MORTAR FINITE ELEMENTS FOR INTERFACE PROBLEMS
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Abstract. Mortar techniques provide a flexible tool for the coupling of different discretization schemes
or triangulations. Here, we consider interface problems within the framework of mortar finite element
methods. We start with a saddle point formulation and show that the interface conditions enter into the
right-hand side. Using dual Lagrange multipliers, we can work with scaled sparse matrices, and static
condensation gives rise to a symmetric and positive definite system on the unconstrained product space.
The iterative solver is based on a modified multigrid approach. Numerical results illustrate the performance
of our approach.
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1. Introduction. Domain decomposition techniques provide powerful tools for the
coupling of different discretization schemes or of non-matching triangulations. Non-matching
triangulations are of interest, for example, if different subdomains are meshed independently,
or if adaptive remeshing is done in some subdomains. This can be caused by discontin-
uous diffusion coefficients, problems with transmission conditions at the interface, local
anisotropies, singular sources or corner singularities. Here, we consider mortar finite el-
ements for interface problems. Such interface problems arise in different situations, for
example, in heat conduction or in linear elasticity. The characteristic idea of mortar meth-
ods is to decompose the domain of interest in non-overlapping subdomains and to replace
the strong pointwise continuity at the interfaces by a weak integral condition. There are
two different equivalent variational formulations. One approach results in a positive definite
system on the constrained mortar space [BMP93, BMP94], and a second one gives rise to
an indefinite system associated with the unconstrained product space and a Lagrange mul-
tiplier space [Bel99]. Here, we follow the second approach and rewrite the interface problem
as indefinite variational equation.

Conforming finite element methods for elliptic problems with discontinuous coefficients and
homogeneous interface conditions are addressed in [Bab70]. Finite element methods for
non-homogeneous elliptic interface problems are analyzed in [BK96], and it is shown that
the discretization error is of optimal order for linear finite elements on quasi-uniform trian-
gulations. A survey on non-overlapping domain decomposition methods for elliptic interface
problems can be found in [XZ98]. A least-squares finite element method for elliptic interface
problems with Dirichlet and Neumann boundary data is proposed and analyzed in [CG98].
In particular, error estimates for non-matching triangulations at the interface are given. El-
liptic and parabolic interface problems with a non-zero jump in the flux across a sufficiently
smooth interface are considered in [CZ98, HZ02]. In [CZ98], nearly optimal error estimates
in the energy-norm and in the L2-norm are established under reasonable regularity assump-
tions on the original solutions, whereas some new a priori estimates are presented in [HZ02].
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The immersed interface method is based on using the jumps in the solution and its derivative
to modify standard finite difference schemes in the neighborhood of the interface, see [LL94].
The idea to precondition the elliptic equation before using the immersed interface method
is proposed in [Li98a] resulting in a fast algorithm for elliptic equations with large jumps
in the coefficients. An extension of the immersed interface method to boundary value prob-
lems on irregular domains with Neumann and Dirichlet boundary conditions can be found
in [WBO00]. The immersed interface method with a finite element formulation is considered
in [Li98b]. Nitsche techniques provide flexible domain decomposition techniques and have
been successfully used for the numerical approximation of partial differential equations, see,
e.g., [BHS03, HNO03]. The analysis of the discretization scheme is restricted to homogeneous
interface conditions, and optimal a priori estimates are given. A similar approach can be
found in [HHO2], where a stationary heat conduction problem in two dimensions with a dis-
continuous conducting coefficient across a smooth interface is considered. Optimal a priori
estimates for appropriately modified piecewise linear elements on a quasi-uniform triangu-
lation have been established. Mortar methods based on dual Lagrange multiplier spaces for
elliptic problems are considered in [Woh01]. Here, we propose a similar approach based on
mortar techniques and dual Lagrange multipliers. We consider non-homogeneous jumps in
the flux and in the solution across the interface. Starting with a saddle point formulation of
the interface problem, we show the existence and uniqueness of the solution in the contin-
uous and discrete setting. In contrast to the general mortar framework, we decompose the
interface into disjoint straight lines and remove a degree of freedom of Lagrange multipliers
from its corner nodes. We show that this is essential to prove an optimal a priori estimate for
the piecewise linear interface. Compared to standard formulations for the Laplace operator,
see [BMP93], we have to include two additional terms reflecting the interface conditions.
The jump terms enter only in the right-hand side, and the arising stiffness matrix does not
depend on the interface conditions. Working with dual Lagrange multiplier spaces, a flex-
ible and efficient coupling of non-matching triangulations at the interface can be realized.
In terms of the biorthogonality between the basis functions of the finite element trace and
the Lagrange multiplier space, we get a diagonal mass matrix on the slave side. As a conse-
quence, we can locally eliminate the Lagrange multiplier from the saddle point formulation
and obtain a positive definite algebraic system on the unconstrained product space. Hence,
the multigrid method introduced in [WKO01] can be applied to our situation. Our approach
is quite flexible and can easily be applied to general type of elliptic and parabolic interface
problems, where the geometry of and the jump at the interface are a priori known.

