
MORTAR FINITE ELEMENTS FOR INTERFACE PROBLEMSBISHNU P. LAMICHHANE� AND BARBARA I. WOHLMUTH�Abstrat. Mortar tehniques provide a exible tool for the oupling of di�erent disretization shemesor triangulations. Here, we onsider interfae problems within the framework of mortar �nite elementmethods. We start with a saddle point formulation and show that the interfae onditions enter into theright-hand side. Using dual Lagrange multipliers, we an work with saled sparse matries, and stationdensation gives rise to a symmetri and positive de�nite system on the unonstrained produt spae.The iterative solver is based on a modi�ed multigrid approah. Numerial results illustrate the performaneof our approah.Key words. Mortar �nite elements, Lagrange multiplier, saddle point problem, domain deomposition,interfae problem, non-mathing triangulationAMS subjet lassi�ations. 65N30, 65N551. Introdution. Domain deomposition tehniques provide powerful tools for theoupling of di�erent disretization shemes or of non-mathing triangulations. Non-mathingtriangulations are of interest, for example, if di�erent subdomains are meshed independently,or if adaptive remeshing is done in some subdomains. This an be aused by disontin-uous di�usion oeÆients, problems with transmission onditions at the interfae, loalanisotropies, singular soures or orner singularities. Here, we onsider mortar �nite el-ements for interfae problems. Suh interfae problems arise in di�erent situations, forexample, in heat ondution or in linear elastiity. The harateristi idea of mortar meth-ods is to deompose the domain of interest in non-overlapping subdomains and to replaethe strong pointwise ontinuity at the interfaes by a weak integral ondition. There aretwo di�erent equivalent variational formulations. One approah results in a positive de�nitesystem on the onstrained mortar spae [BMP93, BMP94℄, and a seond one gives rise toan inde�nite system assoiated with the unonstrained produt spae and a Lagrange mul-tiplier spae [Bel99℄. Here, we follow the seond approah and rewrite the interfae problemas inde�nite variational equation.Conforming �nite element methods for ellipti problems with disontinuous oeÆients andhomogeneous interfae onditions are addressed in [Bab70℄. Finite element methods fornon-homogeneous ellipti interfae problems are analyzed in [BK96℄, and it is shown thatthe disretization error is of optimal order for linear �nite elements on quasi-uniform trian-gulations. A survey on non-overlapping domain deomposition methods for ellipti interfaeproblems an be found in [XZ98℄. A least-squares �nite element method for ellipti interfaeproblems with Dirihlet and Neumann boundary data is proposed and analyzed in [CG98℄.In partiular, error estimates for non-mathing triangulations at the interfae are given. El-lipti and paraboli interfae problems with a non-zero jump in the ux aross a suÆientlysmooth interfae are onsidered in [CZ98, HZ02℄. In [CZ98℄, nearly optimal error estimatesin the energy-norm and in the L2-norm are established under reasonable regularity assump-tions on the original solutions, whereas some new a priori estimates are presented in [HZ02℄.�IANS, University of Stuttgart, Germany. flamihhane,wohlmuthg�mathematik.uni-stuttgart.de.This work was supported in part by the Deutshe Forshungsgemeinshaft, SFB 404, C12.1



