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Abstract. We consider the coupling of compressible and nearly incompressible materials within the frame-
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1. Introduction. Often coupled problems with completely different material properties
in different subdomains occur in solid mechanics. To get optimal a priori estimates, a proper
discretization scheme should be used in each subdomain. Here, we consider coupling of com-
pressible and nearly incompressible linear elastic materials with mortar techniques. The bound-
ary value problem of elasticity involves a critical Lamé parameter λ. For nearly incompressible
materials the Lamé parameter λ is very large, and it is well-known that working with low order
finite elements with displacement based formulation suffers from so-called locking effect yield-
ing a poor convergence, see [Bra01, BF91, BS92a]. Various approaches have been proposed to
overcome this difficulty. Among these are to apply higher-order finite elements with a standard
displacement formulation. For example, in [SV85], it is shown that working with the h-version
finite elements of order higher than three on a class of triangular meshes completely avoid lock-
ing. On the other hand, in [BS92a], it has been shown that the h-version can never be fully
free of locking in rectangular meshes no matter how higher-order finite elements are used in the
sense that optimal orders of convergence are not obtained. The other approach is related to
working with mixed methods. The linear elasticity problem can be formulated as a mixed for-
mulation in many different ways, see [BF91, Bra01, Bra96, Wie00, AW02, ABD84]. The general
approach in these mixed formulations is to introduce extra variables leading to a problem of
saddle point type with a penalty term. The essential point is to prove that the method is robust
for the limiting problem, which is the Stokes problem. Methods associated with nonconforming
finite elements have also been analyzed leading to the uniform convergence in the nearly incom-
pressible case, see [Fal91, BS92b, LLS03, Bre93]. The central point in these approaches is to
construct an interpolation operator at each element which preserves zero divergence. We point
out that many different methods like the reduced integration, the enhanced assumed strain and
the mixed enhanced strain can be analyzed within the framework of mixed formulation, see
[BF91, Bra98, BCR04, SR90, KT00a, KT00b, LRW06]. All these approaches have in common
that the finite element approximation is robust for nearly incompressible materials.

In order to avoid the problem of locking-effect, we consider suitable discretization schemes for
nearly incompressible materials. Introducing the pressure as an additional unknown for the
nearly incompressible case, we arrive at the problem of coupling a saddle point problem with
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a positive definite one. Working exclusively with non-matching triangulations, we use mortar
techniques to realize the coupling of different discretization schemes.

This paper is organized as follows. In the next section, we describe the boundary value problem
of linear elasticity and introduce a new formulation of the boundary value problem in the
continuous setting suitable for coupling a nearly incompressible material with a compressible
material. In Section 3, we show the stability of the scheme and prove optimal a priori estimates.
Finally in Section 4, we present some numerical results illustrating the performance of our
approach.

2. The problem of linear elasticity in the mortar framework. We consider a
bounded polygonal or polyhedral domain Ω ⊂ R

d, d ∈ {2, 3}, which is decomposed into two
non-overlapping subdomains Ω1 and Ω2 with the common interior interface Γ, Γ̄ = ∂Ω1 ∩ ∂Ω2.
For simplicity, we restrict ourselves to the case of two subdomains. However, the approach can
easily be generalized to more than two subdomains.

We assume that the subdomains Ω1 and Ω2 are occupied with different isotropic linear elastic
materials. Furthermore, the material in Ω1 is supposed to be nearly incompressible, whereas Ω2

is occupied with a compressible material. We consider the following linear elasticity problem of
finding the displacement field u in Ω such that

−div (C1ε(u)) = f1 in Ω1,

−div (C2ε(u)) = f2 in Ω2
(2.1)

with homogeneous Dirichlet boundary conditions on ∂Ω. Here, C1 and C2 are constant and
symmetric fourth-order elasticity tensors corresponding to different materials in Ω1 and Ω2,
respectively. Denoting the identity tensor by 1, their actions on the strain tensor are defined
as

C1ε(u) = λ1(divu)1 + 2µ1 ε(u), and C2ε(u) = λ2(divu)1 + 2µ2 ε(u).

Moreover, the plane strain is assumed in the two-dimensional case. We define the global Hooke
tensor C which takes the value C1 on Ω1 and C2 on Ω2, and set u1 := u|Ω1

and u2 := u|Ω2
. We

assume that f i ∈ (L2(Ωi))
d, i = 1, 2. The interface conditions on Γ are given by

[u] := u1 − u2 = 0 on Γ, (2.2)

[u]n := (C1ε(u1))n − (C2ε(u2))n = 0 on Γ,

where n is the outer normal to Γ from Ω1.