The paper is organized as follows: In the next section, we present our model interface
problem and introduce its saddle point formulation in the continuous setting. In Section
3, we briefly outline the mortar discretization scheme and establish a priori estimates for
the discretization errors. Moreover, we consider the algebraic formulation of the saddle
point problem. Local modifications are carried out to obtain a positive definite system for
which we can use multigrid methods. Finally in Section 4, we show some numerical results
illustrating the performance of our approach. In particular, we give the discretization errors
in the L2- and H'-norm and in a weighted L2-norm for the Lagrange multiplier.

2. Continuous setting. Let us consider a bounded polygonal domain Q C R?, which
is decomposed into two non-overlapping subdomains ©; and 5 with the common interior
interface T', T' := 09, N 89y, and assume that the interface I' can be written as union
of straight lines, see Figure 2.1. For simplicity, we restrict ourselves to the case of two

subdomains. However, the approach can be generalized to more than two subdomains. We



Fig. 2.1: Different decompositions of the domain into two subdomains

consider the following elliptic second order boundary value problem on
—div(e;Vu;) + bju; = f; in Q;, i=1,2 (2.1)

with homogeneous Dirichlet boundary conditions on 0f). Here, a; and asy are symmetric
and locally constant positive-definite second order tensors specifying the diffusion in the two
subdomains. Furthermore, we assume that f; € L2(Q;) and 0 < b; € L>=(Q;),i = 1,2. The
jump conditions at the interface I' are given by

[u] ;==u; —us =gp on T, (2.2)

[u]n = (a1 Vuyr) - ny + (@aVuz) -ng =gy on T, (2.3)

1
where n; is the outward normal on 99;. We assume that gp € HZ,(T') and gy € H=3(T) :=
1 !
(HOQO(F)) . On each subdomain, we define

HX Q) == {ve H () =0}, k=12,

1 Ulsanaq,
and we work with the unconstrained product space X := HL(Q;) x H! ().

Using a discretization scheme, we cannot, in general, satisfy the interface conditions (2.2)
and (2.3) in a strong form. We replace (2.2) and (2.3) by a weak variational condition. It is
given in terms of the duality pairing on the interface

b(v,p) = (v], W), v=_(v1,v2) €X, ,UEMIZH_%(F).

In the rest of this section, we consider the variational formulation of the interface problem.
The weak formulation of (2.1) is obtained by applying Green’s formula on €;, i = 1,2

/ (i Vus) - Vi dic — / Vs - nig ds + / bousd d = / figide, & € HY(Q).
Qi T Qi Qi

Taking into account the interface condition for the flux (2.3), a1 Vuy - n1 = —aaVus - na +
gy onT, we find for ¢; € H(Qy)

