
MORTAR FINITE ELEMENTS FOR INTERFACE PROBLEMSBISHNU P. LAMICHHANE� AND BARBARA I. WOHLMUTH�Abstra
t. Mortar te
hniques provide a 
exible tool for the 
oupling of di�erent dis
retization s
hemesor triangulations. Here, we 
onsider interfa
e problems within the framework of mortar �nite elementmethods. We start with a saddle point formulation and show that the interfa
e 
onditions enter into theright-hand side. Using dual Lagrange multipliers, we 
an work with s
aled sparse matri
es, and stati

ondensation gives rise to a symmetri
 and positive de�nite system on the un
onstrained produ
t spa
e.The iterative solver is based on a modi�ed multigrid approa
h. Numeri
al results illustrate the performan
eof our approa
h.Key words. Mortar �nite elements, Lagrange multiplier, saddle point problem, domain de
omposition,interfa
e problem, non-mat
hing triangulationAMS subje
t 
lassi�
ations. 65N30, 65N551. Introdu
tion. Domain de
omposition te
hniques provide powerful tools for the
oupling of di�erent dis
retization s
hemes or of non-mat
hing triangulations. Non-mat
hingtriangulations are of interest, for example, if di�erent subdomains are meshed independently,or if adaptive remeshing is done in some subdomains. This 
an be 
aused by dis
ontin-uous di�usion 
oeÆ
ients, problems with transmission 
onditions at the interfa
e, lo
alanisotropies, singular sour
es or 
orner singularities. Here, we 
onsider mortar �nite el-ements for interfa
e problems. Su
h interfa
e problems arise in di�erent situations, forexample, in heat 
ondu
tion or in linear elasti
ity. The 
hara
teristi
 idea of mortar meth-ods is to de
ompose the domain of interest in non-overlapping subdomains and to repla
ethe strong pointwise 
ontinuity at the interfa
es by a weak integral 
ondition. There aretwo di�erent equivalent variational formulations. One approa
h results in a positive de�nitesystem on the 
onstrained mortar spa
e [BMP93, BMP94℄, and a se
ond one gives rise toan inde�nite system asso
iated with the un
onstrained produ
t spa
e and a Lagrange mul-tiplier spa
e [Bel99℄. Here, we follow the se
ond approa
h and rewrite the interfa
e problemas inde�nite variational equation.Conforming �nite element methods for ellipti
 problems with dis
ontinuous 
oeÆ
ients andhomogeneous interfa
e 
onditions are addressed in [Bab70℄. Finite element methods fornon-homogeneous ellipti
 interfa
e problems are analyzed in [BK96℄, and it is shown thatthe dis
retization error is of optimal order for linear �nite elements on quasi-uniform trian-gulations. A survey on non-overlapping domain de
omposition methods for ellipti
 interfa
eproblems 
an be found in [XZ98℄. A least-squares �nite element method for ellipti
 interfa
eproblems with Diri
hlet and Neumann boundary data is proposed and analyzed in [CG98℄.In parti
ular, error estimates for non-mat
hing triangulations at the interfa
e are given. El-lipti
 and paraboli
 interfa
e problems with a non-zero jump in the 
ux a
ross a suÆ
ientlysmooth interfa
e are 
onsidered in [CZ98, HZ02℄. In [CZ98℄, nearly optimal error estimatesin the energy-norm and in the L2-norm are established under reasonable regularity assump-tions on the original solutions, whereas some new a priori estimates are presented in [HZ02℄.�IANS, University of Stuttgart, Germany. flami
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2The immersed interfa
e method is based on using the jumps in the solution and its derivativeto modify standard �nite di�eren
e s
hemes in the neighborhood of the interfa
e, see [LL94℄.The idea to pre
ondition the ellipti
 equation before using the immersed interfa
e methodis proposed in [Li98a℄ resulting in a fast algorithm for ellipti
 equations with large jumpsin the 
oeÆ
ients. An extension of the immersed interfa
e method to boundary value prob-lems on irregular domains with Neumann and Diri
hlet boundary 
onditions 
an be foundin [WB00℄. The immersed interfa
e method with a �nite element formulation is 
onsideredin [Li98b℄. Nits
he te
hniques provide 
exible domain de
omposition te
hniques and havebeen su