In order to write the variational formulation of the linear elasticity problem (2.1), we introduce
H1(Ωk) := (H1(Ωk))d for k = 1, 2 and define the unconstrained product space

X :=

2
∏

k=1

{v ∈ H1(Ωk)| v|∂Ω∩∂Ωk
= 0}.

The interpolation space H
1/2
00 (Γ) is defined by H

1/2
00 (Γ) :=

(

H1
00(Γ)

)d
, and its dual space will be

denoted by H−1/2(Γ). The weak matching condition on the interface is imposed by introducing
the vector-valued Lagrange multiplier space M := H−1/2(Γ) on the interface Γ. Here, we
consider the positive definite variational problem on the constrained finite element space which
is given by means of the global Lagrange multiplier space M

V := {v ∈ X |

∫

Γ

[v] · ψ dσ = 0, ψ ∈ M}. (2.3)
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Then, the variational problem of linear elasticity in the mortar formulation can be written as:
given l ∈ (L2(Ω))d find u ∈ V such that

a(u,v) = l(v), v ∈ V, (2.4)

where the bilinear form a(·, ·) and the linear form l(·) are defined by

a(u,v) : =

∫

Ω1

C1ε(u) : ε(v) dx +

∫

Ω2

C2ε(u) : ε(v) dx, and

l(v) : =

∫

Ω1

f1 · v dx +

∫

Ω2

f2 · v dx,

respectively. Taking into account the definition of Cε(u), we can write the variational formula-
tion (2.4) as

2
∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λi

∫

Ωi

divu divv dx =
2
∑

i=1

∫

Ωi

f i · v dx. (2.5)

From the assumption on C, we find that a(·, ·) is symmetric, continuous and V-elliptic, and hence
the problem (2.5) has a unique solution u ∈ V. Since the material occupying Ω1 is supposed to
be nearly incompressible λ1 is very large, and hence the divergence of the exact solution divu1

is very small. This constraint for the low order approximation based on displacement approach
leads to the locking. In the next paragraph, we will relax this constraint by introducing an
additional variable for the pressure.

There are many efficient numerical approaches to handle a nearly incompressible material, see
[SR90, BF91, Bra96, LRW06]. In general, they are more complex than the standard displace-
ment formulation. Our goal is to combine the standard formulation with a suitable scheme for
a nearly incompressible material without losing the simplicity and optimality of the approach.
For that purpose, we want to get a variational formulation which is uniformly well-posed in
terms of λ1. Now we introduce an additional unknown variable p := λ1divu in Ω1 leading to a
mixed formulation. Then the variational problem (2.5) is given by: find (u, p) ∈ V × L2(Ω1)
such that

ã(u,v) + b̃(v, p) = l(v), v ∈ V,

b̃(u, q) − 1
λ1

c̃(p, q) = 0, q ∈ L2(Ω1),
(2.6)

where

ã(u,v) :=
2
∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λ2

∫

Ω2

divu divv dx,

b̃(v, q) :=

∫

Ω1

divv q dx and c̃(p, q) :=

∫

Ω1

p q dx.

As usual, for v ∈ Hs(Ω) (H0(Ω) ≡ L2(Ω)), s ∈ R, ‖v‖s,Ω denotes the standard norm in Hs(Ω),
and we use the same notation for norms on Hs(Ω) and Hs(Ω), whereas a broken norm is used
on X defined as

‖v‖1 := ‖v‖1,Ω1
+ ‖v‖1,Ω2

.

We remark that in contrast to the setting of the Stokes problem with homogeneous boundary
condition, where p ∈ L2

0(Ω1), here, the pressure p ∈ L2(Ω1). The essential points for the
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existence and the uniqueness of the solution of a saddle point problem are ellipticity, continuity
and a suitable inf-sup condition. Furthermore, for the saddle point problem with penalty, it is
necessary that the bilinear form c̃(, ·, ) should be positive semi-definite and bounded, see [Bra96].
The bilinear form ã(·, ·) is symmetric, continuous and V-elliptic uniformly with respect to λ1.
It is also clear that the bilinear form c̃(·, ·) is continuous, symmetric and positive definite. The
continuity of b̃(·, ·) follows from its definition.

Lemma 2.1. The bilinear form b̃(·, ·) on V × L2(Ω1) satisfies an inf-sup condition uniformly
with respect to λ1.