/ (a1Vuy) - Vo dx-|—/a2Vu2-n2¢>1 dS-l-/ biui 1 dx:/ fidn d$+/gN¢>1 ds.
o r o o r

The weak formulation of the jump of the solution at the interface can be obtained by
multiplying the jump condition (2.2) with an element of the dual space M. Then the
definition of the bilinear form b(-,-) yields

b(u, p) = (gp, w)r =1 g(n), p€ M.
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Introducing the flux A := asVus - ns on ', we can write the weak form of (2.1) as a saddle
point problem: find (u,A) € X x M such that

a(u,v) + b(v, A) v e X,
b(u, p) = g(w), peM,

[
~
—~

<
=

(2.4)

where

2
a(u,v) = Z/ (axVu) - Vo + bpuvdz, f(v) := Z/ frode + <v‘ml ’gN>r
Qr k=17

The essential points for the existence and the uniqueness of the solution of a saddle point
problem are coercivity, continuity and a suitable inf-sup condition. On X, we use the broken
H'-norm

[0llF o = lvllT o, + V]I 0,

and on M the H z-norm. We start with the continuity of the bilinear form b(-,-). By
definition, we find

b, ) =l e < Iy Wl gy v € X5 € M.
0o

1
We note that if T is a closed curve, see the middle picture of Figure 2.1, we have H,(I') =
Hz(T), and thus

I3 oy = Wl ey < Ot Doy + 000, L3 ) < ol v € X

Due to the homogeneous Dirichlet boundary condition imposed on 02, we find (v, ). €

Ir
1
HZ(T),i=1,2,if T is not a closed curve. In that case, we can bound

b W0l 5, < Cllollia, v e X.

I, 1, < Cllo, |

As a consequence, we obtain the continuity of the bilinear form b(-, ) on X x M. The bilinear

form a(-, -) is continuous on X x X and coercive on Y xY, where Y := {v € X, [i.[v]ds = 0},

[BMP93]. To see that the inf-sup condition holds, we start with the deﬁmtlon of the dual
norm

v, b(v b(v,
iy sy = w0 <” o |(| S <o )
veh MO} D) wemhro) | ’ ’

where ¥ denotes the harmonic extension of v to Qs extended by zero on ;. Hence, the
variational problem (2.4) has a unique solution.

3. Mortar discretizations and a priori error estimates. In this section, we briefly
review mortar finite elements and prove optimal a priori estimates for the discretization
errors. Let Tp, and 7p, be independent shape regular simplicial triangulations on ; and
Q, with meshsizes bounded by h; and hs, respectively. Without loss of generality, the
interface I' inherits its one-dimensional mesh from 7p,. The side of T' associated with Q9
is called slave side and the one associated with ; master side. We denote by Tr the
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triangulation on I with meshsize bounded by hs whose elements are boundary edges of Tp,.
The unconstrained discrete finite element space is denoted by

Xn = 8P (Q, Thy) % 87(Qa, Ths)s

where SP(Q, Tp,) stands for the space of linear (p = 1) or quadratic (p = 2) conforming
finite elements in the subdomain ) associated with the triangulation 7, and satisfies
homogeneous Dirichlet boundary conditions on 0, N 092, k& = 1,2. We note that no
interface condition is imposed on X, and the elements in X, do not have to satisfy a
continuity condition at the interface. Let W}, be the trace space of finite element basis
functions from the slave side, i.e., of SP(Qa, Tp,), restricted to I'. Due to the homogeneous

boundary conditions on 912, we find W), C HO%O(F). To satisfy a suitable discrete inf-sup
condition, we use a discrete Lagrange multiplier space such that dimM;, < dimW,. A
natural and efficient choice for the construction of a good Lagrange multiplier space is to
define its basis functions locally and to associate them with the interior nodes of the slave
side. Under the regularity assumption u € HP*1(,), A is, in general, not an element in
Hr—3 (T"). This is due to the fact that the normal has jumps if I has corners. Therefore, we
decompose I into a finite number of disjoint straight segments ~;, 1 <1 < N, of maximal
length, i.e., T = UM, %, v Ny =0, 1 # k and 4 U, is not a straight line, 1 <k #[ < N.
In the examples given in Figure 2.1, we find N =1, N =4, and N = 2 (from the left to the
right). We now work with the Lagrange multiplier spaces defined on v;. We remark that
we use the decomposition of I into straight lines for the definition of the discrete Lagrange

1
multiplier space, but that we work with the Hg-norm on I'. Now, we denote by W (), the
trace of SP(Qa, Th,) restricted to 7y, and we set Wo.n (1) := H (i) N Wh(y). Our discrete
Lagrange multiplier space is defined as the product space

N

My, =[] Ma(m),
=1

where dim My, () = dim Wy, (). Let us denote the nodal basis functions in Wo.;, (1), asso-
ciated with the one-dimensional mesh on the slave side by {‘pé}lgignéa nl := dim Wo.5 ().