2The immersed interfae method is based on using the jumps in the solution and its derivativeto modify standard �nite di�erene shemes in the neighborhood of the interfae, see [LL94℄.The idea to preondition the ellipti equation before using the immersed interfae methodis proposed in [Li98a℄ resulting in a fast algorithm for ellipti equations with large jumpsin the oeÆients. An extension of the immersed interfae method to boundary value prob-lems on irregular domains with Neumann and Dirihlet boundary onditions an be foundin [WB00℄. The immersed interfae method with a �nite element formulation is onsideredin [Li98b℄. Nitshe tehniques provide exible domain deomposition tehniques and havebeen suessfully used for the numerial approximation of partial di�erential equations, see,e.g., [BHS03, HN03℄. The analysis of the disretization sheme is restrited to homogeneousinterfae onditions, and optimal a priori estimates are given. A similar approah an befound in [HH02℄, where a stationary heat ondution problem in two dimensions with a dis-ontinuous onduting oeÆient aross a smooth interfae is onsidered. Optimal a prioriestimates for appropriately modi�ed pieewise linear elements on a quasi-uniform triangu-lation have been established. Mortar methods based on dual Lagrange multiplier spaes forellipti problems are onsidered in [Woh01℄. Here, we propose a similar approah based onmortar tehniques and dual Lagrange multipliers. We onsider non-homogeneous jumps inthe ux and in the solution aross the interfae. Starting with a saddle point formulation ofthe interfae problem, we show the existene and uniqueness of the solution in the ontin-uous and disrete setting. In ontrast to the general mortar framework, we deompose theinterfae into disjoint straight lines and remove a degree of freedom of Lagrange multipliersfrom its orner nodes. We show that this is essential to prove an optimal a priori estimate forthe pieewise linear interfae. Compared to standard formulations for the Laplae operator,see [BMP93℄, we have to inlude two additional terms reeting the interfae onditions.The jump terms enter only in the right-hand side, and the arising sti�ness matrix does notdepend on the interfae onditions. Working with dual Lagrange multiplier spaes, a ex-ible and eÆient oupling of non-mathing triangulations at the interfae an be realized.In terms of the biorthogonality between the basis funtions of the �nite element trae andthe Lagrange multiplier spae, we get a diagonal mass matrix on the slave side. As a onse-quene, we an loally eliminate the Lagrange multiplier from the saddle point formulationand obtain a positive de�nite algebrai system on the unonstrained produt spae. Hene,the multigrid method introdued in [WK01℄ an be applied to our situation. Our approahis quite exible and an easily be applied to general type of ellipti and paraboli interfaeproblems, where the geometry of and the jump at the interfae are a priori known.The paper is organized as follows: In the next setion, we present our model interfaeproblem and introdue its saddle point formulation in the ontinuous setting. In Setion3, we briey outline the mortar disretization sheme and establish a priori estimates forthe disretization errors. Moreover, we onsider the algebrai formulation of the saddlepoint problem. Loal modi�ations are arried out to obtain a positive de�nite system forwhih we an use multigrid methods. Finally in Setion 4, we show some numerial resultsillustrating the performane of our approah. In partiular, we give the disretization errorsin the L2- and H1-norm and in a weighted L2-norm for the Lagrange multiplier.2. Continuous setting. Let us onsider a bounded polygonal domain 
 � R2 , whihis deomposed into two non-overlapping subdomains 
1 and 
2 with the ommon interiorinterfae �, �� := �
1 \ �
2, and assume that the interfae � an be written as unionof straight lines, see Figure 2.1. For simpliity, we restrit ourselves to the ase of twosubdomains. However, the approah an be generalized to more than two subdomains. We



3
Fig. 2.1: Di�erent deompositions of the domain into two subdomainsonsider the following ellipti seond order boundary value problem on 
�div(�irui) + biui = fi in 
i; i = 1; 2 (2.1)with homogeneous Dirihlet boundary onditions on �
. Here, �1 and �2 are symmetriand loally onstant positive-de�nite seond order tensors speifying the di�usion in the twosubdomains. Furthermore, we assume that fi 2 L2(
i) and 0 � bi 2 L1(
i); i = 1; 2. Thejump onditions at the interfae � are given by[u℄ := u1 � u2 = gD on �; (2.2)[u℄n := (�1ru1) � n1 + (�2ru2) � n2 = gN on �; (2.3)where ni is the outward normal on �
i. We assume that gD 2 H 1200(�) and gN 2 H� 12 (�) :=�H 1200(�)�0. On eah subdomain, we de�neH1� (
k) := fv 2 H1(
k); vj�
\�
k = 0g; k = 1; 2;and we work with the unonstrained produt spae X := H1� (
1)�H1� (
2).Using a disretization sheme, we annot, in general, satisfy the interfae onditions (2.2)and (2.3) in a strong form. We replae (2.2) and (2.3) by a weak variational ondition. It isgiven in terms of the duality pairing on the interfaeb(v; �) := h[v℄; �i� ; v = (v1; v2) 2 X; � 2M := H� 12 (�):In the rest of this setion, we onsider the variational formulation of the interfae problem.The weak formulation of (2.1) is obtained by applying Green's formula on 
i, i = 1; 2Z
i(�irui) � r�i dx� Z� �irui � ni�i ds+ Z
i biui�i dx = Z
i fi�i dx; �i 2 H1� (
i):Taking into aount the interfae ondition for the ux (2.3), �1ru1 � n1 = ��2ru2 � n2 +gN on�; we �nd for �1 2 H1� (
1)Z
1(�1ru1) � r�1 dx+ Z� �2ru2 � n2�1 ds+ Z
1 b1u1�1 dx = Z
1 f1�1 dx+ Z�gN�1 ds:The weak formulation of the jump of the solution at the interfae an be obtained bymultiplying the jump ondition (2.2) with an element of the dual spae M . Then thede�nition of the bilinear form b(�; �) yieldsb(u; �) = hgD; �i� =: g(�); � 2M:



4Introduing the ux � := �2ru2 � n2 on �, we an write the weak form of (2.1) as a saddlepoint problem: �nd (u; �) 2 X �M suh thata(u; v) + b(v; �) = f(v); v 2 X;b(u; �) = g(�); � 2M; (2.4)wherea(u; v) := 2Xk=1 Z
k (�kru) � rv + bkuv dx; f(v) := 2Xk=1 Z
k fkv dx+ Dvj�
1 ; gNE� :The essential points for the existene and the uniqueness of the solution of a saddle pointproblem are oerivity, ontinuity and a suitable inf-sup ondition. On X , we use the brokenH1-norm kvk21;
 := kvk21;
1 + kvk21;
2 ;and on M the H� 12 -norm. We start with the ontinuity of the bilinear form b(�; �). Byde�nition, we �ndb(v; �) = h[v℄; �i� � k[v℄kH 1200(�)k�kH� 12 (�); v 2 X; � 2M:We note that if � is a losed urve, see the middle piture of Figure 2.1, we have H 1200(�) =H 12 (�), and thusk[v℄kH 1200(�) = k[v℄kH 12 (�) � (kvj
1kH 12 (�) + kvj
2kH 12 (�)) � Ckvk1;
; v 2 X:Due to the homogeneous Dirihlet boundary ondition imposed on �
, we �nd (vj
i )j� 2H 1200(�), i = 1; 2, if � is not a losed urve. In that ase, we an boundk[v℄kH 1200(�) � C(kvj
1kH 12 (�
1) + kvj
2kH 12 (�
2)) � Ckvk1;
; v 2 X:As a onsequene, we obtain the ontinuity of the bilinear form b(�; �) onX�M . The bilinearform a(�; �) is ontinuous on X�X and oerive on Y �Y , where Y := fv 2 X; R�[v℄ds = 0g,[BMP93℄. To see that the inf-sup ondition holds, we start with the de�nition of the dualnormk�kH� 12 (�) := supv2H 1200(�)nf0g hv; �i�kvkH 1200(�) = supv2H 1200(�)nf0g b(~v; �)kvkH 1200(�) � C supv2Xnf0g b(v; �)kvk1;
 ;where ~v denotes the harmoni extension of v to 
2 extended by zero on 
1. Hene, thevariational problem (2.4) has a unique solution.3. Mortar disretizations and a priori error estimates. In this setion, we brieyreview mortar �nite elements and prove optimal a priori estimates for the disretizationerrors. Let Th1 and Th2 be independent shape regular simpliial triangulations on 
1 and
2 with meshsizes bounded by h1 and h2, respetively. Without loss of generality, theinterfae � inherits its one-dimensional mesh from Th2 . The side of � assoiated with 
2is alled slave side and the one assoiated with 
1 master side. We denote by T� the



5triangulation on � with meshsize bounded by h2 whose elements are boundary edges of Th2 .The unonstrained disrete �nite element spae is denoted byXh := Sp(