essfully used for the numeri
al approximation of partial di�erential equations, see,e.g., [BHS03, HN03℄. The analysis of the dis
retization s
heme is restri
ted to homogeneousinterfa
e 
onditions, and optimal a priori estimates are given. A similar approa
h 
an befound in [HH02℄, where a stationary heat 
ondu
tion problem in two dimensions with a dis-
ontinuous 
ondu
ting 
oeÆ
ient a
ross a smooth interfa
e is 
onsidered. Optimal a prioriestimates for appropriately modi�ed pie
ewise linear elements on a quasi-uniform triangu-lation have been established. Mortar methods based on dual Lagrange multiplier spa
es forellipti
 problems are 
onsidered in [Woh01℄. Here, we propose a similar approa
h based onmortar te
hniques and dual Lagrange multipliers. We 
onsider non-homogeneous jumps inthe 
ux and in the solution a
ross the interfa
e. Starting with a saddle point formulation ofthe interfa
e problem, we show the existen
e and uniqueness of the solution in the 
ontin-uous and dis
rete setting. In 
ontrast to the general mortar framework, we de
ompose theinterfa
e into disjoint straight lines and remove a degree of freedom of Lagrange multipliersfrom its 
orner nodes. We show that this is essential to prove an optimal a priori estimate forthe pie
ewise linear interfa
e. Compared to standard formulations for the Lapla
e operator,see [BMP93℄, we have to in
lude two additional terms re
e
ting the interfa
e 
onditions.The jump terms enter only in the right-hand side, and the arising sti�ness matrix does notdepend on the interfa
e 
onditions. Working with dual Lagrange multiplier spa
es, a 
ex-ible and eÆ
ient 
oupling of non-mat
hing triangulations at the interfa
e 
an be realized.In terms of the biorthogonality between the basis fun
tions of the �nite element tra
e andthe Lagrange multiplier spa
e, we get a diagonal mass matrix on the slave side. As a 
onse-quen
e, we 
an lo
ally eliminate the Lagrange multiplier from the saddle point formulationand obtain a positive de�nite algebrai
 system on the un
onstrained produ
t spa
e. Hen
e,the multigrid method introdu
ed in [WK01℄ 
an be applied to our situation. Our approa
his quite 
exible and 
an easily be applied to general type of ellipti
 and paraboli
 interfa
eproblems, where the geometry of and the jump at the interfa
e are a priori known.The paper is organized as follows: In the next se
tion, we present our model interfa
eproblem and introdu
e its saddle point formulation in the 
ontinuous setting. In Se
tion3, we brie
y outline the mortar dis
retization s
heme and establish a priori estimates forthe dis
retization errors. Moreover, we 
onsider the algebrai
 formulation of the saddlepoint problem. Lo
al modi�
ations are 
arried out to obtain a positive de�nite system forwhi
h we 
an use multigrid methods. Finally in Se
tion 4, we show some numeri
al resultsillustrating the performan
e of our approa
h. In parti
ular, we give the dis
retization errorsin the L2- and H1-norm and in a weighted L2-norm for the Lagrange multiplier.2. Continuous setting. Let us 
onsider a bounded polygonal domain 
 � R2 , whi
his de
omposed into two non-overlapping subdomains 
1 and 
2 with the 
ommon interiorinterfa
e �, �� := �
1 \ �
2, and assume that the interfa
e � 
an be written as unionof straight lines, see Figure 2.1. For simpli
ity, we restri
t ourselves to the 
ase of twosubdomains. However, the approa
h 
an be generalized to more than two subdomains. We



3
Fig. 2.1: Di�erent de
ompositions of the domain into two subdomains
onsider the following ellipti
 se
ond order boundary value problem on 
�div(�irui) + biui = fi in 
i; i = 1; 2 (2.1)with homogeneous Diri
hlet boundary 
onditions on �
. Here, �1 and �2 are symmetri
and lo
ally 
onstant positive-de�nite se
ond order tensors spe
ifying the di�usion in the twosubdomains. Furthermore, we assume that fi 2 L2(
i) and 0 � bi 2 L1(
i); i = 1; 2. Thejump 
onditions at the interfa
e � are given by[u℄ := u1 � u2 = gD on �; (2.2)[u℄n := (�1ru1) � n1 + (�2ru2) � n2 = gN on �; (2.3)where ni is the outward normal on �
i. We assume that gD 2 H 1200(�) and gN 2 H� 12 (�) :=�H 1200(�)�0. On ea
h subdomain, we de�neH1� (
k) := fv 2 H1(
k); vj�
\�
k = 0g; k = 1; 2;and we work with the un
onstrained produ
t spa
e X := H1� (
1)�H1� (
2).Using a dis
retization s
heme, we 
annot, in general, satisfy the interfa
e 
onditions (2.2)and (2.3) in a strong form. We repla
e (2.2) and (2.3) by a weak variational 
ondition. It isgiven in terms of the duality pairing on the interfa
eb(v; �) := h[v℄; �i� ; v = (v1; v2) 2 X; � 2M := H� 12 (�):In the rest of this se
tion, we 
onsider the variational formulation of the interfa
e problem.The weak formulation of (2.1) is obtained by applying Green's formula on 
i, i = 1; 2Z
i(�irui) � r�i dx� Z� �irui � ni�i ds+ Z
i biui�i dx = Z
i fi�i dx; �i 2 H1� (
i):Taking into a