We use dual Lagrange multiplier spaces defined in [Woh01]. Then, the basis functions
{Mi’}lgigni of My (v;) satisfy the following biorthogonality relation

/uég@éds:&ij cpé-ds, lgi,jgné,
M il

1
and we have Y%, ul = 1 on 7;. Furthermore for p = 2, the linear hat functions are contained
in the Lagrange multiplier space.

To establish a priori estimates for the discretization errors, we consider the saddle point
formulation (2.4) of the interface problem and apply the theory of mixed finite elements.
Replacing the space X x M by our discrete space X x M), in (2.4), we obtain our discrete
variational problem: find (up, Ap) € X5 x M}, such that

a(up,v) + b(v, Ap) fv), v € Xy,
b(un, ) = g(n), pe M.

(3.1)

Since X, C X and M), C M, we get the continuity of the bilinear form a(:,:) on X, x X,
and of b(-,-) on Xp, X My. Observing (ker B)p, := {vp, € Xp| blop,u) =0, p € Mp} CY, we



obtain the coercivity of a(-,-) on (ker B)j, x (ker B)j. In the following, the set of endpoints
of v, in Q, 1 < k < N, will be denoted by

Ne=JGen).
k£l

To establish the discrete inf-sup condition, we introduce W), ¢ W}, with dim W}, = dim M),
and assume that dim My (y) > 2, 1 < k < N. We remark that H*%(F) is a stronger norm
than the product norm on []v., H~*(v;), and therefore, we cannot work with [T, Wo.x(7)
to get an uniform inf-sup condition. The basis functions ¢; of W), are associated with the
interior nodes of ;. If z; is a node adjacent to an endpoint z; € Q of some vy, we define
@i = @; + 0.5¢p;, where ¢; denotes the standard nodal basis function of W}, and for all
other nodes, we set @; := ;. We note that only the basis functions associated with a node
adjacent to a corner are modified and that the space W}, has the standard approximation
properties. The basis functions of W}, in the linear case are shown in the left picture of
Figure 3.1, and the dual Lagrange multiplier basis functions are shown in the right picture.

Fig. 3.1: Basis functions of W}, (left) and of M}, (right), the basis functions are associated
with the filled circles and z; is a corner

Now, we define a projection operator @ by

Qn : L¥(T) — Wy, JrQuopnds = [popnds,  pn € M.

The biorthogonality of My (y;) and Wo,, (i) and the modification of @; at the nodes adjacent
to endpoints of v; yield

Cij
Pifik d8=5ik/<,0id8+ —J/w'ﬂk ds,
/r r Z 2 7

z; EN,

where ¢;; = 1 if the node z; is adjacent to the endpoint z; and otherwise ¢;; = 0. It can
be easily verified that @ is well-defined. The structure of the mass matrices guarantees
that the action of ()5 can be computed locally. Moreover, it is easy to see that Qpv =
v, v € Wp, and ||Quv]lor < Cllvllor. We denote by P, the L?-projection on W}, and
note that || Pyollir < [|vllir, v € HY(T), see [Bra0l]. In terms of the L2-stability of Qp,

1
the approximation property of P, and an inverse estimate, the Hg)-stability of (), can be
shown

1
1 <C|——
020(F)_ (VhQ
1

H,
<C|—=|lv—-~P + 1 <C 1
<0 (o= Puolor + ol 3 ) <Cloll

Qnul|| 1 <||Qrv — Ppvl|| 1 + || Prv Qrv — Ppollor + ||v]| 2 >
| ||H020(F) | ||H020(F) [ Prvll | | | ||H020(F)



Using the discrete harmonic extension on S? ({9, 7Tp,), we obtain a uniform discrete inf-sup

