appropriate boundary condition [13], [14]. This smoothing
approach is simpler and more efficient compared to other
related data smoothing techniques like thin plate splines,radial
basis functions and finite element thin plate splines [15]–[17].
The functional minimization approach is often known as an
energy method or variational approach [18], [19].
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We recall that a digital image is an array of numbers, where
the size of the array determines the size of the image. An
intensity image, for example, can be stored as a single matrix
of sizem×n, where each element of the matrix represents the
intensity of the image pixel or gray level. On the other hand,an
array of sizem× n× 3 can be used for a color image where
the image has sizem × n, and each pixel has three values
representing the red, green, and blue intensities that makeup
the color. Although the idea can easily be extended to other
types of image, we restrict ourselves to intensity images.

In this paper, we use finite element smoothing to remove
the mixture of Gaussian and impulsive noise. The Gaussian
noise is normally distributed, additive and affects almostall
pixels of the image, whereas the impulsive noise corrupts
some randomly selected pixels of the image. Those pixels
corrupted by the impulsive noise are just random impulses
and so do not carry any information of the image. In case
of impulsive noise, we assume that the pixel location of the
impulsive noise can be identified. In particular, we consider
salt and pepper noise as a model of impulsive noise. Salt and
pepper noise is fixed value impulsive noise where the noisy
pixels are random and are set either to white or black in an
intensity image, see [2]. Therefore, all the pixels having the
largest or smallest values are regarded as corrupted pixelsand
are discarded for the interpolation and smoothing purpose.In
case of mixture of Gaussian and impulsive noise, the impulsive
noise is applied after the Gaussian noise, and therefore, the
pixels with the largest or smallest values can still be regarded
as the corrupted pixels. However, if the Gaussian noise comes
after the impulsive noise or a complicated impulsive noise
is applied, a reliable impulse detector should be applied
to identify the impulsive pixels. Such impulse detectors are
discussed in [6], [20]–[24]. Using chi-square goodness-of-fit
test to accurately detect the corrupted pixels, an impulsive
noise suppression scheme for images is proposed in [20]. This
impulsive noise elimination filter shows a good performance
even for images with 95% corrupted pixels. The impulse
detector in [21] is based on a comparison of pixel samples
within a narrow rank window by the rank and absolute value,
whereas the one presented in [22] is based on an image statistic
and neighboring pixels. An improvement of the approach in
[22] is given in [24]. Using statistical tools to detect the
impulsive pixels and non-linear filtering scheme based on
ANFIS, another efficient method is presented in [23] for
highly corrupted images. As our impulsive noise model is
quite simple and the main goal of the paper is to introduce a
finite element method to remove the mixture of Gaussian and
impulsive noise, we do not consider these impulse detectors.

The paper is organized as follows. In the next section,



2

we briefly review scattered data interpolation method based
on Delaunay triangulation and Voronoi diagram applied to
filter out salt and pepper noise. Section III is devoted to
the introduction and analysis of our finite element smoothing
technique based on minimization of a functional involving the
gradient of a piecewise polynomial function. We show the
existence and uniqueness of the the minimization problem
under very mild assumptions. The finite element smoothing
technique developed here is applied to denoise an image
corrupted with salt and pepper noise as well as Gaussian noise
in the last section. The results from finite element methods
are compared with standard techniques like median filter and
wavelets.

II. F INITE ELEMENT INTERPOLATION

Assume thatG = {(xi, yi)}N
i=0 is a set of scattered points

in R
2, and a functionf is given onG with zi = f(xi, yi) for

i = 0, · · · , N . Let Ω be the convex hull of the set of points
G. The problem ofscattered data interpolation is to find a
function p : Ω̄ → R so thatp(xi, yi) = zi for i = 0, · · · , N .
There is a vast amount of literature devoted to the scattered
data interpolation. We refer to [25], [26] for extensive surveys
on this subject. Here, we restrict ourselves to the finite element
interpolation on two dimensions.

In general, the finite element method consists of the follow-
ing three steps. In the first step the domainΩ is decomposed
into non-overlapping triangles or quadrilaterals. In the second
step local basis functions are defined in each triangle or
quadrilateral. Finally, these local basis functions are glued
together to form a set of global basis functions which span the
finite element space. We refer to [27]–[29] for a mathematical
definition of the finite element method. In the two-dimensional
case, if the interpolant is to be at least continuous, the
decomposition should be geometrically conforming.

Definition 1. Let Ω ⊂ R
2 be a polygoonal domain. The col-

lection of disjoint polygonal subdomainsT with Ω̄ = ∪T∈T T̄
forms a geometrically conforming decompositionof Ω if
the intersection between the boundaries of any two different
subdomains∂Tl ∩ ∂Tk, k 6= l, Tk, Tl ∈ T is either empty, a
vertex or a common edge.

In the following, we restrict ourselves to the situation where
the subdomains are triangles or quadrilaterals.

Let Ω, the convex hull ofG, be a polygonal domain. We note
that a polygonal domain in two dimensions is an open bounded
region whose boundary consists of pieces of lines. The most
efficient and popular way of decomposing the domainΩ into
triangles with vertices inG whenΩ is the convex hull of the
scattered points is the Delaunay triangulation.