ount the interfa
e 
ondition for the 
ux (2.3), �1ru1 � n1 = ��2ru2 � n2 +gN on�; we �nd for �1 2 H1� (
1)Z
1(�1ru1) � r�1 dx+ Z� �2ru2 � n2�1 ds+ Z
1 b1u1�1 dx = Z
1 f1�1 dx+ Z�gN�1 ds:The weak formulation of the jump of the solution at the interfa
e 
an be obtained bymultiplying the jump 
ondition (2.2) with an element of the dual spa
e M . Then thede�nition of the bilinear form b(�; �) yieldsb(u; �) = hgD; �i� =: g(�); � 2M:



4Introdu
ing the 
ux � := �2ru2 � n2 on �, we 
an write the weak form of (2.1) as a saddlepoint problem: �nd (u; �) 2 X �M su
h thata(u; v) + b(v; �) = f(v); v 2 X;b(u; �) = g(�); � 2M; (2.4)wherea(u; v) := 2Xk=1 Z
k (�kru) � rv + bkuv dx; f(v) := 2Xk=1 Z
k fkv dx+ Dvj�
1 ; gNE� :The essential points for the existen
e and the uniqueness of the solution of a saddle pointproblem are 
oer
ivity, 
ontinuity and a suitable inf-sup 
ondition. On X , we use the brokenH1-norm kvk21;
 := kvk21;
1 + kvk21;
2 ;and on M the H� 12 -norm. We start with the 
ontinuity of the bilinear form b(�; �). Byde�nition, we �ndb(v; �) = h[v℄; �i� � k[v℄kH 1200(�)k�kH� 12 (�); v 2 X; � 2M:We note that if � is a 
losed 
urve, see the middle pi
ture of Figure 2.1, we have H 1200(�) =H 12 (�), and thusk[v℄kH 1200(�) = k[v℄kH 12 (�) � (kvj
1kH 12 (�) + kvj
2kH 12 (�)) � Ckvk1;
; v 2 X:Due to the homogeneous Diri
hlet boundary 
ondition imposed on �
, we �nd (vj
i )j� 2H 1200(�), i = 1; 2, if � is not a 
losed 
urve. In that 
ase, we 
an boundk[v℄kH 1200(�) � C(kvj
1kH 12 (�
1) + kvj
2kH 12 (�
2)) � Ckvk1;
; v 2 X:As a 
onsequen
e, we obtain the 
ontinuity of the bilinear form b(�; �) onX�M . The bilinearform a(�; �) is 
ontinuous on X�X and 
oer
ive on Y �Y , where Y := fv 2 X; R�[v℄ds = 0g,[BMP93℄. To see that the inf-sup 
ondition holds, we start with the de�nition of the dualnormk�kH� 12 (�) := supv2H 1200(�)nf0g hv; �i�kvkH 1200(�) = supv2H 1200(�)nf0g b(~v; �)kvkH 1200(�) � C supv2Xnf0g b(v; �)kvk1;
 ;where ~v denotes the harmoni
 extension of v to 
2 extended by zero on 
1. Hen
e, thevariational problem (2.4) has a unique solution.3. Mortar dis
retizations and a priori error estimates. In this se
tion, we brie
yreview mortar �nite elements and prove optimal a priori estimates for the dis
retizationerrors. Let Th1 and Th2 be independent shape regular simpli
ial triangulations on 
1 and
2 with meshsizes bounded by h1 and h2, respe
tively. Without loss of generality, theinterfa
e � inherits its one-dimensional mesh from Th2 . The side of � asso
iated with 
2is 
alled slave side and the one asso
iated with 
1 master side. We denote by T� the