1
condition. The H,-stability of ()}, guarantees the discrete inf-sup condition

pn Qrov ds pn Qro ds
nllyop = s LG o, ffi
H™Z(T) 1 vl 4 1Qnv ||
”€H020(F)\{0} Hgy (T) UGHOQO( \{0}
d d b(w
S C sup M S C sup M S C sup M,
wnewi\{o} [wnll wi ) €SP (Qa,Tny N0} [1WR111,02 anexn\for [Dnllie

where Wy, is the discrete harmonic extension of wy, to Qs extended by zero on ;. In terms
of these preliminary considerations, we can apply [Bra0Ol, Theorem III, 4.5] and get the
following a priori bound for the discretization error

LEMMA 3.1. The discrete variational problem (3.1) has a unique solution (up,Ap), and
there exist two constants ¢; and co independent of h such that

= unllv+ A= Ml gy S 0 flu=vallia+ea inf A= gl g )32
In a next step, we define another projection operator @ by
Q;:H H—=(T) — My, Jr Qrpwnds = [ pwyds, wp, € Wy,

and note that Qju = p, p € My, and [|Q;pullor < C|lpullor An interpolation argument
1_
yields the Hy, *_stability, 0 < s < %, of @y, and as a result, we find that Q7 is H*®= 2 stable

. (Qfp, w)p (Q; 11, Qrw)y
bty = P el T Tl
weHZ (I)\{o} H020 (T) weHZ ~(T)\{0} ()
<M:Qhw>r
P wl| 4. S
weHZ “(D\{o} = "HZ ()

THEOREM 3.2. Assume that u € szl H™T1(Qy), and X € Hévzl H™=3 () with ry >
0 andry > % Then, we have the following a priori estimate for the discretization error

1
llu—unllig + 1A = Anll g ) < O™ ully, 41,0, + B3 lull3yr10,) %
where s; := min(r;,p), 1 =1,2. If0 < ry < %, then we have

)=

2 2 2
e = unllio + A = Mnll gy < COTHU 1,0, + B3 [ull5,0, + B3 IALG,, ek ()
Proof. The best approximation property of X}, is well-known, and we have

1
oof flu—unllie < C(hT lullf, s, + B3 ulllyr10,) % w€ HM Q) x H™=FH(Qy).

To establish the best approximation error of M} in the H~3%-norm on I', we work with @)} .
In a first step, we consider the case ro > % The L2-stability of @}, the best approximation
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property of My (), see [Woh01], and the trace theorem yield for A € Hf\;l Hm—% (m),

% 2 * 2 2
A*y 2 o <>\—Qh>\:v>r IA - Qh/\Ho,rHU_QhUHo,F
=@My = 0 e sup W=,
veHg (T)\{0} HZ (T) veHg (T)\{0} 2 (1)

N
< ChyllA = Qp Al r < Ch3* Z |/\\25271

289 2
1 < Ch; ‘U|32+1,92-
P 2 (m)

Now, we consider the case 0 < ry < % Using the H’Q_%—stability of @}, we have

(A= Qi) v);

A= QA2 =
1A = QiAo sup TR
vEHgo (T)\{0} HZ(T)
—_0O*\2 _ 2
1A QhAHHW,%(mHv thHH%,w
S g ol N
1 v
ve R, (M\{0} HE ()
27y _ * 2 27y 2
< Chy A= @Al oy ) < ORHIAG .y -

Finally, the proof follows by using (3.2). O

REMARK 3.3. Because of the corners at the interface, the given a priori estimate cannot be
established for ro > 1 if we work with a Lagrange multiplier space which is directly defined
on . In that case an error term of O(h%_e), € > 0 occurs. This term is crucial in case of
a smooth solution and quadratic finite elements.