Definition 2. Given a setG of points in R
2, a Delaunay

triangulation for G is a conforming decompositionT of
convex hull ofG into triangles with vertices inG such that
no point inG is inside the circumcircle of any triangle inT .

A Delaunay triangulation of a finite set of points in the
plane is a triangulation that minimizes the standard deviations
of the angles of the triangles. Therefore, they are in some

sense optimal for finite element interpolation [27], [29], [30].
Using locally optimal Delaunay triangulation, adaptive image
approximation is applied in [8] based on piecewise linear finite
elements, and a Delaunay triangulation based impulsive noise
removal method is presented in [6]. Here, we briefly recall the
method for the subsequent application.

The Voronoi diagram is used for the nearest-neighbor inter-
polation, and is the dual graph of the Delaunay triangulation
for the same set of points.

Definition 3. For a set of pointsG ⊂ R
2, the Voronoi dia-

gram is the decomposition of the plane into convex polygons
such that each polygon contains exactly one generating point
from G and every point in a given polygon is closer to its
generating point than to any other point inG. A convex
polygon Vx associated with the generating pointx ∈ G is
called theVoronoi cell for the pointx ∈ G.

In other words, the Voronoi cellVx for the pointx ∈ G
has the property that the distance of everyy ∈ Vx from x

is less than or equal to the distance ofy from any other
point inG. The circle circumscribed about a Delaunay triangle
has its center at the vertex of a Voronoi cell, see the right
graph of Figure 1. The idea of Delaunay triangulation and
Voronoi diagram is also extended to higher dimension. An
efficient algorithm for computing Delaunay triangulation and
Voronoi diagrams are presented in [11], see [10], [12] for more
mathematical detail.

As an example of Delaunay triangulation
and Voronoi diagram, we define a setG1 =
{(0.1, 0.4), (0.5, 0.1), (0.45, 0.5), (0.3, 0.6), (0.3, 0.3), (0.1, 0.4),
(0.9, 0.8), (0.3, 0.9), (0.2, 0.1), (0.8, 0.9)}, and generate the
Delaunay triangulation and the Voronoi diagram ofG1. We
have shown the Delaunay triangulation and the Voronoi
diagram of G1 in the left and middle graphs of Figure
1, respectively. The right graph of Figure 1 shows the
circumcircle of a triangle with its center at a vertex of the
Voronoi diagram as shown with a filled circle. Once we have
a decomposition, the interpolation can be done by defining a
suitable basis for the piecewise polynomial space. A suitable
basis for the piecewise polynomial interpolation is a nodal
basis defined as follows.

Definition 4. Let G = {(xi, yi)}N
i=0 be a set of points in

R
2, and Ω be the convex hull ofG. Assume thatT be a

conforming decomposition ofΩ into triangles or quadrilat-
erals. Then, a basis{φi}N

i=0 of piecewise polynomial space
U = span{φi}N

i=0
is called anodal basisof U with respect

to G if and only if φj(xi, yi) = δij for i, j = 0, · · · , N . The
piecewise polynomial spaceU is a finite element space, and
{φi}N

i=0
are also calledfinite element basis functions.

Let {φi}N
i=0 be the set of piecewise linear or bilinear nodal

basis functions with respect to the set of pointsG [29]. Assume
that we are given the values{zi}N

i=0
of a function atG. Then,

the piecewise linear interpolantp of the given data is obtained
by

p(x) =

N
∑

i=0

ziφi(x).
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Fig. 1: The Delaunay triangulation of the setG1 (left), the corresponding Voronoi diagram (middle) and thecircumcircle of a
triangle with Delaunay triangulation and Voronoi diagram

The nearest neighbor interpolation of a scattered data
G = {(xi, yi)}N

i=0
can be done by generating the Voronoi

diagram of the setG. Let χi be the characteristic function
of the Voronoi cell corresponding to the point(xi, yi), i =
0, · · · , N . Then, the nearest neighbor interpolantp of the given
data is obtained by

p(x) =
N

∑

i=0

ziχi(x).

Higher order interpolation can be defined in a similar way, see
[27]–[29] for more details.

In order to interpolate a digital image, we associate a
suitable set of points with the image called a tensor product
partition defined as follows.

Definition 5. Assume thatSx = {a = x1 < · · · < xn = b}
is a set of points in the closed interval[a, b] and Sy = {c =
y1 < · · · < ym = d.} that of [c, d]. Then the set of points
S = {(xi, yj)}n,m

i=1,j=1
is called a tensor product partition

of the rectangular region[a, b] × [c, d].

