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ations?Bishnu P. Lami
hhane and Barbara I. WohlmuthUniversity of Stuttgart, Institute of Applied Analysis and Numeri
al Simulationhttp://www.ians.uni-stuttgart.de/nmh,{lami
hhane,wohlmuth}�mathematik.uni-stuttgart.deSummary. Domain de
omposition te
hniques provide a powerful tool for the nu-meri
al approximation of partial di�erential equations. We 
onsider mortar te
h-niques with dual Lagrange multiplier spa
es to 
ouple di�erent dis
retization s
hemes.It is well known that the dis
retization error for linear mortar �nite elements in theenergy norm is of order h. Here, we apply these te
hniques to 
urvilinear boundaries,nonlinear problems and the 
oupling of di�erent model equations and dis
retizations.1 Introdu
tionThe numeri
al approximation of partial di�erential equations is often a 
hal-lenging task. When di�erent physi
al models should be used in di�erent sub-regions, a suitable dis
retization s
heme has to be used in ea
h region. Mortarmethods yield eÆ
ient and 
exible 
oupling te
hniques for di�erent dis
retiza-tion s
hemes. The 
entral idea of mortar methods is to de
ompose the domainof interest into non-overlapping subdomains and impose a weak 
ontinuity
ondition a
ross the interfa
e by requiring that the jump of the solution isorthogonal to a suitable Lagrange multiplier spa
e, see Bernardi et al. [1993,1994℄. Here, we work with mortar te
hniques and dual Lagrange multiplierspa
es. These non-standard Lagrange multipliers show the same qualitative apriori estimates and quantitative numeri
al results as the standard ones andyield lo
ally supported basis fun
tions for the 
onstrained spa
e leading to a
heaper numeri
al realization, see Wohlmuth [2001℄. This paper is 
on
ernedwith appli
ations of mortar methods to 
ouple di�erent physi
al models indi�erent simulation regions. In the next se
tion, we apply mortar methodsto 
ouple 
ompressible and nearly in
ompressible materials in linear elasti
-ity. In Se
tion 3, the linear Lapla
e operator is 
oupled with the non-linearp-Lapla
e operator. Finally in Se
tion 4, we show an appli
ation to an elasto-a
ousti
 problem, and a generalized eigenvalue problem has to be solved. For? This work was supported in part by the Deuts
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2 Bishnu P. Lami
hhane and Barbara I. Wohlmuthall our models, we provide numeri
al results. The weak 
oupling in terms ofdual Lagrange multipliers results in a diagonal matrix on the slave side. As a
onsequen
e, the Lagrange multiplier 
an be eliminated lo
ally, and optimalmultigrid methods 
an be applied to the resulting positive de�nite system.2 Compressible and Nearly In
ompressible MaterialsIn this se
tion, we 
onsider a problem in linear elasti
ity with two di�erentmaterials in two subdomains, one of them being nearly in
ompressible. Weassume that the domain 
 � R2 is de
omposed into two non-overlappingsubdomains 
1 and 
2 with a 
ommon interfa
e �� = �
1 \ �
2, and thesubdomain 
1 is o

upied with a nearly in
ompressible material having avery large Lam�e parameter �1. It is well-known that standard low order �niteelements for nearly in
ompressible materials su�er from lo
king, see Babu�skaand Suri [1992℄, and various approa
hes have been introdu
ed to improvethe numeri
al results. Working with a mixed formulation on 
1, see, e.g.,Braess [2001℄, and standard �nite element approa
h on 
2, we use mortarte
hniques with dual Lagrange multipliers to realize the 
oupling between thetwo formulations. On ea
h subdomain, we de�ne the spa
eH1�(
k) := fv 2 H1(
k)2;vj�
\�
k = 0g; k = 1; 2;and 
onsider the 
onstrained produ
t spa
eV := fv 2 2Yk=1H1�(
k) j Z� [v℄ �  d� = 0;  2Mg;where M := H� 12 (� ) is the Lagrange multiplier spa
e, and [v℄ is the jumpof v a
ross � . Introdu
ing an additional unknown p := �1divu in 
1, thevariational problem is given by: �nd [u; p℄ 2 V � L2(
1) su
h thata(u;v) + b(v; p) = l(v); v 2 V;b(u; q)� 1�1 
(p; q) = 0; q 2 L2(
1);where l 2 V0 anda(u;v) := 2Xi=1 2�i Z
i "(u) : "(v) dx + �2 Z
2 divu divv dx;b(v; q) := Z
1 divv q dx; 
(p; q) := Z
1 p q dx; and l(v) := Z
 f � v dx:Here, "(u) is the linear strain tensor. For our example, the domain 
 :=
onvf(0; 0); (48; 44); (48; 60); (0; 44)g is de
omposed into two subdomains 
1