1; Th1)� Sp(
2; Th2);where Sp(
k; Thk) stands for the spae of linear (p = 1) or quadrati (p = 2) onforming�nite elements in the subdomain 
k assoiated with the triangulation Thk and satis�eshomogeneous Dirihlet boundary onditions on �
k \ �
, k = 1; 2. We note that nointerfae ondition is imposed on Xh, and the elements in Xh do not have to satisfy aontinuity ondition at the interfae. Let Wh be the trae spae of �nite element basisfuntions from the slave side, i.e., of Sp(
2; Th2), restrited to �. Due to the homogeneousboundary onditions on �
, we �nd Wh � H 1200(�). To satisfy a suitable disrete inf-supondition, we use a disrete Lagrange multiplier spae suh that dimMh � dimWh. Anatural and eÆient hoie for the onstrution of a good Lagrange multiplier spae is tode�ne its basis funtions loally and to assoiate them with the interior nodes of the slaveside. Under the regularity assumption u 2 Hp+1(
2), � is, in general, not an element inHp� 12 (�). This is due to the fat that the normal has jumps if � has orners. Therefore, wedeompose � into a �nite number of disjoint straight segments l; 1 � l � N; of maximallength, i.e., �� = [Nl=1�l, k \ l = ;, l 6= k and �k [ �l is not a straight line, 1 � k 6= l � N .In the examples given in Figure 2.1, we �nd N = 1; N = 4, and N = 2 (from the left to theright). We now work with the Lagrange multiplier spaes de�ned on l. We remark thatwe use the deomposition of � into straight lines for the de�nition of the disrete Lagrangemultiplier spae, but that we work with the H 1200-norm on �. Now, we denote by Wh(l), thetrae of Sp(
2; Th2) restrited to l, and we set W0;h(l) := H10 (l) \Wh(l). Our disreteLagrange multiplier spae is de�ned as the produt spaeMh := NYl=1Mh(l);where dimMh(l) = dimW0;h(l). Let us denote the nodal basis funtions inW0;h(l), asso-iated with the one-dimensional mesh on the slave side by f'lig1�i�nls , nls := dimW0;h(l).We use dual Lagrange multiplier spaes de�ned in [Woh01℄. Then, the basis funtionsf�lig1�i�nls of Mh(l) satisfy the following biorthogonality relationZl �li 'lj ds = Æij Zl 'lj ds ; 1 � i; j � nls;and we havePnlsi=1 �li = 1 on l. Furthermore for p = 2, the linear hat funtions are ontainedin the Lagrange multiplier spae.To establish a priori estimates for the disretization errors, we onsider the saddle pointformulation (2.4) of the interfae problem and apply the theory of mixed �nite elements.Replaing the spae X �M by our disrete spae Xh �Mh in (2.4), we obtain our disretevariational problem: �nd (uh; �h) 2 Xh �Mh suh thata(uh; v) + b(v; �h) = f(v); v 2 Xh;b(uh; �) = g(�); � 2Mh: (3.1)Sine Xh � X and Mh � M , we get the ontinuity of the bilinear form a(�; �) on Xh �Xhand of b(�; �) on Xh�Mh. Observing (kerB)h := fvh 2 Xhj b(vh; �) = 0; � 2Mhg � Y , we



6obtain the oerivity of a(�; �) on (kerB)h � (kerB)h. In the following, the set of endpointsof k in 
, 1 � k � N , will be denoted byN := [k 6=l(�k \ �l):To establish the disrete inf-sup ondition, we introdue ~Wh � Wh with dim ~Wh = dimMhand assume that dimMh(k) � 2; 1 � k � N . We remark that H� 12 (�) is a stronger normthan the produt norm onQNl=1H� 12 (l), and therefore, we annot work withQNl=1W0;h(l)to get an uniform inf-sup ondition. The basis funtions ~'i of ~Wh are assoiated with theinterior nodes of l. If xi is a node adjaent to an endpoint xj 2 
 of some l, we de�ne~'i := 'i + 0:5'j , where 'i denotes the standard nodal basis funtion of Wh, and for allother nodes, we set ~'i := 'i. We note that only the basis funtions assoiated with a nodeadjaent to a orner are modi�ed and that the spae ~Wh has the standard approximationproperties. The basis funtions of ~Wh in the linear ase are shown in the left piture ofFigure 3.1, and the dual Lagrange multiplier basis funtions are shown in the right piture.