Associated with an intensity imageI of size m × n, we
define a tensor product partitionS of the square[0, 1]× [0, 1]
as

S = {(ai, bj)}n,m
i=1,j=1

with ai =
i − 1

n − 1
, bj =

j − 1

m − 1
,

(1)
and animage function If : S → R

k, k ∈ N. We note that for
color images, we havek = 3, andIf (ai, bj) denotes a pixel
color at the point(ai, bj) having three values representing red,
green and blue. For intensity images, we havek = 1, and
If (ai, bj) denotes the intensity of the image pixel or gray level
at the point(ai, bj). In case of intensity images, the number
If (ai, bj) can be of class double, in which case it contains the
values in[0, 1], or of classuint8, in which case the values are
in [0, 255]. For both classes, the smallest intensity represents
black, and the largest intensity represents white.

The impulsive noise for an original imageI can be defined
using the associated image functionIf . If Ĩ is the image
obtained by polluting the original imageI by some impulsive
noise of densityd%, then the image functioñIf for the
corrupted imagẽI is defined as

Ĩf (ai, bj) =

{

If (ai, bj) with probability of 1 − d
100

η(ai, bj) with probability of d
100

,

where η(ai, bj) is the impulse at(ai, bj), and 1 ≤ i ≤ n
and1 ≤ j ≤ m. The salt and pepper noise is obtained when
η(ai, bj) takes the largest and smallest pixel values [9].

Assume that an intensity imageI of sizem×n is corrupted
with salt and pepper noise. Let the tensor product partitionas
given in (1) and the image functionIf : S → R be associated
with the image. Denoting the set of points having corrupted
and non-corrupted image pixels bySn and Sp, respectively
with S = Sn ∪ Sp, we define a functionIp

f : Sp → R as the
restriction of the functionIf to the setSp. As the positions of
the noisy pixels are random, the points inSp have no structure.
Since the impulses of the salt and pepper noise are white or
black pixels,Sn consists of all white and black pixels, andSp

consists of the rest pixels. However, for a general impulsive
noise, an efficient impulse detector should be used to identify
the setsSn andSp, see, e.g., [6], [20]–[24].

The idea of denoising the image corrupted with only im-
pulsive noise is to find an interpolant which interpolates the
discrete functionIp

f . Let p : Ω̄ → R be a piecewise polyno-
mial interpolant based on the Delaunay triangulation of the
scattered points inSp. Thus,p(x, y) = Ip

f (x, y), (x, y) ∈ Sp.
If a point (x, y) ∈ S but (x, y) /∈ Ω̄, we need to extrapolate for
this point. In this case, we find a point(x̂, ŷ) in Sp nearest
to (x, y) and setp(x, y) = Ip

f (x̂, ŷ) using nearest neighbor
extrapolation [31]. Another way of doing the extrapolationis
to reflect some pixels near to the boundary ofΩ across the
boundary of the unit square and cover the whole unit square
with Delaunay triangulation [9]. We refer to [18] for another
approach to remove high density salt and pepper noise.

III. F INITE ELEMENT SMOOTHING

When an image is corrupted only with impulsive noise,
and it is possible to detect noisy and pure pixels, scattered
data interpolation based on Delaunay triangulation provides
an efficient approach to remove the impulsive noise from the
image. However, in many practical situations the image is
corrupted with impulsive noise as well as Gaussian noise. If
a noisy image is transmitted over faulty communication lines,
the received image might be corrupted with the mixture of
Gaussian and impulsive noise. If the image is corrupted with
the mixture of Gaussian and impulsive noise, it is necessaryto
smooth the image pixels as well as to remove impulses from
them. In [22], [32], some methods are proposed to remove the
mixture of Gaussian and impulsive noise. The filter proposed
in [22] is based on a local image statistic, whereas the one
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proposed in [32] is based on fuzzy method. Here, we use a
smoothing technique based on the finite element method to
remove the mixture of Gaussian and impulsive noise.

Let Ĩ be the image corrupted with the mixture of Gaussian
and impulsive noise, andI the original image. We associate the
tensor product partitionS as defined in (1) with both images,
and image functionsIf : S → R and Ĩf : S → R with the
imagesI and Ĩ, respectively. As before, letSn and Sp be
the set of points corrupted and non-corrupted with impulsive
noise, respectively, andSp = {(xi, yi)}N

i=0. Since the image
is corrupted with the mixture of Gaussian and impulsive noise,
after removing the impulsive pixels from the noisy image we
have

Ĩf (xi, yi) = If (xi, yi) + ni, (xi, yi) ∈ Sp,

where ni are drawn from zero-mean Gaussian distribution.
Hence we have to do two things at once. We should find
the missing pixels of the image and reduce the Gaussian
noise of the pixels inSp. Mathematically, we want to find
a function defined on[0, 1] × [0, 1], possibly smooth, which
approximates the unknown image functionIf at the points in
S. The smoothness of the function will reduce the Gaussian
noise. This is equivalent to fitting a smooth surface to the
scattered data inSp, where the smoothness and approximation
is suitably balanced.