5triangulation on � with meshsize bounded by h2 whose elements are boundary edges of Th2 .The un
onstrained dis
rete �nite element spa
e is denoted byXh := Sp(
1; Th1)� Sp(
2; Th2);where Sp(
k; Thk) stands for the spa
e of linear (p = 1) or quadrati
 (p = 2) 
onforming�nite elements in the subdomain 
k asso
iated with the triangulation Thk and satis�eshomogeneous Diri
hlet boundary 
onditions on �
k \ �
, k = 1; 2. We note that nointerfa
e 
ondition is imposed on Xh, and the elements in Xh do not have to satisfy a
ontinuity 
ondition at the interfa
e. Let Wh be the tra
e spa
e of �nite element basisfun
tions from the slave side, i.e., of Sp(
2; Th2), restri
ted to �. Due to the homogeneousboundary 
onditions on �
, we �nd Wh � H 1200(�). To satisfy a suitable dis
rete inf-sup
ondition, we use a dis
rete Lagrange multiplier spa
e su
h that dimMh � dimWh. Anatural and eÆ
ient 
hoi
e for the 
onstru
tion of a good Lagrange multiplier spa
e is tode�ne its basis fun
tions lo
ally and to asso
iate them with the interior nodes of the slaveside. Under the regularity assumption u 2 Hp+1(
2), � is, in general, not an element inHp� 12 (�). This is due to the fa
t that the normal has jumps if � has 
orners. Therefore, wede
ompose � into a �nite number of disjoint straight segments 
l; 1 � l � N; of maximallength, i.e., �� = [Nl=1�
l, 
k \ 
l = ;, l 6= k and �
k [ �
l is not a straight line, 1 � k 6= l � N .In the examples given in Figure 2.1, we �nd N = 1; N = 4, and N = 2 (from the left to theright). We now work with the Lagrange multiplier spa
es de�ned on 
l. We remark thatwe use the de
omposition of � into straight lines for the de�nition of the dis
rete Lagrangemultiplier spa
e, but that we work with the H 1200-norm on �. Now, we denote by Wh(
l), thetra
e of Sp(
2; Th2) restri
ted to 
l, and we set W0;h(
l) := H10 (
l) \Wh(
l). Our dis
reteLagrange multiplier spa
e is de�ned as the produ
t spa
eMh := NYl=1Mh(
l);where dimMh(
l) = dimW0;h(
l). Let us denote the nodal basis fun
tions inW0;h(
l), asso-
iated with the one-dimensional mesh on the slave side by f'lig1�i�nls , nls := dimW0;h(
l).We use dual Lagrange multiplier spa
es de�ned in [Woh01℄. Then, the basis fun
tionsf�lig1�i�nls of Mh(
l) satisfy the following biorthogonality relationZ
l �li 'lj ds = Æij Z
l 'lj ds ; 1 � i; j � nls;and we havePnlsi=1 �li = 1 on 
l. Furthermore for p = 2, the linear hat fun
tions are 
ontainedin the Lagrange multiplier spa
e.To establish a priori estimates for the dis
retization errors, we 
onsider the saddle pointformulation (2.4) of the interfa
e problem and apply the theory of mixed �nite elements.Repla
ing the spa
e X �M by our dis
rete spa
e Xh �Mh in (2.4), we obtain our dis
retevariational problem: �nd (uh; �h) 2 Xh �Mh su
h thata(uh; v) + b(v; �h) = f(v); v 2 Xh;b(uh; �) = g(�); � 2Mh: (3.1)Sin
e Xh � X and Mh � M , we get the 
ontinuity of the bilinear form a(�; �) on Xh �Xhand of b(�; �) on Xh�Mh. Observing (kerB)h := fvh 2 Xhj b(vh; �) = 0; � 2Mhg � Y , we



6obtain the 
oer
ivity of a(�; �) on (kerB)h � (kerB)h. In the following, the set of endpointsof 
k in 
, 1 � k � N , will be denoted byN
 := [k 6=l(�
k \ �
l):To establish the dis
rete inf-sup 
ondition, we introdu
e ~Wh � Wh with dim ~Wh = dimMhand assume that dimMh(
k) � 2; 1 � k � N . We remark that H� 12 (�) is a stronger normthan the produ
t norm onQNl=1H� 12 (
l), and therefore, we 
annot work withQNl=1W0;h(
l)to get an uniform inf-sup 
ondition. The basis fun
tions ~'i of ~Wh are asso
iated with theinterior nodes of 
l. If xi is a node adja
ent to an endpoint xj 2 
 of some 
l, we de�ne~'i := 'i + 0:5'j , where 'i denotes the standard nodal basis fun
tion of Wh, and for allother nodes, we set ~'i := 'i. We note that only the basis fun
tions asso
iated with a nodeadja
ent to a 
orner are modi�ed and that the spa
e ~Wh has the standard approximationproperties. The basis fun
tions of ~Wh in the linear 
ase are shown in the left pi
ture ofFigure 3.1, and the dual Lagrange multiplier basis fun
tions are shown in the right pi
ture.
x

j
γ
1

γ
2

x
jFig. 3.1: Basis fun
tions of ~Wh (left) and of Mh (right), the basis fun
tions are asso
iatedwith the �lled 
ir
les and xj is a 
ornerNow, we de�ne a proje
tion operator Qh byQh : L2(�) �! ~Wh; R�Qhv �h ds = R� v �h ds; �h 2Mh:The biorthogonality ofMh(
l) andW0;h(
l) and the modi�
ation of ~'i at the nodes adja
entto endpoints of 
l yieldZ� ~'i�k ds = Æik Z� 'i ds+ Xxj2N
 