In the rest of this section, we consider the algebraic formulation of the saddle point problem
(3.1) and apply a suitable modification to get a positive definite system on the product
space. Here and in the following, we use the same notation for the vector representation of
the solution and the solution as an element in X, and M}. The matrix A is the stiffness
matrix associated with the bilinear form a(-,-) on X, x X}, and the matrices B and BT are
associated with the bilinear form b(+,-) on Xp x Mj,. Then, the algebraic formulation of the
saddle point problem is given by

(5 %) (0)=(0), 5

where f5 and gj, are associated with the linear forms f(-) and g(-). Introducing Wy :=
Hl]il Wo.r. (1), we define the mortar mapping IT : X, — Wy, C X}, by

/Hvuhds:/[v]uhds, un € My,
r r

and denote its algebraic representation by W. We remark that W applied to an element in
(ker B)p is zero. Thus the non-zero blocks of W are associated with the slave and master
nodes on the interface. Moreover in case of dual Lagrange multipliers, the mortar mapping
can be locally evaluated and the non-zero blocks of W are sparse. We denote by E the
matrix associated with the natural embedding of Wy, in X} and by D the diagonal matrix
with entries d;; := fr @; ds, where @; are the nodal basis functions of Wy,j. It is easy to see
that DETW = B and ED~'B = W. Static condensation of the Lagrange multiplier now
yields

M = DYET(f, — Auy). (3.4)



This observation is the starting point for the modification of the algebraic formulation of the
discrete saddle point problem (3.3). We use the equivalent form A\, = D™'ET(f, — Auy +
AWuy) — D YETAED g, of (3.4) to eliminate \j, in (3.3). Shifting the terms in g;, and
fn to the right side yields

A BT Id _( @d-WT)f+ WIAED g, .
(B 0 )(DlETA(W—Id))“h‘( o ) (35)

We note that the jump in the trace enters now in both block components on the right side.
The system (3.5) has more equations than unknowns. To obtain a positive definite system
for uj on the product space, we restrict the space of test functions. Assuming that the test
function (vg, up) has the form (vy, D™'ET A(W —1d)vy,), we get

Aup = fr = (1d-WT)f, + @2WT —1d)AED ' gy, (3.6)

where A := (Id — WT)A(Id — W) + WTAW. The matrix A is symmetric and positive
definite, see [Woh01].

LEMMA 3.4. The saddle point problem (3.1) for (un, An) and the positive definite system
(3.6) for uy, together with the post-processing step (3.4) are equivalent.

The proof follows by construction. We note that the matrix A has exactly the same form
as in a standard mortar problem with dual Lagrange multipliers, see [WKO01]. The interface
conditions enter only into the right side fh and do not influence the iterative solver. To solve
the symmetric positive definite problem (3.6), we apply the modified multigrid approach
proposed in [WKO01] in combination with one local post-processing step of lower complexity.
It is based on the decomposition of uy in up = (up — ED"'gp) + ED gp,.

REMARK 3.5. Applying a Gaufi—Seidel smoother, we do not have to carry out the post-
process. The structure of the smoother guarantees that the weak discrete form of (2.2) is
automatically satisfied within the multigrid approach.

4. Numerical results. Here, we present some numerical examples illustrating the
flexibility and efficiency of the mortar finite element method with dual Lagrange multipliers
to treat interface problems. All our numerical examples are realized within the finite ele-
ment toolbox ug, [BBJT97]. We present the numerical results for various types of interface
problems using linear and quadratic mortar finite elements. We denote by M, and M,lL
the discontinuous dual Lagrange multiplier spaces for quadratic and linear finite elements,
respectively, see [Woh01]. In the case of M, the basis functions are piecewise quadratic,
whereas the basis functions of M| are piecewise linear. The mortar finite element solutions
associated with the different Lagrange multiplier spaces M, and M,ZL are denoted by uj and
ulh, respectively. For all our numerical examples, we use uniform refinement. The error in
the Lagrange multipliers is measured in a mesh-dependent L2-norm

AR} =Y hellAnlf3.e.
e€Tr

where h, is the length of the edge e on the slave side. For our first example, we decompose
2 :=(0,2) x (0,1) into Qs := (0.5,1.5) x (0.25,0.75), and Q; := Q\Qy, see the left picture
of Figure 4.1. We note that I can be decomposed into four straight segments, v;, 1 <1 < 4.
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The corner nodes of 25 do not carry a degree of freedom for the Lagrange multiplier space.
Here, we consider the problem (2.1)—(2.3) with

(25 0 (1 0
“M=L o 1) 2T o0 25 )

and by (z,y) := 22 + 9% + zy, ba(x,y) := 0. The right-hand side, the interface conditions
and Dirichlet boundary conditions are set such that one obtains the exact solution given by
wy(z,y) == sin(z? + y)exp(— (z — y)°), and wua(z,y) := 1.5exp(— (z — 1)° = (y — 0.5)°).