Radial basis functions and thin plate splines are often used
to interpolate and smooth scattered data [15], [16]. Here, we
consider an approach based on the bivariate L-spline analyzed
in [16] which is a minimizer of the functional

F (u) =

N
∑

i=1

(u(xi, yi) − zi)
2 + λ

∫

Ω

(L u(x, y))2 dx dy (2)

over a space of function, whereL is a partial differential
operator, andλ is a positive constant. The approach of
functional minimization is quite popular in the context of
image processing based on partial differential equations [13],
[14], [19]. As the approach is based on minimizing the energy
defined by a functional, it is often called an energy method or
variational approach [18], [19]. A simple approach is obtained
by replacing the operatorL by the gradient operator. In this
case, the approach is closely connected with the steady state
solution of linear diffusion problem [13], [14] with some
appropriate boundary condition. On the other hand, the thin
plate spline smoothing is obtained by replacing(L u)2 by
u2

xx +2u2
xy +u2

yy, see [15], [16]. AsSp = {(xi, yi) : 1 ≤ i ≤
N}, the functionalF depends only on the set of pure pixels
and the set of corrupted pixels is completely discarded as in
finite element interpolation.

Since interpolation methods based on radial basis functions
or thin plate splines are very expensive, we replaceu with a
function belonging to the finite element space on the structured
grid formed by using the tensor product partitionS, where the
pixel values of the image are to be computed. An example of
such a grid along with the scattered points is shown in the left
graph of Figure 2 using triangular elements, and a function
belonging to the finite element spaceV having zero boundary
condition is shown in the right.

The finite element thin plate spline presented in [33] is
closely related to our approach. In [33] the second order
derivative in the thin plate spline formulation is replacedwith
a first order condition to use a low order finite element method
by using a variational theorem, where the basis functions are
only continuous, not even continuously differentiable. Similar
ideas for spline smoothing using finite element methods are
exploited in [17], [34]. Our approach is motivated by the fact
that although the given data is completely unstructured, we
want to reconstruct the image in a structured grid. Working
with the finite element thin plate spline as in [33] or the
Laplace operator forL as in [34], a mixed finite element
method is to be employed to work with only continuous finite
element space [17], [29], [33], [34]. If a mixed method is
used for the discretization, a solver adapted to the saddle point
matrix is to be used. Furthermore, the finite element thin plate
spline presented in [17] or the bivariate L-spline proposedin
[34] being based on higher order partial differential operators
produce much smoother solution. Since the underlying image
function might not be a smooth function, they do not neces-
sarily produce good solutions.

On the one hand, we want to use a simple finite element
method leading to a positive-definite formulation, which can
be easier to solve than the saddle point system. On the other
hand, we do not want to have a much smooth solution.
Therefore, we replaceLu with ‖∇u‖, where∇ is the gradient
operator and‖·‖ is the Euclidean norm inR2. In the following,
the Euclidean norm ofx ∈ R

n will be denoted by‖x‖.
Let C0(Ω) be the space of continuous functions inΩ. Let

T be a structured decomposition of the rectangular domainΩ
into rectangles or triangles, and

V = {u ∈ C0(Ω)|u|T ∈ P(T ), T ∈ T } (3)

be a finite element space, whereP(T ) is the linear or bilinear
polynomial space onT depending onT being a triangle
or rectangle. Now, our discrete problem is to minimize the
functional (2) over the function spaceV so that the discrete
problem can be written as

min
u∈V

N
∑

i=0

(u(xi, yi) − zi)
2 + λ

∫

Ω

‖∇u‖2 dx dy. (4)

Denoting function values ofu at the measurement points
by

Pu = (u(x0, y0), u(x1, y1), · · · , u(xN , yN))T ,

we introduce a functional

Jλ(u) = ‖Pu‖2 + λ

∫

Ω

‖∇u‖2 dx dy − 2 (Pu)T
z,

wherez is a column vector havingi-th entry aszi for i =
0, · · · , N . It is easy to see that the minimization problem (4)
is equivalent to

min
u∈V

Jλ(u).

For the mathematical analysis of the problem (4) we need the
following definition.

Definition 6. Let H be a Hilbert space with inner product
〈, ·, 〉H , and W a subspace ofH . Let a : W × W → R be a
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Fig. 2: A structured triangular grid formed by using a tensorproduct partition and a set of scattered points (left) and a finite
element function having zero boundary condition (right)

symmetric bilinear form andf : W → R a linear form. The
problem of findingu ∈ W such that

a(u, v) = f(v), v ∈ W (5)

is called anabstract variational problem.

The crucial tools for the analysis are the following theorems.
We refer to [28], [29] for proofs.

Theorem 1. Let H be a Hilbert space with inner product
〈, ·, 〉H , andW a subspace ofH . Let a : W × W → R be a
symmetric bilinear form satisfyinga(v, v) ≥ 0 for all v ∈ W .
And f : W → R a linear form. Then the abstract variational
problem (5) is equivalent to the problem of findingu ∈ W
which minimizes the functionala(u, u) − 2f(u) in W .

The existence of the unique solution is shown by using the
Lax-Milgram lemma.

Theorem 2. Let H be a Hilbert space with inner product
〈, ·, 〉H , and W a subspace ofH . Let the linear formf :
W → R be continuous and the bilinear forma : W ×W → R

be continuous and coercive with respect to the norm‖ · ‖H

induced by the inner product〈, ·, 〉H . Then, the abstract vari-
ational problem(5) admits a unique solution which depends
continuously on the data.