Mortar Finite Elements with Dual Lagrange Multipliers 3and 
2 with 
1 := 
onvf(12; 20:25); (36; 38:75); (36; 50:25); (12; 38:75)g, and
2 := 
n �
1. Here, 
onv� is the 
onvex hull of the set �. The de
ompositionof the domain and the initial triangulation are shown in the left pi
ture ofFigure 1. Here, the left boundary of 
 is �xed and the right boundary issubje
ted to an in-plane shearing load of 100N along the positive y-dire
tion.The lower and upper boundaries are set free, and we do not apply any volumefor
e. The material parameters are taken to be E1 = 250Pa, E2 = 80Pa,�1 = 0:4999, and �2 = 0:35 to get a nearly in
ompressible response in 
1,where Ei and �i are the Young's modulus and the Poisson ratio on
i; i = 1; 2,respe
tively. The displa
ement �eld is dis
retized with bilinear �nite elements,and the pressure in 
1 is dis
retized with pie
ewise 
onstant fun
tions. Theright pi
ture of Figure 1 shows the verti
al displa
ement at (48; 60) versus thenumber of elements. We 
ompare three di�erent numeri
al s
hemes. Usingstandard 
onforming �nite elements (standard) in 
 does not give satisfyingnumeri
al results, whereas the more expensive mixed formulation (mixed) in
 provides good results. Our numeri
al results show that the mortar approa
h(
oupled) is almost as good as the mixed formulation and signi�
antly betterthan the standard one.
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mixedFig. 1. De
omposition of the domain and initial triangulation (left), distorted gridon level 2 (middle), and verti
al tip displa
ement versus number of elements (right)3 The Lapla
e and the p-Lapla
e OperatorIn this se
tion, we 
onsider the 
oupling of a linear and a non-linear model. Thelinear model is des
ribed by a Poisson equation, and we use the p-Lapla
ian forthe non-linear model. Here, we de
ompose the domain 
 := (�1; 1)� (�1; 1)into four non-overlapping subdomains de�ned by 
1 := (�1; 0) � (�1; 0),
2 := (0; 1)� (�1; 0), 
3 := (�1; 0)� (0; 1) and 
4 := (0; 1)� (0; 1). We havegiven the de
omposition of the domain and the initial triangulation in theleft pi
ture of Figure 2. We 
onsider the Poisson equation �r � (�r)u = f in
1 and 
4 and the p-Lapla
ian �r � (�jrujp�2ru) = f in 
2 and 
3. Thep-Lapla
e equation o

urs in the theory of two-dimensional plasti
ity underlongitudinal shear or in the di�usion problem with non-linear di�usivity, seeAtkinson and Champion [1984℄, and we are 
onsidering here di�erent materialmodels in di�erent subdomains. For the regularity of the solutions and error es-timates of the p-Lapla
ian, we refer to Liu and Barret [1993℄ and Liu and Yan
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hhane and Barbara I. Wohlmuth[2001℄. Let Thk be a shape regular simpli
ial triangulation on 
k with mesh-
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omposition of the domain and initial triangulation (left), isolines of thesolution (middle) and dis
retization errors versus number of elements (right)sizes bounded by hk, and S(
k ; Thk) stands for the spa
e of linear 
onforming�nite elements in the subdomain 
k asso
iated with the triangulation Thk sat-isfying the Diri
hlet boundary 
onditions on �
k \ �
, k = 1; � � � ; 4. Then,the un
onstrained �nite element spa
eXh is given by Xh :=Q4k=1 S(
k ; Thk):The interfa
e � := f(0; y);�1 < y < 1g [ f(x; 0);�1 < x < 1g inherits itsone-dimensional triangulation S� from the mesh on 
2 and 
3. We re
all that(0; 0) is a 
rosspoint, andMh does not have any degree of freedom at this point.Now, the Lagrange multiplier spa
eMh is de�ned on � and is asso
iated withthe triangulation S� . Assuming q1 := 2; q2 := p; q3 := p, and q4 := 2, we 
anwrite the weak formulation of the problem as: �nd (uh; �h) 2 Xh �Mh su
hthat a(uh; v) + b(v; �h) = l(v); v 2 Xh;b(uh; �) = 0; � 2Mh; (1)where a(u; v) := P4i=1 R
i �jrujqi�2ru � rv dx; b(v; �) := R� [v℄� d�, andl(v) := R
 f v dx. If � > 0, and the right hand side fun
tion f is suÆ
ientlysmooth, we 
an show by monotoni
ity te
hniques that the problem (1) has aunique solution, see Liu [1999℄. However, the regularity of the solution is notknown. Let uh :=Pnk=1 uk�k and �h :=Pnsk=1 �k�k, where n and ns are thedimensions ofXh andMh, respe
tively. Suppose w = (u1; � � � ; un; �1; � � � ; �ns)be a ve
tor. Now, we de�ne F (w) := (F1(w); F2(w))T withF1(w) := 0B� a(uh; �1) + b(�1; �h)� l(�1)...a(uh; �n) + b(�n; �h)� l(�n)1CA ; F2(w) := 0B� b(uh; �1)...b(uh; �ns)1CA :The system F (w) = 0 is a non-linear system if p 6= 2, and we apply theNewton method to solve this system. First, we initialize the solution ve
torw0 satisfying the given Diri
hlet boundary 
onditions. Then, we iterate until
onvergen
e with Jk�wk = F (wk);where �wk := wk � wk+1, and Jk is the Ja
obian of F evaluated at wk .Working with a dual Lagrange multiplier spa
e has the advantage that the