ij2 Z� 'j�k ds;where 
ij = 1 if the node xi is adja
ent to the endpoint xj and otherwise 
ij = 0. It 
anbe easily veri�ed that Qh is well-de�ned. The stru
ture of the mass matri
es guaranteesthat the a
tion of Qh 
an be 
omputed lo
ally. Moreover, it is easy to see that Qhv =v; v 2 ~Wh, and kQhvk0;� � Ckvk0;�. We denote by Ph the L2-proje
tion on ~Wh andnote that kPhvk1;� � kvk1;�; v 2 H1(�), see [Bra01℄. In terms of the L2-stability of Qh,the approximation property of Ph and an inverse estimate, the H 1200-stability of Qh 
an beshownkQhvkH 1200(�) � kQhv � PhvkH 1200(�) + kPhvkH 1200(�) � C � 1ph2 kQhv � Phvk0;� + kvkH 1200(�)�� C � 1ph2 kv � Phvk0;� + kvkH 1200(�)� � CkvkH 1200(�):



7Using the dis
rete harmoni
 extension on Sp(
2; Th2), we obtain a uniform dis
rete inf-sup
ondition. The H 1200-stability of Qh guarantees the dis
rete inf-sup 
onditionk�hkH� 12 (�) = supv2H 1200(�)nf0g R� �hQhv dskvkH 1200(�) � C supv2H 1200(�)nf0g R� �hQhv dskQhvkH 1200(�)� C supwh2 ~Whnf0g R� �h wh dskwhkH 1200(�) � C sup~wh2Sp(
2;Th2 )nf0g R� �h ~wh dsk ~whk1;
2 � C sup~wh2Xhnf0g b( ~wh; �h)k ~whk1;
 ;where ~wh is the dis
rete harmoni
 extension of wh to 
2 extended by zero on 
1. In termsof these preliminary 
onsiderations, we 
an apply [Bra01, Theorem III, 4.5℄ and get thefollowing a priori bound for the dis
retization errorLemma 3.1. The dis
rete variational problem (3.1) has a unique solution (uh; �h), andthere exist two 
onstants 
1 and 
2 independent of h su
h thatku� uhk1;
 + k�� �hkH� 12 (�) � 
1 infvh2Xh ku� vhk1;
 + 
2 inf�h2Mh k�� �hkH� 12 (�):(3.2)In a next step, we de�ne another proje
tion operator Q�h byQ�h : H� 12 (�) �!Mh; R�Q�h�wh ds = R� �wh ds; wh 2 ~Whand note that Q�h� = �; � 2 Mh, and kQ�h�k0;� � Ck�k0;� An interpolation argumentyields the H 12�s00 -stability, 0 � s � 12 , of Qh, and as a result, we �nd that Q�h is Hs� 12 -stablekQ�h�kHs� 12 (�) = supw2H 12�s00 (�)nf0g hQ�h�;wi�kwkH 12�s00 (�) = supw2H 12�s00 (�)nf0g hQ�h�;Qhwi�kwkH 12�s00 (�)= supw2H 12�s00 (�)nf0g h�;Qhwi�kwkH 12�s00 (�) � k�kHs� 12 (�):Theorem 3.2. Assume that u 2 Q2k=1Hrk+1(
k), and � 2 QNk=1Hr2� 12 (
k) with r1 �0 and r2 > 12 . Then, we have the following a priori estimate for the dis
retization errorku� uhk1;
 + k�� �hkH� 12 (�) � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2) 12 ;where si := min(ri; p); i = 1; 2. If 0 � r2 � 12 , then we haveku� uhk1;
 + k�� �hkH� 12 (�) � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2 + h2r22 k�k2Hr2� 12 (�)) 12 :Proof. The best approximation property of Xh is well-known, and we haveinfuh2Xh ku� uhk1;
 � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2) 12 ; u 2 Hr1+1(
1)�Hr2+1(
2):To establish the best approximation error of Mh in the H� 12 -norm on �, we work with Q�h.In a �rst step, we 
onsider the 
ase r2 > 12 . The L2-stability of Q�h, the best approximation



8property of Mh(
l), see [Woh01℄, and the tra
e theorem yield for � 2QNl=1Hr2� 12 (
l),k��Q�h�k2H� 12 (�) := supv2H 1200(�)nf0g h��Q�h�; vi2�kvk2H 1200(�) � supv2H 1200(�)nf0g k��Q�h�k20;�kv �Qhvk20;�kvk2H 1200(�)� Ch2k��Q�h�k20;� � Ch2s22 NXl=1 j�j2Hs2� 12 (
l) � Ch2s22 juj2s2+1;
2 :Now, we 
onsider the 
ase 0 � r2 � 12 . Using the Hr2� 12 -stability of Q�h, we havek��Q�h�k2H� 12 (�) := supv2H 1200(�)nf0g h��Q�h�; vi2�kvk2H 1200(�)� supv2H 1200(�)nf0g k��Q�h�k2Hr2� 12 (�)kv �Qhvk2H 12�r200 (�)kvk2H 1200(�)� Ch2r22 k��Q�h�k2Hr2� 12 (�) � Ch2r22 k�k2Hr2� 12 (�):Finally, the proof follows by using (3.2).Remark 3.3. Be
ause of the 
orners at the interfa
e, the given a priori estimate 
annot beestablished for r2 � 1 if we work with a Lagrange multiplier spa
e whi
h is dire
tly de�nedon �. In that 
ase an error term of O(h1��2 ), � > 0 o