In order to put our problem into the settings of the previous
theorems, we define a P-inner product〈·, ·〉P with 〈u, v〉P =
(Pu)T Pv + λ

∫

Ω
∇uT∇v dx dy. The following lemma shows

that the P-inner product is an inner product on the vector space
V given by (3).

Lemma 1. Let λ > 0 andG ⊂ Ω̄ be non-empty. Then, the P-
inner product defined above is an inner product on the vector
spaceV so thatV is a Hilbert space overR.

Proof: In order to show that the P-inner product is indeed
an inner product, we have to prove the following properties
of P-inner product:

(1) 〈v, v〉P ≥ 0, and 〈v, v〉P = 0 if and only if v =
0, v ∈ V

(2) 〈v + w, z〉P = 〈v, z〉P + 〈w, z〉P , v, w, z ∈ V
(3) 〈v, az〉P = a〈v, z〉P , v ∈ V, a ∈ R

(4) 〈v, w〉P = 〈w, v〉P , v, w ∈ V

It is trivial to show that the P-inner product satisfies the
second, third and fourth properties. It is also obvious that
〈v, v〉P ≥ 0. It remains to show that the P-inner product is

positive-definite. Sinceu is continuous,〈∇u,∇u〉 = 0 if and
only if u is constant. On the other hand,〈Pu, Pu〉 = 0 and
u is constant inΩ if and only if u = 0 in Ω.

The P-norm of an elementu ∈ V induced by the inner
product〈·, ·〉P is given by‖u‖2

P = ‖Pu‖2+λ
∫

Ω
‖∇u‖2dx dy.

The bilinear forma(·, ·) and the linear formf(·) associated
with the functionalJλ(·) are given by

a(u, v) = (Pu)T Pv+λ

∫

Ω

∇uT∇v dx dy, andf(v) = (Pv)T
z

so that our minimization problem (4) is equivalent to the
variational problem to findu ∈ V such that

a(u, v) = f(v), v ∈ V. (6)

Since the bilinear forma(·, ·) and the linear formf(·) as
defined above satisfy all the properties of Theorem 1, the
unique minimizer is the solution of the variational problem
(5). Furthermore, the following corollary holds.

Corollary 1. The variational problem(6) admits a unique
solution which depends continuously on the data.

Proof: Since u, v ∈ V , it follows that |a(u, v)| ≤
‖u‖P‖v‖P and |f(v)| ≤ C‖v‖P . Hence the bilinear form
a(·, ·) and the linear formf(·) are continuous with respect
to the norm‖ · ‖P . Moreover, from the definition of P-norm
a(u, u) = ‖u‖P so thata(·, ·) is coercive with respect to the
norm ‖ · ‖P . Hence, our variational problem (6) has a unique
solution. From the definition of theP -inner product, we have

a(v, v) = ‖v‖2

P , v ∈ V,

and thus, for the solutionu ∈ V , ‖u‖2

P = f(u).

Remark 1. When there is no Gaussian noise, we can basically
find the solution of the variational problem: Findu ∈ V such
that ∫

Ω

∇uT∇v dx dy = 0, v ∈ V

subject to the conditions

u(xi, yi) = zi, i = 0, · · · , N.

In the context of image inpainting, this method is called
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variational or harmonic inpainting [2], and produces a smooth
solution. A penalty formulation of this problem is given by
Problem(4) whereλ is a very small penalty parameter.

Each finite element basis function is associated with a point
in the tensor product gridS, and there arem n points in
the grid, so there arem n finite element basis functions. Let
{φi}m n

i=1
be the set of nodal finite element basis functions

which spans the finite element spaceV . Then, the solution
u ∈ V can be written as

u(x, y) =

m n
∑

i=1

uiφi(x, y).

Let u = (u1, · · · , umn)T ∈ R
m n andK be the finite element

stiffness matrix for the Laplace operator having(i, j)-th entry
as

∫

Ω
∇φT

i ∇φj dx dy. Then, the algebraic formulation of our
problem is to find the solution to the linear system

(AT A + λK)u = AT
z, (7)

where the matrixA is of sizeN × m n and its(i, j)-th entry
is φi(xj , yj).

Since the stiffness matrixK is to be computed in a struc-
tured mesh and there are many efficient approaches to compute
it, our approach is very efficient and simple. Furthermore, the
domainΩ and the structured mesh on it can be the same for
different problems.

Remark 2. If the image is to be recovered in the original
tensor product partitionS, all points in G also belong to
S. Under the assumption that the set of finite element basis
functions

{φ1, · · · , φmn}

forms a nodal basis ofV , the matrixAT A is a diagonal matrix
of sizem n × m n with a diagonal entry one at the position
of a point inG and zero elsewhere.

