
Mortar Finite Elements with Dual LagrangeMultipliers: Some Appliations?Bishnu P. Lamihhane and Barbara I. WohlmuthUniversity of Stuttgart, Institute of Applied Analysis and Numerial Simulationhttp://www.ians.uni-stuttgart.de/nmh,{lamihhane,wohlmuth}�mathematik.uni-stuttgart.deSummary. Domain deomposition tehniques provide a powerful tool for the nu-merial approximation of partial di�erential equations. We onsider mortar teh-niques with dual Lagrange multiplier spaes to ouple di�erent disretization shemes.It is well known that the disretization error for linear mortar �nite elements in theenergy norm is of order h. Here, we apply these tehniques to urvilinear boundaries,nonlinear problems and the oupling of di�erent model equations and disretizations.1 IntrodutionThe numerial approximation of partial di�erential equations is often a hal-lenging task. When di�erent physial models should be used in di�erent sub-regions, a suitable disretization sheme has to be used in eah region. Mortarmethods yield eÆient and exible oupling tehniques for di�erent disretiza-tion shemes. The entral idea of mortar methods is to deompose the domainof interest into non-overlapping subdomains and impose a weak ontinuityondition aross the interfae by requiring that the jump of the solution isorthogonal to a suitable Lagrange multiplier spae, see Bernardi et al. [1993,1994℄. Here, we work with mortar tehniques and dual Lagrange multiplierspaes. These non-standard Lagrange multipliers show the same qualitative apriori estimates and quantitative numerial results as the standard ones andyield loally supported basis funtions for the onstrained spae leading to aheaper numerial realization, see Wohlmuth [2001℄. This paper is onernedwith appliations of mortar methods to ouple di�erent physial models indi�erent simulation regions. In the next setion, we apply mortar methodsto ouple ompressible and nearly inompressible materials in linear elasti-ity. In Setion 3, the linear Laplae operator is oupled with the non-linearp-Laplae operator. Finally in Setion 4, we show an appliation to an elasto-aousti problem, and a generalized eigenvalue problem has to be solved. For? This work was supported in part by the Deutshe Forshungsgemeinshaft, SFB404, C12.



2 Bishnu P. Lamihhane and Barbara I. Wohlmuthall our models, we provide numerial results. The weak oupling in terms ofdual Lagrange multipliers results in a diagonal matrix on the slave side. As aonsequene, the Lagrange multiplier an be eliminated loally, and optimalmultigrid methods an be applied to the resulting positive de�nite system.2 Compressible and Nearly Inompressible MaterialsIn this setion, we onsider a problem in linear elastiity with two di�erentmaterials in two subdomains, one of them being nearly inompressible. Weassume that the domain 
 � R2 is deomposed into two non-overlappingsubdomains 
1 and 
2 with a ommon interfae �� = �
1 \ �
2, and thesubdomain 
1 is oupied with a nearly inompressible material having avery large Lam�e parameter �1. It is well-known that standard low order �niteelements for nearly inompressible materials su�er from loking, see Babu�skaand Suri [1992℄, and various approahes have been introdued to improvethe numerial results. Working with a mixed formulation on 
1, see, e.g.,Braess [2001℄, and standard �nite element approah on 
2, we use mortartehniques with dual Lagrange multipliers to realize the oupling between thetwo formulations. On eah subdomain, we de�ne the spaeH1�(
k) := fv 2 H1(
k)2;vj�
\�
k = 0g; k = 1; 2;and onsider the onstrained produt spaeV := fv 2 2Yk=1H1�(
k) j Z� [v℄ �  d� = 0;  2Mg;where M := H� 12 (� ) is the Lagrange multiplier spae, and [v℄ is the jumpof v aross � . Introduing an additional unknown p := �1divu in 
1, thevariational problem is given by: �nd [u; p℄ 2 V � L2(
1) suh thata(u;v) + b(v; p) = l(v); v 2 V;b(u; q)� 1�1 (p; q) = 0; q 2 L2(