Proof. The proof is based on applying the argument due to Boland and Nicolaides [BN83].
Given q ∈ L2(Ω1), we split q = q0 + qc, where

∫

Ω1

q0 dx = 0 and qc is a constant such that
∫

Ω1

q dx =
∫

Ω1

qc dx = |Ω1|qc. Thus ‖q‖2
0,Ω1

= ‖q0‖2
0,Ω1

+ ‖qc‖2
0,Ω1

. Since q0 ∈ L2
0(Ω1), there

exists a v0 ∈ H1
0(Ω1) with ‖v0‖1,Ω1

≤ C‖q0‖0,Ω1
such that

‖q0‖
2
0,Ω1

= b̃(v0, q0), see [GR86, Corollary 2.4].

Hence ‖q‖2
0,Ω1

= b̃(v0, q0) + q2
c |Ω1|. Now, we define a piecewise constant function f̃ in Ω with

f̃(x) :=

{

qc if x ∈ Ω1,

− qc|Ω1|
|Ω2|

if x ∈ Ω2

so that f̃ ∈ L2
0(Ω), and hence the divergence equation

∇ ·w = f̃ in Ω (2.7)

has a solution vc ∈ H1
0(Ω) with ‖vc‖1 ≤ C‖f̃‖0, see [ASV88, Gal97]. Thus

‖q‖2
0,Ω1

= b̃(v0, q0) + q2
c |Ω1| = b̃(v0, q0) +

∫

Ω1

∇ · vcqc dx = b̃(v0, q0) + b̃(vc, qc).

Since v0 ∈ H1
0(Ω1), we can extend v0 trivially on Ω by defining ṽ0 := v0 in Ω1 and ṽ0 := 0 in

Ω2, and find that ṽ0 ∈ H1
0(Ω). Hence b̃(v0, q0) = b̃(ṽ0, q0). On the other hand,

b̃(ṽ0 + vc, q0 + qc) = b̃(ṽ0, q0) + b̃(vc, qc) + b̃(ṽ0, qc) + b̃(vc, q0).

Noting that b̃(ṽ0, qc) = 0, and b̃(vc, q0) = 0, we get

‖q‖2
0,Ω1

= b̃(ṽ0 + vc, q0 + qc).

Finally, taking into account that ṽ0 ∈ H1
0(Ω) we get vc + ṽ0 =: v ∈ H1

0(Ω) with ‖v‖1 ≤
‖vc + ṽ0‖1 ≤ C(‖f̃‖0 + ‖q0‖0,Ω1

), which completes the proof.

An immediate consequence of the previous lemma is the following theorem.

Theorem 2.2. The problem 2.6 has a unique solution and there exists a constant C independent
of λ1 such that

‖u‖1 + ‖p‖0,Ω1
≤ C‖l‖0.

4



3. Mortar discretizations and a priori estimates. In this section, we briefly review
mortar finite elements and prove optimal a priori estimates for the discretization errors. Let
T1 and T2 be independent shape regular triangulations on Ω1 and Ω2 with mesh-sizes bounded
by h1 and h2, respectively. We define the unconstrained discrete finite element space for the
displacement Xh := X1 × X2, where Xk := Xd

k , Xk being the conforming finite element space
of order pk > 1 in Ωk. We recall that no interface condition is imposed on Xh, and the elements
in Xh do not have to satisfy a continuity condition at the interface. The pressure space L2(Ω1)
is discretized by some finite elements and will be denoted by Rh ⊂ L2(Ω1). The efficiency
and optimality of the mortar method depends on the choice of a discrete Lagrange multiplier
space, which should satisfy assumptions stated in [Lam06, Assumptions 2–4]. Without loss of
generality, the Lagrange multiplier space is based on a “d− 1”-dimensional mesh TΓ2

inherited
from T2, and its basis functions are defined locally having the same support as finite element
basis functions associated with the interior nodes of the slave side.

We observe that since the normal has jumps if Γ has corners although u ∈ Hs+1(Ω1), ε(u)n
is, in general, not an element in Hs−1/2(Γ) when s > 1

2 . Therefore, we decompose Γ into a
finite number of subsets γi, 1 ≤ i ≤ N, such that each γi entirely lies in a “d − 1”-dimensional
hyperplane, and

Γ̄ =

N
⋃

i=1

γ̄i,

where γk ∩ γl = ∅, and γ̄k ∪ γ̄l does not entirely lie in a “d − 1”-dimensional hyperplane,
1 ≤ k 6= l ≤ N . Denoting the discrete Lagrange multiplier spaces on γi by Mi, 1 ≤ i ≤ N ,
we define Mi := Md

i , and our global discrete Lagrange multiplier space is then given as the
product space

Mh :=

N
∏

i=1

Mi.