urs. This term is 
ru
ial in 
ase ofa smooth solution and quadrati
 �nite elements.In the rest of this se
tion, we 
onsider the algebrai
 formulation of the saddle point problem(3.1) and apply a suitable modi�
ation to get a positive de�nite system on the produ
tspa
e. Here and in the following, we use the same notation for the ve
tor representation ofthe solution and the solution as an element in Xh and Mh. The matrix A is the sti�nessmatrix asso
iated with the bilinear form a(�; �) on Xh�Xh, and the matri
es B and BT areasso
iated with the bilinear form b(�; �) on Xh�Mh. Then, the algebrai
 formulation of thesaddle point problem is given by� A BTB 0 �� uh�h � = � fhgh � ; (3.3)where fh and gh are asso
iated with the linear forms f(�) and g(�). Introdu
ing W0;h :=QNl=1W0;h(
l), we de�ne the mortar mapping � : Xh �! W0;h � Xh byZ��v �h ds = Z�[v℄�h ds; �h 2Mhand denote its algebrai
 representation by W . We remark that W applied to an element in(ker B)h is zero. Thus the non-zero blo
ks of W are asso
iated with the slave and masternodes on the interfa
e. Moreover in 
ase of dual Lagrange multipliers, the mortar mapping
an be lo
ally evaluated and the non-zero blo
ks of W are sparse. We denote by E thematrix asso
iated with the natural embedding of W0;h in Xh and by D the diagonal matrixwith entries dii := R� 'i ds, where 'i are the nodal basis fun
tions of W0;h. It is easy to seethat DETW = B and ED�1B = W . Stati
 
ondensation of the Lagrange multiplier nowyields �h = D�1ET (fh � Auh): (3.4)



9This observation is the starting point for the modi�
ation of the algebrai
 formulation of thedis
rete saddle point problem (3.3). We use the equivalent form �h = D�1ET (fh � Auh +AWuh)�D�1ETAED�1gh of (3.4) to eliminate �h in (3.3). Shifting the terms in gh andfh to the right side yields� A BTB 0 �� IdD�1ETA(W � Id) �uh = � (Id�W T )fh +W TAED�1ghgh � : (3.5)We note that the jump in the tra
e enters now in both blo
k 
omponents on the right side.The system (3.5) has more equations than unknowns. To obtain a positive de�nite systemfor uh on the produ
t spa
e, we restri
t the spa
e of test fun
tions. Assuming that the testfun
tion (vh; �h) has the form (vh; D�1ETA(W � Id)vh), we get~Auh = ~fh := (Id�W T )fh + (2W T � Id)AED�1gh; (3.6)where ~A := (Id � W T )A(Id � W ) + W TAW . The matrix ~A is symmetri
 and positivede�nite, see [Woh01℄.Lemma 3.4. The saddle point problem (3.1) for (uh; �h) and the positive de�nite system(3.6) for uh together with the post-pro
essing step (3.4) are equivalent.The proof follows by 
onstru
tion. We note that the matrix ~A has exa
tly the same formas in a standard mortar problem with dual Lagrange multipliers, see [WK01℄. The interfa
e
onditions enter only into the right side ~fh and do not in
uen
e the iterative solver. To solvethe symmetri
 positive de�nite problem (3.6), we apply the modi�ed multigrid approa
hproposed in [WK01℄ in 
ombination with one lo
al post-pro
essing step of lower 
omplexity.It is based on the de
omposition of uh in uh = (uh �ED�1gh) +ED�1gh.Remark 3.5. Applying a Gau�{Seidel smoother, we do not have to 
arry out the post-pro
ess. The stru
ture of the smoother guarantees that the weak dis
rete form of (2.2) isautomati
ally satis�ed within the multigrid approa
h.4. Numeri
al results. Here, we present some numeri
al examples illustrating the
exibility and eÆ
ien
y of the mortar �nite element method with dual Lagrange multipliersto treat interfa
e problems. All our numeri
al examples are realized within the �nite ele-ment toolbox ug, [BBJ+97℄. We present the numeri
al results for various types of interfa
eproblems using linear and quadrati
 mortar �nite elements. We denote by M qh and M lhthe dis
ontinuous dual Lagrange multiplier spa
es for quadrati
 and linear �nite elements,respe
tively, see [Woh01℄. In the 
ase of M qh, the basis fun
tions are pie
ewise quadrati
,whereas the basis fun
tions of M lh are pie
ewise linear. The mortar �nite element solutionsasso
iated with the di�erent Lagrange multiplier spa
es M qh and M lh are denoted by uqh andulh, respe
tively. For all our numeri
al examples, we use uniform re�nement. The error inthe Lagrange multipliers is measured in a mesh-dependent L2-normk�hk2h := Xe2T� hek�hk20;e;where he is the length of the edge e on the slave side. For our �rst example, we de
ompose
 := (0; 2)� (0; 1) into 
2 := (0:5; 1:5)� (0:25; 0:75), and 
1 := 
n�
2, see the left pi
tureof Figure 4.1. We note that � 
an be de
omposed into four straight segments, 
l, 1 � l � 4.