IV. N UMERICAL RESULTS

This section is devoted to some examples of image denois-
ing based on the techniques developed above. Assuming that
we know the image before being corrupted with the noise, we
use peak signal-to-noise ratio (PSNR) to compare our results
with the results obtained by using the standard median filter
and wavelets [35], [36]. LetI and Î be the original image
before corruption and the image recovered after removing the
noise, respectively. The peak signal-to-noise ratio (PSNR) is
defined as

PSNR = 10 · log10

(

MAX
2

I

MSE

)

= 20 · log10

(

MAX I√
MSE

)

,

whereMAX I is the maximum pixel value of the image, and
MSE is the mean square error, i.e.,

MSE =
1

mn

m
∑

i=1

n
∑

j=1

‖Iij − Îij‖2.

In Figure 3, we show an example of applying the piecewise
interpolation to remove the salt and pepper noise. The first
picture (from the left) of Figure 3 shows the original image

and the second one shows the noisy image with noise density
50%. The third is the image reconstructed by using the linear
interpolation, and the fourth one is the image denoised by
using the median filter. In this example, the nearest neighbor
and cubic interpolation and finite element smoothing produce
the image which are visually equivalent to the one produced
by the linear interpolation. Although we can easily see the
superiority of the finite element method, the median filter
also recovers the image well. However, if the noise density
is increased, the median filter does not recover even the main
feature of the image. This has been explained in Figure 4,
where the image is corrupted with noise density 95%. In
Figure 4, the picture at the top left hand side shows the noisy
image, the top middle picture shows the image reconstructed
by using the nearest neighbor interpolation and the image
recovered by the linear interpolation is shown in the top right
hand side. On the bottom row of Figure 4, the picture on
the left hand side shows the image reconstructed by using
cubic interpolation, the middle picture is the one recovered by
using the finite element smoothing and the image at the right
hand side is reconstructed by using the median filter. We can
see that the finite element interpolation and smoothing show
very good performance here, and the median filter produces a
meaningless image. Although we useλ = 10−10 for the finite
element smoothing, the recovered image with this method is
smoother than with that of finite element interpolation. We
have shown the peak signal-to-noise ration (PSNR) for the
original and recovered images in Table I using two test images.
Both images are corrupted with only salt and pepper noise with
different noise densities as shown in Table I. For both images,
the linear and cubic interpolation shows the best behavior and
the nearest neighbor interpolation almost performs equally.
Similarly, finite element smoothing using linear and bilinear
elements also produce results equivalent to those producedby
finite element interpolation. However, median filter performs
well in case of low noise density, whereas at high noise
density (above 50%), the performance of the median filter
degrades considerably. Here, we have applied median filter
with different window sizes for different noise densities.

In our next example, we consider images corrupted with
salt and pepper noise as well as Gaussian noise. Here, we
compare two approaches: one is based on applying finite
element interpolation to remove the salt and pepper noise and
then wavelets to clear the image from the Gaussian noise,
and the other approach is based on applying finite element
smoothing to remove both noises at the same time. We have
applied our methods to two images as before: Lena’s image
and Baboon’s image. In both images, 60% of the pixels are
corrupted with the salt and pepper noise and the remaining
pixels also carry the Gaussian noise with zero mean and 0.05
variance. We have used standardMATLAB imnoisefunction to
create both noises. We note that the variance 0.05 refers to the
image where the pixel values are scaled to be in[0, 1]. We have
shown Lena’s image carrying both noises in the first picture
of Figure 6 and reconstructed image by removing only the
salt and pepper noise using linear interpolation in the second
picture. The third one shows the image after smoothing the
previous image by using wavelets. We have used the standard
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Fig. 3: Lena’s image (first), noisy image (noise density 50%)(second), denoised with linear interpolation (third) and denoised
with median filter (last)

Fig. 4: Noisy image (95 % noise density) (top left), denoisedby nearest neighbor interpolation (top middle), denoised by linear
interpolation (top right), denoised by cubic interpolation (bottom left), denoised by linear finite element smoothing(bottom
middle) and denoised by median filter (bottom right)

wavelet tool to clear the Gaussian noise by using global and
soft thresholding, see [36], [37]. The image recovered by using
finite element smoothing is shown in the last picture.

Figure 7 shows the same experiments done for Baboon’s
image using the same quantity of noise as for Lena’s image.
We can see that in Figures 6 and 7, wavelet method also
smooth the image well. However, the images recovered by
using the finite element smoothing are visually superior to
those recovered by using finite element interpolation and
wavelets. We have used a structured grid based on the tensor
product partition as defined in (1) to compute the finite element
space (3), where the number of vertices of the grid is equal
to the number of image pixels. An example of such a grid
having 25 vertices is shown in the left picture of Figure 2
using triangular elements. Similar grids can be defined for

rectangular elements. Here, the positive constantλ is fixed to
be 2.8. However, in the numerical results presented in Tables
II–V, we use the estimatedλ by using the generalized cross-
validation [16] and stochastic trace estimator proposed in[38].
It is interesting to note that using the trace estimator in the
generalized cross-validation to estimateλ gives a very good
estimate ofλ. We have plotted the exact error and generalized
cross-validation function versusλ in two pictures of Figure
5 for Lena’s image, where the exact error is scaled properly
for the visualization purpose. In both pictures, the image is
corrupted with Gaussian noise of variance0.1, whereas60%
of the pixels are corrupted with impulsive noise in the left
picture, and70% of the pixels are corrupted in the right one.