1);where l 2 V0 anda(u;v) := 2Xi=1 2�i Z
i "(u) : "(v) dx + �2 Z
2 divu divv dx;b(v; q) := Z
1 divv q dx; (p; q) := Z
1 p q dx; and l(v) := Z
 f � v dx:Here, "(u) is the linear strain tensor. For our example, the domain 
 :=onvf(0; 0); (48; 44); (48; 60); (0; 44)g is deomposed into two subdomains 
1



Mortar Finite Elements with Dual Lagrange Multipliers 3and 
2 with 
1 := onvf(12; 20:25); (36; 38:75); (36; 50:25); (12; 38:75)g, and
2 := 
n �
1. Here, onv� is the onvex hull of the set �. The deompositionof the domain and the initial triangulation are shown in the left piture ofFigure 1. Here, the left boundary of 
 is �xed and the right boundary issubjeted to an in-plane shearing load of 100N along the positive y-diretion.The lower and upper boundaries are set free, and we do not apply any volumefore. The material parameters are taken to be E1 = 250Pa, E2 = 80Pa,�1 = 0:4999, and �2 = 0:35 to get a nearly inompressible response in 
1,where Ei and �i are the Young's modulus and the Poisson ratio on
i; i = 1; 2,respetively. The displaement �eld is disretized with bilinear �nite elements,and the pressure in 
1 is disretized with pieewise onstant funtions. Theright piture of Figure 1 shows the vertial displaement at (48; 60) versus thenumber of elements. We ompare three di�erent numerial shemes. Usingstandard onforming �nite elements (standard) in 
 does not give satisfyingnumerial results, whereas the more expensive mixed formulation (mixed) in
 provides good results. Our numerial results show that the mortar approah(oupled) is almost as good as the mixed formulation and signi�antly betterthan the standard one.
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mixedFig. 1. Deomposition of the domain and initial triangulation (left), distorted gridon level 2 (middle), and vertial tip displaement versus number of elements (right)3 The Laplae and the p-Laplae OperatorIn this setion, we onsider the oupling of a linear and a non-linear model. Thelinear model is desribed by a Poisson equation, and we use the p-Laplaian forthe non-linear model. Here, we deompose the domain 
 := (�1; 1)� (�1; 1)into four non-overlapping subdomains de�ned by 
1 := (�1; 0) � (�1; 0),
2 := (0; 1)� (�1; 0), 
3 := (�1; 0)� (0; 1) and 
4 := (0; 1)� (0; 1). We havegiven the deomposition of the domain and the initial triangulation in theleft piture of Figure 2. We onsider the Poisson equation �r � (�r)u = f in
1 and 
4 and the p-Laplaian �r � (�jrujp�2ru) = f in 
2 and 
3. Thep-Laplae equation ours in the theory of two-dimensional plastiity underlongitudinal shear or in the di�usion problem with non-linear di�usivity, seeAtkinson and Champion [1984℄, and we are onsidering here di�erent materialmodels in di�erent subdomains. For the regularity of the solutions and error es-timates of the p-Laplaian, we refer to Liu and Barret [1993℄ and Liu and Yan



4 Bishnu P. Lamihhane and Barbara I. Wohlmuth[2001℄. Let Thk be a shape regular simpliial triangulation on 
k with mesh-
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O(h)Fig. 2. Deomposition of the domain and initial triangulation (left), isolines of thesolution (middle) and disretization errors versus number of elements (right)sizes bounded by hk, and S(
k ; Thk) stands for the spae of linear onforming�nite elements in the subdomain 
k assoiated with the triangulation Thk sat-isfying the Dirihlet boundary onditions on �
k \ �
, k = 1; � � � ; 4. Then,the unonstrained �nite element spaeXh is given by Xh :=Q4k=1 S(
k ; Thk):The interfae � := f(0; y);�1 < y < 1g [ f(x; 0);�1 < x < 1g inherits itsone-dimensional triangulation S� from the mesh on 
2 and 
3. We reall that(0; 0) is a rosspoint, andMh does not have any degree of freedom at this point.Now, the Lagrange multiplier spaeMh is de�ned on � and is assoiated withthe triangulation S� . Assuming q1 := 2; q2 := p; q3 := p, and q4 := 2, we anwrite the weak formulation of the problem as: �nd (uh; �h) 2 Xh �Mh suhthat a(uh; v) + b(v; �h) = l(v); v 2 Xh;b(uh; �) = 0; � 2Mh; (1)where a(u; v) := P4i=1 R