10The 
orner nodes of 
2 do not 
arry a degree of freedom for the Lagrange multiplier spa
e.Here, we 
onsider the problem (2.1){(2.3) with�1 := � 2:5 00 1 � ; �2 := � 1 00 2:5 � ;and b1(x; y) := x2 + y2 + xy, b2(x; y) := 0. The right-hand side, the interfa
e 
onditionsand Diri
hlet boundary 
onditions are set su
h that one obtains the exa
t solution given byu1(x; y) := sin(x2 + y)exp(� (x� y)2); and u2(x; y) := 1:5 exp(� (x� 1)2 � (y � 0:5)2):
Fig. 4.1: De
omposition of the domain and initial triangulation (left) and isolines of thesolution (right), Example 1The isolines of the solution are given in the right pi
ture of Figure 4.1, and the dis
retizationerrors are shown in Figure 4.2. The numeri
al results 
on�rm the asymptoti
 rates aspredi
ted by the theory. Having a de
omposition where � is not a straight line does notin
uen
e the 
onvergen
e rates. In 
ontrast to mortar te
hniques with many subdomains and
rosspoints, we do not have to redu
e the dimension of the Lagrange multiplier spa
e at the
orners be
ause of the inf-sup 
ondition. The inf-sup 
ondition is also satis�ed for the higherdimensional spa
e ~M lh (or ~Mqh), where ~M lh (or ~Mqh) is spanned by the biorthogonal basisfun
tions (linear or quadrati
) asso
iated with all nodes in
luding the 
orner nodes on theslave side. However, repla
ing the Lagrange multiplier spa
e M qh by ~Mqh yields 
onsiderablyworse numeri
al results for the dis
retization errors in the Lagrange multiplier. This is due tothe fa
t that � is not in H 12 (�), and this is 
ru
ial for quadrati
 �nite elements, see Remark3.3. In the right pi
ture of Figure 4.2, we have given the errors in the weighted Lagrangemultiplier norm using the spa
e ~Mqh (not modi�ed) and the spa
e M qh (modi�ed). Here, wesee that if we work with the spa
e ~Mqh, the error in the weighted Lagrange multiplier normis only of order O(h).

10
2

10
3

10
4

10
−6

10
−4

10
−2

linear
quadratic
O(h2)
O(h3)

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

linear
quadratic
O(h)
O(h2)

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

linear
quadratic (modified)
quadratic (not modified)
O(h)
O(h3/2)
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11
Fig. 4.3: De
omposition into two subdomains and initial triangulation (left) and isolines ofthe solution (right), Example 2In our se
ond example, we 
onsider a problem with a 
orner singularity. Here, we de
omposethe unit square into two subdomains 
1 and 
2. The subdomain 
1 is a L-shape domain and
2 := (0:5; 1)� (0; 0:5), see the left pi
ture of Figure 4.3. The initial triangulation does notmat
h at the interfa
e. The problem for this example is given by ��u = f , and the exa
tsolution is 
hosen as u1 := r2=3 sin( 2�3 ), and u2 := r2, where (r; �) are the polar 
oordinateswith origin shifted to (0:5; 0:5). The isolines of the solution are shown in the right pi
tureof Figure 4.3. Here, the solution is not pie
ewise H2-regular, and asymptoti
ally we 
annotexpe
t the same order of 
onvergen
e as in the �rst example. The errors in the L2-, H1-and the weighted Lagrange multiplier norms are given in Table 4.1. Here we use lowestorder �nite elements. Asymptoti
ally, we expe
t an order h2=3 for the H1-norm whi
h 
anbe observed. We note that the 
onvergen
e rates are 
onsiderably better in the beginning.In 
ontrast to the �rst example, the Lagrange multiplier does not show a better asymptoti