(( N

Fig. 4.1: Decomposition of the domain and initial triangulation (left) and isolines of the
solution (right), Example 1

The isolines of the solution are given in the right picture of Figure 4.1, and the discretization
errors are shown in Figure 4.2. The numerical results confirm the asymptotic rates as
predicted by the theory. Having a decomposition where I is not a straight line does not
influence the convergence rates. In contrast to mortar techniques with many subdomains and
crosspoints, we do not have to reduce the dimension of the Lagrange multiplier space at the
corners because of the inf-sup condition. The inf-sup condition is also satisfied for the higher
dimensional space M} (or M]), where M} (or M) is spanned by the biorthogonal basis
functions (linear or quadratic) associated with all nodes including the corner nodes on the
slave side. However, replacing the Lagrange multiplier space M} by M,’f yields considerably
worse numerical results for the discretization errors in the Lagrange multiplier. This is due to
the fact that \ is not in H2 (T"), and this is crucial for quadratic finite elements, see Remark
3.3. In the right picture of Figure 4.2, we have given the errors in the weighted Lagrange
multiplier norm using the space M, (not modified) and the space M} (modified). Here, we
see that if we work with the space MZ, the error in the weighted Lagrange multiplier norm
is only of order O(h).

N N
X S
A 3
_: N ~
10? S AN 10
N ~
N 3
N
J~ RN 1072
N N
N N
N
1074 N\ N > ~ é
N N 107
N N
N — linear N
N -o- quadratic (modified)
—— linear Do —— linear 10} -z~ quadratic (not modified) o
10| —©- Quadratic S —o- quadratic - - O(h)/
- - o) S —_ o(h _ _oh¥?
- - o) 107 — - oY N TR ] R e Y <
10° 10° 10* 10° 10° 10* 10° 10° 10*

Fig. 4.2: Error plot versus number of elements, L?-norm (left), H'-norm (middle) and
weighted Lagrange multiplier norm (right), Example 1
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Fig. 4.3: Decomposition into two subdomains and initial triangulation (left) and isolines of
the solution (right), Example 2

In our second example, we consider a problem with a corner singularity. Here, we decompose
the unit square into two subdomains Q; and 5. The subdomain € is a L-shape domain and
0y :=(0.5,1) x (0,0.5), see the left picture of Figure 4.3. The initial triangulation does not
match at the interface. The problem for this example is given by —Au = f, and the exact
solution is chosen as uy := r2/3sin(22), and us := 7%, where (, ¢) are the polar coordinates
with origin shifted to (0.5,0.5). The isolines of the solution are shown in the right picture
of Figure 4.3. Here, the solution is not piecewise H2-regular, and asymptotically we cannot
expect the same order of convergence as in the first example. The errors in the L>-, H'-
and the weighted Lagrange multiplier norms are given in Table 4.1. Here we use lowest
order finite elements. Asymptotically, we expect an order h?/3 for the H'-norm which can
be observed. We note that the convergence rates are considerably better in the beginning.
In contrast to the first example, the Lagrange multiplier does not show a better asymptotic
convergence rate. Asymptotically, we obtain the same convergence rate as in the H'-norm.
This is due to the concentration of the error at the point (0.5,0.5) which is located on the
interface. Better convergence rates in the Lagrange multiplier norm can only be observed if
the solution has no singularity at the interface.