i �jrujqi�2ru � rv dx; b(v; �) := R� [v℄� d�, andl(v) := R
 f v dx. If � > 0, and the right hand side funtion f is suÆientlysmooth, we an show by monotoniity tehniques that the problem (1) has aunique solution, see Liu [1999℄. However, the regularity of the solution is notknown. Let uh :=Pnk=1 uk�k and �h :=Pnsk=1 �k�k, where n and ns are thedimensions ofXh andMh, respetively. Suppose w = (u1; � � � ; un; �1; � � � ; �ns)be a vetor. Now, we de�ne F (w) := (F1(w); F2(w))T withF1(w) := 0B� a(uh; �1) + b(�1; �h)� l(�1)...a(uh; �n) + b(�n; �h)� l(�n)1CA ; F2(w) := 0B� b(uh; �1)...b(uh; �ns)1CA :The system F (w) = 0 is a non-linear system if p 6= 2, and we apply theNewton method to solve this system. First, we initialize the solution vetorw0 satisfying the given Dirihlet boundary onditions. Then, we iterate untilonvergene with Jk�wk = F (wk);where �wk := wk � wk+1, and Jk is the Jaobian of F evaluated at wk .Working with a dual Lagrange multiplier spae has the advantage that the



Mortar Finite Elements with Dual Lagrange Multipliers 5Jaobian matrix Jk has exatly the same form as the saddle point matrixarising from the mortar �nite elements with a dual Lagrange multiplier spaefor the Laplae operator, see Wohlmuth and Krause [2001℄. Hene, we anapply the multigrid approah introdued in Wohlmuth and Krause [2001℄to solve the linear system on eah level. Suppose that ~
l := 
1 [ 
4, and~
p := 
2[
3. In our numerial example, we hoose � = 0:5 in ~
l, and � = 1in ~
p, p = 1:5, and f = 0. For boundary onditions, we set u(�1;�1) =u(1; 1) = 0; u(�1; 1) = 1 and u(1;�1) = �1, and the Dirihlet boundaryondition on �
 is imposed by taking the linear ombination of them inbetween. Here, we do not have the exat solution. To get the approximationof the disretization errors, we ompute a referene solution uref at a �nelevel and ompare it with the solution uh at eah level until href � 2h. Wehave given the disretization errors in the LM - and HM - norms de�ned bykvkLM := kvkL2( ~
l) + kvkLp( ~
p); and kvkHM := jvjW 1;2( ~
l) + jvjW 1;p( ~
p)in the right piture of Figure 2, and the isolines of the solution are givenin the middle. Although the regularity of the solution is not known, we getonvergene of order h2 in the LM -norm and of order h in the HM -norm.4 Appliation to an Elasto-Aousti ProblemIn this setion, we show the appliation of mortar �nite element methodsfor an elasto-aousti problem. We onsider the situation that the uid isompletely surrounded by the struture. The problem is desribed by a linearelasti struture oupying a subdomain 
S � R2 oupled with an irrotationaluid in 
F � R2 . The interfae � (= �
S\�
F ) separates the uid and solidregions. Given the uid-density �F , the solid-density �S , and the aoustispeed , we seek the frequeny !, the veloity-�eld u, and the pressure p suhthat rp� !2�FuF = 0 in 
F ;p+ 2�Fr � uF = 0 in 
F ;r � �(uS) + !2�SuS = 0 in 
S ;uS = 0 on �D;�(uS) � nS = 0 on �N ;�n(uS) + p = 0; �t(uS) = 0; and (uF � uS) � n = 0 on �:Here, � is the usual stress tensor from linear elastiity, �n = n � (� � n) is thenormal stress on � , and �t = � �n��nn is the tangential tration vetor on � ,where n is the outward normal to
F on � . This problem has beome a subjetof di�erent papers, see, e.g., Hansbo and Hermansson [2003℄, Berm�udez andRodr�iguez [1994℄, Alonso et al. [2001℄. We introdue the following funtionspaes to formulate our problem in the weak form



6 Bishnu P. Lamihhane and Barbara I. WohlmuthX := H(div; 
F )�H1�D (
S); and V := f(uF ;uS) 2 X; [u℄ � n = 0 on �g;whereH(div; 
F ) := fv 2 L2(
F )2; kr � vkL2(
F ) <1g;H1�D(
S) := fv 2 H1(