Finally, we show peak signal-to-noise ratio for the original
images and the reconstructed images, where the images are
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TABLE I
PSNROF THE TEST IMAGES WITH VARIOUS NOISE DENSITIES(ONLY SALT AND PEPPER NOISE)

PSNR for Lena’s image PSNR for Baboon’s image
Noise Density Noise Density

Method of Denoising 30% 50% 70% 90% 30% 50% 70% 90%
Interp. (nearest-neigh.) 33.94 31.11 28.12 24.36 23.79 21.8 19.98 17.78

Interp. (linear) 38.08 34.85 30.75 26.45 26.68 23.97 21.67 19.26
Interp. (cubic) 39.19 35.32 32.07 26.95 26.12 23.93 21.39 18.78

Smoothing (triangle) 38.23 34.54 30.36 26.15 27.15 24.27 22.01 19.81
Smoothing (rectangle) 36.83 33.52 29.79 25.85 26.29 23.74 21.76 19.76

Median Filter 24.50 22.76 17.90 9.43 19.41 18.19 15.56 9.21

10
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0.9

10
−0.637

10
−0.636

10
−0.635

10
−0.634

10
−0.633

10
−0.632
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−0.764
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−0.763
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−0.762
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−0.761

exact error
validation function

exact error
validation function

Fig. 5: Generalized cross-validation function and exact error versusλ for the mixture of Gaussian and impulsive noise with
Gaussian noise variance:0.1 (impulsive noise density:60% (left) and70% (right))

TABLE II
PSNRFOR THE MIXTURE OFGAUSSIAN AND SALT AND PEPPER NOISE, GAUSSIAN NOISE VAR: 0.05AND IMAGE SIZE: 512× 512

PSNR for Lena’s image PSNR for Baboon’s image
Noise Density Noise Density

Method of Denoising 50% 60% 70% 80% 50% 60% 70% 80%
FE Interp. and wavelets 22.24 21.86 20.95 19.46 18.57 18.26 17.76 17.05
FE Interp. and SURE 16.39 16.35 16.06 15.90 15.86 15.53 15.36 15.26
FE Smooth. (triangle) 22.42 22.05 21.59 20.91 18.82 18.57 18.46 18.38

corrupted with the mixture of Gaussian and salt and pepper
noise in Tables II–V. The Gaussian noise with mean zero and
variances0.05 and0.1 and salt and pepper noise with densities
50%, 60%, 70% and 80% are applied. We compare the
finite element smoothing with two different methods based on
wavelets. Both of these methods are applied after removing the
salt and pepper noise from the image. One method referred to
as “FE Interp. and wavelets” is the standard wavelet method to
denoise an image by using global and soft thresholding, [36],
[37], whereas the other method referred to as “FE Interp. and
SURE” is based on SURE (Stein’s unbiased risk estimate) and
interscale orthonormal wavelet thresholding recently proposed
in [39]. Since the method should be applied after getting

the interpolated image, the noise variance estimator performs
very badly in the second approach. Because of this reason,
the performance of this method is worse than the standard
wavelets. Therefore, we provide the results only for the case
of Gaussian noise of variance0.05. For the case of Gaussian
noise of variance0.1, we only compare our finite element
smoothing approach with the standard wavelet method, which
can be found in Tables IV–V.

In all Tables II–V, we can see a very good performance
of the finite element smoothing to remove the mixture of
Gaussian and impulsive noise. In particular, finite element
smoothing performs better than wavelets in Tables IV–V,
where the variance of the Gaussian noise is very high. The
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Fig. 6: Noisy image (first), image recovered by removing saltand pepper noise using finite element interpolation (second),
image recovered by using wavelet smoothing in the second image (third) and denoised by linear finite element smoothing (last)

Fig. 7: Baboon’s image (first), noisy image (second), image recovered by using finite element interpolation and wavelet
smoothing (third), denoised by linear finite element smoothing (last)

TABLE III
PSNRFOR THE MIXTURE OFGAUSSIAN AND SALT AND PEPPER NOISE, GAUSSIAN NOISE VAR: 0.05AND IMAGE SIZE: 256× 256

PSNR for Lena’s image PSNR for Baboon’s image
Noise Density Noise Density

Method of Denoising 50% 60% 70% 80% 50% 60% 70% 80%
FE Interp. and wavelets 18.76 18.47 18.97 18.05 17.35 17.33 17.07 16.85
FE Interp. and SURE 16.25 15.88 15.67 15.71 15.13 14.84 14.57 14.31
FE Smooth. (triangle) 20.99 20.49 20.22 19.59 17.92 17.75 17.08 16.79

TABLE IV
PSNRFOR THE MIXTURE OFGAUSSIAN AND SALT AND PEPPER NOISE, GAUSSIAN NOISE VAR: 0.1 AND IMAGE SIZE: 512× 512

PSNR for Lena’s image PSNR for Baboon’s image
Noise Density Noise Density

Method of Denoising 50% 60% 70% 80% 50% 60% 70% 80%
FE Interp. and wavelets 20.14 19.39 17.66 16.86 17.26 16.91 16.20 16.34
FE Smooth. (triangle) 20.80 20.33 20.27 19.87 18.08 18.0591 17.82 17.73

difference is more visible in Lena’s image.