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jFig. 3.1: Basis funtions of ~Wh (left) and of Mh (right), the basis funtions are assoiatedwith the �lled irles and xj is a ornerNow, we de�ne a projetion operator Qh byQh : L2(�) �! ~Wh; R�Qhv �h ds = R� v �h ds; �h 2Mh:The biorthogonality ofMh(l) andW0;h(l) and the modi�ation of ~'i at the nodes adjaentto endpoints of l yieldZ� ~'i�k ds = Æik Z� 'i ds+ Xxj2N ij2 Z� 'j�k ds;where ij = 1 if the node xi is adjaent to the endpoint xj and otherwise ij = 0. It anbe easily veri�ed that Qh is well-de�ned. The struture of the mass matries guaranteesthat the ation of Qh an be omputed loally. Moreover, it is easy to see that Qhv =v; v 2 ~Wh, and kQhvk0;� � Ckvk0;�. We denote by Ph the L2-projetion on ~Wh andnote that kPhvk1;� � kvk1;�; v 2 H1(�), see [Bra01℄. In terms of the L2-stability of Qh,the approximation property of Ph and an inverse estimate, the H 1200-stability of Qh an beshownkQhvkH 1200(�) � kQhv � PhvkH 1200(�) + kPhvkH 1200(�) � C � 1ph2 kQhv � Phvk0;� + kvkH 1200(�)�� C � 1ph2 kv � Phvk0;� + kvkH 1200(�)� � CkvkH 1200(�):



7Using the disrete harmoni extension on Sp(
2; Th2), we obtain a uniform disrete inf-supondition. The H 1200-stability of Qh guarantees the disrete inf-sup onditionk�hkH� 12 (�) = supv2H 1200(�)nf0g R� �hQhv dskvkH 1200(�) � C supv2H 1200(�)nf0g R� �hQhv dskQhvkH 1200(�)� C supwh2 ~Whnf0g R� �h wh dskwhkH 1200(�) � C sup~wh2Sp(
2;Th2 )nf0g R� �h ~wh dsk ~whk1;
2 � C sup~wh2Xhnf0g b( ~wh; �h)k ~whk1;
 ;where ~wh is the disrete harmoni extension of wh to 
2 extended by zero on 
1. In termsof these preliminary onsiderations, we an apply [Bra01, Theorem III, 4.5℄ and get thefollowing a priori bound for the disretization errorLemma 3.1. The disrete variational problem (3.1) has a unique solution (uh; �h), andthere exist two onstants 1 and 2 independent of h suh thatku� uhk1;
 + k�� �hkH� 12 (�) � 1 infvh2Xh ku� vhk1;
 + 2 inf�h2Mh k�� �hkH� 12 (�):(3.2)In a next step, we de�ne another projetion operator Q�h byQ�h : H� 12 (�) �!Mh; R�Q�h�wh ds = R� �wh ds; wh 2 ~Whand note that Q�h� = �; � 2 Mh, and kQ�h�k0;� � Ck�k0;� An interpolation argumentyields the H 12�s00 -stability, 0 � s � 12 , of Qh, and as a result, we �nd that Q�h is Hs� 12 -stablekQ�h�kHs� 12 (�) = supw2H 12�s00 (�)nf0g hQ�h�;wi�kwkH 12�s00 (�) = supw2H 12�s00 (�)nf0g hQ�h�;Qhwi�kwkH 12�s00 (�)= supw2H 12�s00 (�)nf0g h�;Qhwi�kwkH 12�s00 (�) � k�kHs� 12 (�):Theorem 3.2. Assume that u 2 Q2k=1Hrk+1(
k), and � 2 QNk=1Hr2� 12 (k) with r1 �0 and r2 > 12 . Then, we have the following a priori estimate for the disretization errorku� uhk1;
 + k�� �hkH� 12 (�) � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2) 12 ;where si := min(ri; p); i = 1; 2. If 0 � r2 � 12 , then we haveku� uhk1;
 + k�� �hkH� 12 (�) � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2 + h2r22 k�k2Hr2� 12 (�)) 12 :Proof. The best approximation property of Xh is well-known, and we haveinfuh2Xh ku� uhk1;
 � C(h2s11 kuk2s1+1;
1 + h2s22 kuk2s2+1;
2) 12 ; u 2 Hr1+1(
1)�Hr2+1(
2):To establish the best approximation error of Mh in the H� 12 -norm on �, we work with Q�h.In a �rst step, we onsider the ase r2 > 12 . The L2-stability of Q�h, the best approximation



8property of Mh(l), see [Woh01℄, and the trae theorem yield for � 2QNl=1Hr2� 12 (l),k��Q�h�k2H� 12 (�) := supv2H 1200(�)nf0g h��Q�h�; vi2�kvk2H 1200(�) � supv2H 1200(�)nf0g k��Q�h�k20;�kv �Qhvk20;�kvk2H 1200(�)� Ch2k��Q�h�k20;� � Ch2s22 NXl=1 j�j2Hs2� 12 (l) � Ch2s22 juj2s2+1;