S)2; vj�D = 0g; and [u℄ := (uF � uS):The weak form of the ontinuous problem is: �nd u 2 V and ! 2 R suh thata(u;v) = !2m(u;v); v 2 V; wherea(u;v) := (�F 2r � uF ;r � vF )
F + (�(uS); �(vS))
S ; andm(u;v) := (!2�FuF ;vF )
F + (!2�SuS ;vS)
S :Here, �(vS) is the linear strain tensor and is related to the stress tensor byHooke's law, i.e., �ij(vS) = 2��ij(vS)+�P2k=1 �kk(vS)Æij ; i; j = 1; 2. Let Thsand Thf be shape regular simpliial triangulations on 
S and 
F , respetively,and � inherits its triangulation S� from the side of 
F . It is a well-known fatthat if standard Lagrangian �nite elements are used to disretize the uid, itwill give rise to spurious eigensolutions with positive eigenvalues interspersedamong the 'real' ones, and a possible remedy of this problem is to use Raviart-Thomas elements in the uid domain, see Berm�udez et al. [1995℄. Therefore,we disretize the uid domain with Raviart-Thomas elements of lowest order:RT0 := fu 2 H(div; 
F ) : ujK = (a+ bx; + by); K 2 Thf ; a; b;  2 Rg;and the solid domain with Lagrangian �nite elements of lowest order:WDh := SD(
S ; Ths)� SD(
S ; Ths);where SD(
S ; Ths) is the �nite element spae on 
S satisfying the Dirih-let boundary ondition on �D. The kinemati onstraint an be imposed bypieewise onstant Lagrange multipliers yielding a uniform inf-sup ondition.Suppose Xh := RT0 �WDh , and Mh := f�h 2 L2(� ) : �hje 2 P0(e); e 2 S� g.Now the �nite element spae an be written asVh := f(uhF ;uhS) 2 Xh; Z� [uh℄ � n�h d� = 0; �h 2Mhg:The disrete problem reads: �nd uh 2 Vh, and !h 2 R suh thata(uh;vh) = !2hm(uh;vh); vh 2 Vh:Remark 1. We remark that the Lagrange multiplier �h approximates the pres-sure on the interfae � . The Lagrange multipliers are assoiated with the one-dimensional mesh inherited from the triangulation on the uid domain. Dueto the speial struture of the support of the nodal basis funtions of RT0and Mh, the degree of freedom orresponding to the Lagrange multiplier anloally be eliminated by inverting a diagonal mass matrix.



Mortar Finite Elements with Dual Lagrange Multipliers 7In Alonso et al. [2001℄, an adaptive �nite element sheme is analyzed to solvethe uid-struture vibration problem, where the kinemati onstraint is im-posed by means of pieewise onstant Lagrange multiplier. Following thistehnique, we arrive at the same mortar setting as we disuss here. Now,we onsider the domain 
 := f(x; y) 2 R2 ; x2 + y2 < 1g deomposed intotwo subdomains 
S and 
F with 
F := f(x; y) 2 R2 ; x2 + y2 < 0:6g, and
S := 
n �
F . Here, �D = f(os �; sin �); 5�4 � � � 7�4 g. We have used the fol-lowing parameters in our numerial example: �F = 1000kg/m3,  = 1430m/s,�S = 7700kg/m3, E = 144GPa, and � = 0:35. The �rst three onseutiveeigenmodes along with the pressure in the uid domain and the distortedgrids in the solid domain are shown in Figure 3. We note that � de�nes aurvilinear interfae. To evaluate the weak oupling, we ommit an additionalvariational rime by projeting the mesh of the struture side to the mesh onthe uid side.
Fig. 3. The �rst, seond and the third eigenmodes orresponding to the eigenvalues809.1481, 1980.7519 and 3606.3907 (rad/s)The seond numerial example is taken from Berm�udez and Rodr�iguez [1994℄.The domain 
 := (0; 1:5) � (0; 1:5) is deomposed into two subdomains
S and 
F with 
F := (0:25; 1:25) � (0:25; 1:25), 
S := 
n �
F , and�D = f(x; 0) 2 R2 ; 0 � x � 1:5g. We have used the same physial parametersas in the previous example. The omputed eigenfrequenies (in rad/s) alongwith the extrapolated ones referred to as 'Exat' in Berm�udez and Rodr�iguez[1994℄ are given in Table 1.Table 1. The omputed eigenfrequenies using mortar tehniques ompared withthe extrapolated eigenfrequenies ('Exat') in Berm�udez and Rodr�iguez [1994℄Eigenmodes Computed Eigenfrequenies 'Exat'1 648.1847 641.8372 2147.3593 2116.3983 3419.5020 3201.4754 3885.9022 3804.1245 4214.0865 4211.6206 4699.6782 4687.927
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