V. CONCLUSION

We have presented a method of removing the mixture of
Gaussian and impulsive noise from images based on a finite
element technique. The finite element method is applied to
minimize a functional involving the gradient of a finite element
function and is shown to be equivalent to a variational prob-
lem. We have proved the existence, uniqueness and stability
of the variational problem by introducing a suitable inner
product. Numerical results show that the approach based on

finite element smoothing to remove the mixture of Gaussian
and impulsive noise is quite efficient.
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TABLE V
PSNRFOR THE MIXTURE OFGAUSSIAN AND SALT AND PEPPER NOISE, GAUSSIAN NOISE VAR: 0.1 AND IMAGE SIZE: 256× 256

PSNR for Lena’s image PSNR for Baboon’s image
Noise Density Noise Density

Method of Denoising 50% 60% 70% 80% 50% 60% 70% 80%
FE Interp. and wavelets 17.71 16.55 16.17 16.09 16.57 15.57 15.54 15.41
FE Smooth. (triangle) 19.66 19.24 18.88 18.34 16.55 16.28 16.16 16.05
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[23] P. Civicioǧlu, “Using uncorrupted neighborhoods of the pixels for
impulsive noise suppression with ANFIS,”IEEE Transactions on Image
Processing, vol. 16, pp. 759–773, 2007.

[24] Y. Dong, R. Chan, and S. Xu, “A detection statistic for random-valued
impulse noise,”IEEE Transactions on Image Processing, vol. 16, pp.
1112–1120, 2007.

[25] R. Franke and G. Nielson, “Scattered data interpolation and applications:
A tutorial and survey,” inGeometric Modelling: Methods and Their
Application, H. Hagen and D. Roller, Eds. Springer-Verlag, 1991, pp.
131–160.

[26] I. Amidror, “Scattered data interpolation methods forelectronic imaging
systems: a survey,”Journal of Electronic Imaging, vol. 11, pp. 157–176,
2002.

[27] P. Ciarlet, The Finite Element Method for Elliptic Problems. North
Holland, Amsterdam, 1978.

[28] S. Brenner and L. Scott,The Mathematical Theory of Finite Element
Methods. Springer–Verlag, New York, 1994.

[29] A. Quarteroni and A. Valli,Numerical approximation of partial differ-
ential equations. Berlin: Springer–Verlag, 1994.

[30] D. Braess,Finite Elements. Theory, fast solver, and applications in solid
mechanics. Cambridge University Press, Second Edition, 2001.

[31] B. Lamichhane and L. Rebollo-Neira, “Projection and interpolation
based techniques for structured and impulsive noise filtering,” in New
Research in Signal Processing. New York: Nova Science Publisher,
2008.

[32] Q. Xu, L. Ma, M. Li, W. Wang, J. Cai, R. Brunelli, and S. Messelodi,
“Fuzzy weighted average filtering for mixture noises,” inThird Interna-
tional Conference on Image and Graphics, 2004, pp. 18–21.

[33] I. Altas, M. Hegland, and S. Roberts, “Finite element thin plate splines
for surface fitting,” in Computational Techniques and Applications:
CTAC97, 1998, pp. 289–296.

[34] T. Ramsay, “Spline smoothing over difficult regions,”Journal of Royal
Statistical Society. Series B (Statistical Methodology), vol. 64, pp. 307–
319, 2002.

[35] J. Lim, Two-Dimensional Signal and Image Processing. Englewood
Cliffs, NJ, Prentice Hall, 1990.

[36] D. Donoho, “De-noising by soft-thresholding,”IEEE Transaction on
Information Theory, vol. 41, pp. 613–627, 1995.

[37] D. Donoho and I. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,”Biometrika, vol. 81, pp. 425–455, 1994.

[38] M. Hutchinson, “A stochastic estimator of the trace of the influence
matrix for Laplacian smoothing splines,”Communications in Statisfics
– Simulation and Computation, vol. 18, pp. 1059–1076, 1989.

[39] F. Luisier, T. Blu, and M. Unser, “A new sure approach to image denois-
ing: Interscale orthonormal wavelet thresholding,”IEEE Transactions on
Image Processing, vol. 16, pp. 593–606, 2007.

Bishnu P. Lamichhane received the M.Sc. degree
in Industrial Mathematics from University of Kaiser-
slautern, Germany in 2001, and Ph.D. degree in
applied mathematics from University of Stuttgart,
Germany in 2006. The main part of this paper was
completed when he was a research fellow at Aston
University, UK.

He is now a postdoctoral research fellow at the
Australian National University, Canberra, Australia.
His research interests include finite element methods
for differential equations, domain decomposition and

variational approach in image processing.