2 :Now, we onsider the ase 0 � r2 � 12 . Using the Hr2� 12 -stability of Q�h, we havek��Q�h�k2H� 12 (�) := supv2H 1200(�)nf0g h��Q�h�; vi2�kvk2H 1200(�)� supv2H 1200(�)nf0g k��Q�h�k2Hr2� 12 (�)kv �Qhvk2H 12�r200 (�)kvk2H 1200(�)� Ch2r22 k��Q�h�k2Hr2� 12 (�) � Ch2r22 k�k2Hr2� 12 (�):Finally, the proof follows by using (3.2).Remark 3.3. Beause of the orners at the interfae, the given a priori estimate annot beestablished for r2 � 1 if we work with a Lagrange multiplier spae whih is diretly de�nedon �. In that ase an error term of O(h1��2 ), � > 0 ours. This term is ruial in ase ofa smooth solution and quadrati �nite elements.In the rest of this setion, we onsider the algebrai formulation of the saddle point problem(3.1) and apply a suitable modi�ation to get a positive de�nite system on the produtspae. Here and in the following, we use the same notation for the vetor representation ofthe solution and the solution as an element in Xh and Mh. The matrix A is the sti�nessmatrix assoiated with the bilinear form a(�; �) on Xh�Xh, and the matries B and BT areassoiated with the bilinear form b(�; �) on Xh�Mh. Then, the algebrai formulation of thesaddle point problem is given by� A BTB 0 �� uh�h � = � fhgh � ; (3.3)where fh and gh are assoiated with the linear forms f(�) and g(�). Introduing W0;h :=QNl=1W0;h(l), we de�ne the mortar mapping � : Xh �! W0;h � Xh byZ��v �h ds = Z�[v℄�h ds; �h 2Mhand denote its algebrai representation by W . We remark that W applied to an element in(ker B)h is zero. Thus the non-zero bloks of W are assoiated with the slave and masternodes on the interfae. Moreover in ase of dual Lagrange multipliers, the mortar mappingan be loally evaluated and the non-zero bloks of W are sparse. We denote by E thematrix assoiated with the natural embedding of W0;h in Xh and by D the diagonal matrixwith entries dii := R� 'i ds, where 'i are the nodal basis funtions of W0;h. It is easy to seethat DETW = B and ED�1B = W . Stati ondensation of the Lagrange multiplier nowyields �h = D�1ET (fh � Auh): (3.4)



9This observation is the starting point for the modi�ation of the algebrai formulation of thedisrete saddle point problem (3.3). We use the equivalent form �h = D�1ET (fh � Auh +AWuh)�D�1ETAED�1gh of (3.4) to eliminate �h in (3.3). Shifting the terms in gh andfh to the right side yields� A BTB 0 �� IdD�1ETA(W � Id) �uh = � (Id�W T )fh +W TAED�1ghgh � : (3.5)We note that the jump in the trae enters now in both blok omponents on the right side.The system (3.5) has more equations than unknowns. To obtain a positive de�nite systemfor uh on the produt spae, we restrit the spae of test funtions. Assuming that the testfuntion (vh; �h) has the form (vh; D�1ETA(W � Id)vh), we get~Auh = ~fh := (Id�W T )fh + (2W T � Id)AED�1gh; (3.6)where ~A := (Id � W T )A(Id � W ) + W TAW . The matrix ~A is symmetri and positivede�nite, see [Woh01℄.Lemma 3.4. The saddle point problem (3.1) for (uh; �h) and the positive de�nite system(3.6) for uh together with the post-proessing step (3.4) are equivalent.The proof follows by onstrution. We note that the matrix ~A has exatly the same formas in a standard mortar problem with dual Lagrange multipliers, see [WK01℄. The interfaeonditions enter only into the right side ~fh and do not inuene the iterative solver. To solvethe symmetri positive de�nite problem (3.6), we apply the modi�ed