onvergen
e rate. Asymptoti
ally, we obtain the same 
onvergen
e rate as in the H1-norm.This is due to the 
on
entration of the error at the point (0:5; 0:5) whi
h is lo
ated on theinterfa
e. Better 
onvergen
e rates in the Lagrange multiplier norm 
an only be observed ifthe solution has no singularity at the interfa
e.Table 4.1Dis
retization errors in the L2-, H1- and weighted Lagrange multiplier norm, Example 2level # elem. ku� ulhk0 ratio ku� ulhk1 ratio k�� �lhkh ratio0 41 3.325808e-02 1.370511e-01 1.667159e-021 164 8.446641e-03 3.9374 7.408534e-02 1.8499 4.399131e-03 3.78972 656 2.122112e-03 3.9803 4.111530e-02 1.8019 1.584474e-03 2.77643 2624 5.335827e-04 3.9771 2.343380e-02 1.7545 7.218470e-04 2.19504 10496 1.348615e-04 3.9565 1.369342e-02 1.7113 3.889129e-04 1.85615 41984 3.434135e-05 3.9271 8.173967e-03 1.6752 2.289971e-04 1.69836 167936 8.837528e-06 3.8859 4.961475e-03 1.6475 1.403140e-04 1.63207 671744 2.307613e-06 3.8297 3.048681e-03 1.6274 8.741203e-05 1.6052In our third example, the domain, the problem and the exa
t solution are taken from [AL02℄.For this example, the domain 
 := (�1; 1) � (�1; 1) is de
omposed into two subdomains
1 and 
2, where 
2 is a 
ir
le with radius 0:5 
entered at the origin, and 
1 := 
n�
2,see the left pi
ture of Figure 4.4. We remark that, in this example, the interfa
e 
annot bede
omposed into straight lines. In addition to the analysis given in Se
tion 3, the polygonalapproximation of � has to be taken into a

ount. Here, b1(x; y) := 0, b2(x; y) := 0, �1 :=0:1 I2, and �2 := (x2 + y2 + 1) I2 in (2.1){(2.3), where I2 is the 2� 2 identity matrix. Theexa
t solution is given asu1 := �4116 + 5 �x2 + y2�2 + 10x2 + 10 y2 + 10C ln�2px2 + y2� ; and u2 := x2 + y2:



12The jump of the tra
e and of the 
ux a
ross the interfa
e � are 
omputed as [u℄ = 0, and[u℄n = �2C, and we have set C := 10. The right-hand side and the Diri
hlet boundary
ondition on �
 are 
omputed by using the given exa
t solution. Here too, we use onlythe lowest order �nite elements. The dis
retization errors in the L2-, H1- and the weightedLagrange multiplier norm (weighted L2-norm) for the linear �nite elements are given in theright pi
ture of Figure 4.4. As before, we observe numeri
ally the predi
ted 
onvergen
erates.
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O(h3/2)Fig. 4.4: De
omposition into two subdomains and initial triangulation (left) and error plotversus number of elements (right), Example 3In our last example, we 
onsider a problem of linear elasti
ity. We remark that the theoreti
alresults 
an easily be generalized to this 
ase. For this example, we take the domain 
 :=(�1; 1) � (�1; 1) de
omposed into an upper and a lower triangle, 
1 and 
2, respe
tively,with the 
ommon interfa
e � := f(x; x) : �1 � x � 1g, see the left pi
ture of Figure 4.5.
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O(h)Fig. 4.5: De
omposition into two subdomains and initial triangulation (left), distorted gridon level 2 (middle) and error plot versus number of elements (right), Example 4We have used homogeneous Diri
hlet boundary 
ondition on �
, and the jump of the 
uxand the jump of the tra
e are given by gN := (0; 0)T and gD := (g(x); 0)T , respe
tively.Here, g(x) is de�ned byg(x) := (0 if x 2 [�1;�0:6℄[ [0:6; 1℄0:5(x+ 0:6)(x� 0:6) if x 2 (�0:6; 0:6):This leads to a 
ra
k on the interfa
e �, whi
h is shown in the middle pi
ture of Figure4.5. Young's modulus E and Poisson ratio � are 
hosen to be 71GPa and 0:35 for the lower



13triangle, and 35GPa and 0:17 for the upper triangle, respe
tively. We apply the body for
e of4MN on 
 along both dire
tions. We do not have an analyti
al solution for this problem. Toobtain the dis
retization error, we 
ompute a referen
e solution on a very �ne triangulationwith meshsize href, and 
ompute an approximation of the error by 
omparing uref with uh.We use the same uref for all re�nement levels. On level 7 (starting from level 0), we haveh = 2href. As a result, we observe numeri
ally better 
onvergen
e rate in the last re�nementstep. There is a weak singularity in the stress at the opening of the 
ra
k. Thus, we applyonly linear �nite elements. The dis
retization errors are given in the right pi
ture of Figure4.5. This shows that we get an almost optimal order of 
onvergen
e even in this 
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