Mortar Finite Elements with Dual Lagrange Multipliers 5Ja
obian matrix Jk has exa
tly the same form as the saddle point matrixarising from the mortar �nite elements with a dual Lagrange multiplier spa
efor the Lapla
e operator, see Wohlmuth and Krause [2001℄. Hen
e, we 
anapply the multigrid approa
h introdu
ed in Wohlmuth and Krause [2001℄to solve the linear system on ea
h level. Suppose that ~
l := 
1 [ 
4, and~
p := 
2[
3. In our numeri
al example, we 
hoose � = 0:5 in ~
l, and � = 1in ~
p, p = 1:5, and f = 0. For boundary 
onditions, we set u(�1;�1) =u(1; 1) = 0; u(�1; 1) = 1 and u(1;�1) = �1, and the Diri
hlet boundary
ondition on �
 is imposed by taking the linear 
ombination of them inbetween. Here, we do not have the exa
t solution. To get the approximationof the dis
retization errors, we 
ompute a referen
e solution uref at a �nelevel and 
ompare it with the solution uh at ea
h level until href � 2h. Wehave given the dis
retization errors in the LM - and HM - norms de�ned bykvkLM := kvkL2( ~
l) + kvkLp( ~
p); and kvkHM := jvjW 1;2( ~
l) + jvjW 1;p( ~
p)in the right pi
ture of Figure 2, and the isolines of the solution are givenin the middle. Although the regularity of the solution is not known, we get
onvergen
e of order h2 in the LM -norm and of order h in the HM -norm.4 Appli
ation to an Elasto-A
ousti
 ProblemIn this se
tion, we show the appli
ation of mortar �nite element methodsfor an elasto-a
ousti
 problem. We 
onsider the situation that the 
uid is
ompletely surrounded by the stru
ture. The problem is des
ribed by a linearelasti
 stru
ture o

upying a subdomain 
S � R2 
oupled with an irrotational
uid in 
F � R2 . The interfa
e � (= �
S\�
F ) separates the 
uid and solidregions. Given the 
uid-density �F , the solid-density �S , and the a
ousti
speed 
, we seek the frequen
y !, the velo
ity-�eld u, and the pressure p su
hthat rp� !2�FuF = 0 in 
F ;p+ 
2�Fr � uF = 0 in 
F ;r � �(uS) + !2�SuS = 0 in 
S ;uS = 0 on �D;�(uS) � nS = 0 on �N ;�n(uS) + p = 0; �t(uS) = 0; and (uF � uS) � n = 0 on �:Here, � is the usual stress tensor from linear elasti
ity, �n = n � (� � n) is thenormal stress on � , and �t = � �n��nn is the tangential tra
tion ve
tor on � ,where n is the outward normal to
F on � . This problem has be
ome a subje
tof di�erent papers, see, e.g., Hansbo and Hermansson [2003℄, Berm�udez andRodr�iguez [1994℄, Alonso et al. [2001℄. We introdu
e the following fun
tionspa
es to formulate our problem in the weak form
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F )�H1�D (
S); and V := f(uF ;uS) 2 X; [u℄ � n = 0 on �g;whereH(div; 
F ) := fv 2 L2(
F )2; kr � vkL2(
F ) <1g;H1�D(
S) := fv 2 H1(
S)2; vj�D = 0g; and [u℄ := (uF � uS):The weak form of the 
ontinuous problem is: �nd u 2 V and ! 2 R su
h thata(u;v) = !2m(u;v); v 2 V; wherea(u;v) := (�F 
2r � uF ;r � vF )
F + (�(uS); �(vS))
S ; andm(u;v) := (!2�FuF ;vF )
F + (!2�SuS ;vS)
S :Here, �(vS) is the linear strain tensor and is related to the stress tensor byHooke's law, i.e., �ij(vS) = 2��ij(vS)+�P2k=1 �kk(vS)Æij ; i; j = 1; 2. Let Thsand Thf be shape regular simpli
ial triangulations on 
S and 
F , respe
tively,and � inherits its triangulation S� from the side of 
F . It is a well-known fa
tthat if standard Lagrangian �nite elements are used to dis
retize the 
uid, itwill give rise to spurious eigensolutions with positive eigenvalues interspersedamong the 'real' ones, and a possible remedy of this problem is to use Raviart-Thomas elements in the 
uid domain, see Berm�udez et al. [1995℄. Therefore,we dis
retize the 
uid domain with Raviart-Thomas elements of lowest order:RT0 := fu 2 H(div; 
F ) : ujK = (a+ bx; 
+ by); K 2 Thf ; a; b; 
 2 Rg;and the solid domain with Lagrangian �nite elements of lowest order:WDh := SD(
S ; Ths)� SD(
S ; Ths);where SD(
S ; Ths) is the �nite element spa
e on 
S satisfying the Diri
h-let boundary 
ondition on �D. The kinemati
 