multigrid approahproposed in [WK01℄ in ombination with one loal post-proessing step of lower omplexity.It is based on the deomposition of uh in uh = (uh �ED�1gh) +ED�1gh.Remark 3.5. Applying a Gau�{Seidel smoother, we do not have to arry out the post-proess. The struture of the smoother guarantees that the weak disrete form of (2.2) isautomatially satis�ed within the multigrid approah.4. Numerial results. Here, we present some numerial examples illustrating theexibility and eÆieny of the mortar �nite element method with dual Lagrange multipliersto treat interfae problems. All our numerial examples are realized within the �nite ele-ment toolbox ug, [BBJ+97℄. We present the numerial results for various types of interfaeproblems using linear and quadrati mortar �nite elements. We denote by M qh and M lhthe disontinuous dual Lagrange multiplier spaes for quadrati and linear �nite elements,respetively, see [Woh01℄. In the ase of M qh, the basis funtions are pieewise quadrati,whereas the basis funtions of M lh are pieewise linear. The mortar �nite element solutionsassoiated with the di�erent Lagrange multiplier spaes M qh and M lh are denoted by uqh andulh, respetively. For all our numerial examples, we use uniform re�nement. The error inthe Lagrange multipliers is measured in a mesh-dependent L2-normk�hk2h := Xe2T� hek�hk20;e;where he is the length of the edge e on the slave side. For our �rst example, we deompose
 := (0; 2)� (0; 1) into 
2 := (0:5; 1:5)� (0:25; 0:75), and 
1 := 
n�
2, see the left pitureof Figure 4.1. We note that � an be deomposed into four straight segments, l, 1 � l � 4.



10The orner nodes of 
2 do not arry a degree of freedom for the Lagrange multiplier spae.Here, we onsider the problem (2.1){(2.3) with�1 := � 2:5 00 1 � ; �2 := � 1 00 2:5 � ;and b1(x; y) := x2 + y2 + xy, b2(x; y) := 0. The right-hand side, the interfae onditionsand Dirihlet boundary onditions are set suh that one obtains the exat solution given byu1(x; y) := sin(x2 + y)exp(� (x� y)2); and u2(x; y) := 1:5 exp(� (x� 1)2 � (y � 0:5)2):
Fig. 4.1: Deomposition of the domain and initial triangulation (left) and isolines of thesolution (right), Example 1The isolines of the solution are given in the right piture of Figure 4.1, and the disretizationerrors are shown in Figure 4.2. The numerial results on�rm the asymptoti rates aspredited by the theory. Having a deomposition where � is not a straight line does notinuene the onvergene rates. In ontrast to mortar tehniques with many subdomains androsspoints, we do not have to redue the dimension of the Lagrange multiplier spae at theorners beause of the inf-sup ondition. The inf-sup ondition is also satis�ed for the higherdimensional spae ~M lh (or ~Mqh), where ~M lh (or ~Mqh) is spanned by the biorthogonal basisfuntions (linear or quadrati) assoiated with all nodes inluding the orner nodes on theslave side. However, replaing the Lagrange multiplier spae M qh by ~Mqh yields onsiderablyworse numerial results for the disretization errors in the Lagrange multiplier. This is due tothe fat that � is not in H 12 (�), and this is ruial for quadrati �nite elements, see Remark3.3. In the right piture of Figure 4.2, we have given the errors in the weighted Lagrangemultiplier norm using the spae ~Mqh (not modi�ed) and the spae M qh (modi�ed). Here, wesee that if we work with the spae ~Mqh, the error in the weighted Lagrange multiplier normis only of order O(h).