TABLE 4.1
Discretization errors in the L?-, H'- and weighted Lagrange multiplier norm, Ezample 2

level | # elem. lu — v Jlo ratio lu —ul 1 ratio X=X ln ratio
0 41 3.325808e-02 1.370511e-01 1.667159e-02
1 164 8.446641e-03 | 3.9374 | 7.408534e-02 | 1.8499 | 4.399131e-03 | 3.7897
2 656 2.122112e-03 | 3.9803 | 4.111530e-02 | 1.8019 | 1.584474e-03 | 2.7764
3 2624 5.335827e-04 | 3.9771 | 2.343380e-02 | 1.7545 | 7.218470e-04 | 2.1950
4 10496 1.348615e-04 | 3.9565 | 1.369342e-02 | 1.7113 | 3.889129e-04 | 1.8561
5 41984 3.434135e-05 | 3.9271 | 8.173967e-03 | 1.6752 | 2.289971e-04 | 1.6983
6 167936 8.837528e-06 | 3.8859 | 4.961475e-03 | 1.6475 | 1.403140e-04 | 1.6320
7 671744 2.307613e-06 | 3.8297 | 3.048681e-03 | 1.6274 | 8.741203e-05 | 1.6052

In our third example, the domain, the problem and the exact solution are taken from [ALO02].
For this example, the domain Q := (—1,1) x (—1,1) is decomposed into two subdomains
Q; and Qs, where ), is a circle with radius 0.5 centered at the origin, and Q; := Q\QQ,
see the left picture of Figure 4.4. We remark that, in this example, the interface cannot be
decomposed into straight lines. In addition to the analysis given in Section 3, the polygonal
approximation of I has to be taken into account. Here, bi(x,y) := 0, ba(z,y) := 0, a1 :=
0.11, and as := (2% + 9> + 1) I in (2.1)—(2.3), where I5 is the 2 x 2 identity matrix. The
exact solution is given as

41 . ‘ ‘ ‘
u1:=—1—6+5(a:z+y2)2+10w2+10y2+1001n(2 a:2—|—y2), and  us = 2% + 7.
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The jump of the trace and of the flux across the interface I' are computed as [u] = 0, and
[u], = —2C, and we have set C' := 10. The right-hand side and the Dirichlet boundary
condition on 9N are computed by using the given exact solution. Here too, we use only
the lowest order finite elements. The discretization errors in the L2-, H'- and the weighted
Lagrange multiplier norm (weighted L2-norm) for the linear finite elements are given in the
right picture of Figure 4.4. As before, we observe numerically the predicted convergence
rates.

10 N

10 e N

10

== L%-norm
3| ~©~ H-norm N
—=— weighted L%-norm

10

IS

07 - o(h?) X

Fig. 4.4: Decomposition into two subdomains and initial triangulation (left) and error plot
versus number of elements (right), Example 3

In our last example, we consider a problem of linear elasticity. We remark that the theoretical
results can easily be generalized to this case. For this example, we take the domain € :=
(=1,1) x (—1,1) decomposed into an upper and a lower triangle, Q; and s, respectively,
with the common interface I' := {(z,z) : =1 <z < 1}, see the left picture of Figure 4.5.

NN

AT T 10 10

Fig. 4.5: Decomposition into two subdomains and initial triangulation (left), distorted grid
on level 2 (middle) and error plot versus number of elements (right), Example 4

We have used homogeneous Dirichlet boundary condition on 91, and the jump of the flux
and the jump of the trace are given by gy := (0,0)” and gp := (g9(x),0)7, respectively.
Here, g(z) is defined by

(2) =" if z € [~1,-0.6]U[0.6,1]
=005 + 0.6)(x — 0.6) if z € (~0.6,0.6).

This leads to a crack on the interface I', which is shown in the middle picture of Figure
4.5. Young’s modulus E and Poisson ratio v are chosen to be 71GPa and 0.35 for the lower
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triangle, and 35GPa and 0.17 for the upper triangle, respectively. We apply the body force of
4MN on 2 along both directions. We do not have an analytical solution for this problem. To
obtain the discretization error, we compute a reference solution on a very fine triangulation
with meshsize h.ef, and compute an approximation of the error by comparing e with up,.
We use the same u,er for all refinement levels. On level 7 (starting from level 0), we have
h = 2h.es. As a result, we observe numerically better convergence rate in the last refinement
step. There is a weak singularity in the stress at the opening of the crack. Thus, we apply
only linear finite elements. The discretization errors are given in the right picture of Figure

4.5. This shows that we get an almost optimal order of convergence even in this case.
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