onstraint 
an be imposed bypie
ewise 
onstant Lagrange multipliers yielding a uniform inf-sup 
ondition.Suppose Xh := RT0 �WDh , and Mh := f�h 2 L2(� ) : �hje 2 P0(e); e 2 S� g.Now the �nite element spa
e 
an be written asVh := f(uhF ;uhS) 2 Xh; Z� [uh℄ � n�h d� = 0; �h 2Mhg:The dis
rete problem reads: �nd uh 2 Vh, and !h 2 R su
h thata(uh;vh) = !2hm(uh;vh); vh 2 Vh:Remark 1. We remark that the Lagrange multiplier �h approximates the pres-sure on the interfa
e � . The Lagrange multipliers are asso
iated with the one-dimensional mesh inherited from the triangulation on the 
uid domain. Dueto the spe
ial stru
ture of the support of the nodal basis fun
tions of RT0and Mh, the degree of freedom 
orresponding to the Lagrange multiplier 
anlo
ally be eliminated by inverting a diagonal mass matrix.



Mortar Finite Elements with Dual Lagrange Multipliers 7In Alonso et al. [2001℄, an adaptive �nite element s
heme is analyzed to solvethe 
uid-stru
ture vibration problem, where the kinemati
 
onstraint is im-posed by means of pie
ewise 
onstant Lagrange multiplier. Following thiste
hnique, we arrive at the same mortar setting as we dis
uss here. Now,we 
onsider the domain 
 := f(x; y) 2 R2 ; x2 + y2 < 1g de
omposed intotwo subdomains 
S and 
F with 
F := f(x; y) 2 R2 ; x2 + y2 < 0:6g, and
S := 
n �
F . Here, �D = f(
os �; sin �); 5�4 � � � 7�4 g. We have used the fol-lowing parameters in our numeri
al example: �F = 1000kg/m3, 
 = 1430m/s,�S = 7700kg/m3, E = 144GPa, and � = 0:35. The �rst three 
onse
utiveeigenmodes along with the pressure in the 
uid domain and the distortedgrids in the solid domain are shown in Figure 3. We note that � de�nes a
urvilinear interfa
e. To evaluate the weak 
oupling, we 
ommit an additionalvariational 
rime by proje
ting the mesh of the stru
ture side to the mesh onthe 
uid side.
Fig. 3. The �rst, se
ond and the third eigenmodes 
orresponding to the eigenvalues809.1481, 1980.7519 and 3606.3907 (rad/s)The se
ond numeri
al example is taken from Berm�udez and Rodr�iguez [1994℄.The domain 
 := (0; 1:5) � (0; 1:5) is de
omposed into two subdomains
S and 
F with 
F := (0:25; 1:25) � (0:25; 1:25), 
S := 
n �
F , and�D = f(x; 0) 2 R2 ; 0 � x � 1:5g. We have used the same physi
al parametersas in the previous example. The 
omputed eigenfrequen
ies (in rad/s) alongwith the extrapolated ones referred to as 'Exa
t' in Berm�udez and Rodr�iguez[1994℄ are given in Table 1.Table 1. The 
omputed eigenfrequen
ies using mortar te
hniques 
ompared withthe extrapolated eigenfrequen
ies ('Exa
t') in Berm�udez and Rodr�iguez [1994℄Eigenmodes Computed Eigenfrequen
ies 'Exa
t'1 648.1847 641.8372 2147.3593 2116.3983 3419.5020 3201.4754 3885.9022 3804.1245 4214.0865 4211.6206 4699.6782 4687.927
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