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Fig. 4.3: Deomposition into two subdomains and initial triangulation (left) and isolines ofthe solution (right), Example 2In our seond example, we onsider a problem with a orner singularity. Here, we deomposethe unit square into two subdomains 
1 and 
2. The subdomain 
1 is a L-shape domain and
2 := (0:5; 1)� (0; 0:5), see the left piture of Figure 4.3. The initial triangulation does notmath at the interfae. The problem for this example is given by ��u = f , and the exatsolution is hosen as u1 := r2=3 sin( 2�3 ), and u2 := r2, where (r; �) are the polar oordinateswith origin shifted to (0:5; 0:5). The isolines of the solution are shown in the right pitureof Figure 4.3. Here, the solution is not pieewise H2-regular, and asymptotially we annotexpet the same order of onvergene as in the �rst example. The errors in the L2-, H1-and the weighted Lagrange multiplier norms are given in Table 4.1. Here we use lowestorder �nite elements. Asymptotially, we expet an order h2=3 for the H1-norm whih anbe observed. We note that the onvergene rates are onsiderably better in the beginning.In ontrast to the �rst example, the Lagrange multiplier does not show a better asymptotionvergene rate. Asymptotially, we obtain the same onvergene rate as in the H1-norm.This is due to the onentration of the error at the point (0:5; 0:5) whih is loated on theinterfae. Better onvergene rates in the Lagrange multiplier norm an only be observed ifthe solution has no singularity at the interfae.Table 4.1Disretization errors in the L2-, H1- and weighted Lagrange multiplier norm, Example 2level # elem. ku� ulhk0 ratio ku� ulhk1 ratio k�� �lhkh ratio0 41 3.325808e-02 1.370511e-01 1.667159e-021 164 8.446641e-03 3.9374 7.408534e-02 1.8499 4.399131e-03 3.78972 656 2.122112e-03 3.9803 4.111530e-02 1.8019 1.584474e-03 2.77643 2624 5.335827e-04 3.9771 2.343380e-02 1.7545 7.218470e-04 2.19504 10496 1.348615e-04 3.9565 1.369342e-02 1.7113 3.889129e-04 1.85615 41984 3.434135e-05 3.9271 8.173967e-03 1.6752 2.289971e-04 1.69836 167936 8.837528e-06 3.8859 4.961475e-03 1.6475 1.403140e-04 1.63207 671744 2.307613e-06 3.8297 3.048681e-03 1.6274 8.741203e-05 1.6052In our third example, the domain, the problem and the exat solution are taken from [AL02℄.For this example, the domain 
 := (�1; 1) � (�1; 1) is deomposed into two subdomains
1 and 
2, where 
2 is a irle with radius 0:5 entered at the origin, and 
1 := 
n�
2,see the left piture of Figure 4.4. We remark that, in this example, the interfae annot bedeomposed into straight lines. In addition to the analysis given in Setion 3, the polygonalapproximation of � has to be taken into aount. Here, b1(x; y) := 0, b2(x; y) := 0, �1 :=0:1 I2, and �2 := (x2 + y2 + 1) I2 in (2.1){(2.3), where I2 is the 2� 2 identity matrix. Theexat solution is given asu1 := �4116 + 5 �x2 + y2�2 + 10x2 + 10 y2 + 10C ln�2px2 + y2� ; and u2 := x2 + y2:



12The jump of the trae and of the ux aross the interfae � are omputed as [u℄ = 0, and[u℄n = �2C, and we have set C := 10. The right-hand side and the Dirihlet boundaryondition on �
 are omputed by using the given exat solution. Here too, we use onlythe lowest order �nite elements. The disretization errors in the L2-, H1- and the weightedLagrange multiplier norm (weighted L2-norm) for the linear �nite elements are given in theright piture of Figure 4.4. As before, we observe numerially the predited onvergenerates.
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 :=(�1; 1) � (�1; 1) deomposed into an upper and a lower triangle, 
1 and 
2, respetively,with the ommon interfae � := f(x; x) : �1 � x � 1g, see the left piture of Figure 4.5.
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13triangle, and 35GPa and 0:17 for the upper triangle, respetively. We apply the body fore of4MN on 
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