The finite element nodes in ∂γi on the slave side, 1 ≤ i ≤ N , are the crosspoints and they do
not carry any degree of freedom for the Lagrange multipliers. We assume that Wm

i and Ws
i are

the trace spaces of X1 and X2 restricted to γi, respectively, satisfying homogeneous boundary
conditions on ∂γi, and we set

Wm
h :=

N
∏

i=1

Wm
i , Ws

h :=
N
∏

i=1

Ws
i .

As in the continuous setting, we consider the positive-definite variational problem on the con-
strained finite element space Vh which is given by means of the discrete global Lagrange mul-
tiplier space Mh

Vh := {vh ∈ Xh | b(vh,ψh) = 0, ψh ∈ Mh}, (3.1)

where b(vh,ψh) :=
∑N

i=1

∫

γi
[vh] ·ψh dσ. We remark that the elements of the space Vh satisfy a

weak continuity condition on the skeleton Γ in terms of the discrete Lagrange multiplier space
Mh. However, Vh is, in general, not a subspace of H1

0(Ω). Replacing the space V×L2(Ω1) by
our discrete space Vh ×Rh in (2.6), we obtain our discrete variational problem: find (uh, ph) ∈
Vh × Rh such that

ã(uh,v) + b̃(v, ph) = l(v), v ∈ Vh,

b̃(uh, q) − 1
λ1

c̃(ph, q) = 0, q ∈ Rh.
(3.2)
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To establish a priori estimates for the discretization errors, we consider the saddle point for-
mulation (3.2) of the elasticity problem and apply the theory of mixed finite elements. The
continuity of the bilinear form ã(·, ·) on Vh ×Vh, of b̃(·, ·) on Vh ×Rh and of c̃(·, ·) on Rh ×Rh

is straightforward. Moreover, the continuity constants are independent of λ1. Furthermore, we
need the ellipticity of the bilinear form ã(·, ·) on Vh ×Vh, and a uniform inf-sup condition for
the bilinear form b̃(·, ·) on Vh × Rh.

3.1. Uniform inf-sup condition and ellipticity. The following two assumptions will
be crucial to prove the inf-sup condition in the discrete setting and are supposed to hold in the
following.

Assumption 3.1.

3.1(i) For a constant qc ∈ R, there exist functions vs
h ∈ Ws

i ,v
m
h ∈ Wm

i for some i ∈
{1, · · · , N} with ‖vs

h‖H
1/2

00
(γi)

≤ C|qc|, ‖vm
h ‖

H
1/2

00
(γi)

≤ C|qc| so that

∫

γi

vs
h · n dσ = qc, and

∫

γi

(vs
h − vm

h ) · ψ dσ = 0, ψ ∈ Mi.

3.1(ii) For any q ∈ Rh ∩ L2
0(Ω1), there exists a constant C > 0 independent of the meshsize

such that

sup
vh∈X1∩H1

0
(Ω1)

b̃(vh, q)

‖vh‖1,Ω1

≥ C‖q‖0,Ω1
.

Assumption 3.1 (i) is readily met if the triangulation is fine enough and the discrete Lagrange
multiplier space satisfies the stability assumption [Lam06, Assumption 2], and Assumption
3.1 (ii) tells that the spaces X1 and Rh should be chosen carefully so that they form a stable
pair for the Stokes problem. The following lemma provides a necessary tool to prove inf-sup
condition.

Lemma 3.2. For a constant qc ∈ R, there exists a vh ∈ Vh with ‖vh‖1 ≤ C|qc| such that
∫

Ω1
∇ · vh dx = qc.

Proof. Because of Assumption 3.1 (i), we can choose a function vs
h ∈ Ws

i with

‖vs
h‖H

1/2

00
(γi)

≤ C|qc| such that

∫

γi

vs
h · n dσ = qc,

and define a function vm
h ∈ Wm

i with ‖vm
h ‖

H
1/2

00
(γi)

≤ C|qc| so that
∫

γi
(vs

h − vm
h ) · ψ dσ =

0, ψ ∈ Mi. Since vs
h,vm

h ∈ H
1/2
00 (γi) both vs

h and vm
h can trivially be extended to functions in

Ws
h and Wm

h , respectively, still denoted by vs
h and vm

h . Using the discrete harmonic extension,
we obtain functions wm

h ∈ X1 and ws
h ∈ X2 so that ws

h|Γ
= vs

h and wm
h |Γ

= vm
h . Defining a

function vh ∈ Xh with vh|Ω1
= wm

h , and vh|Ω2
= ws

h, we find that vh ∈ Vh, and from the well
known property of harmonic extension we have ‖vh‖1 ≤ C|qc|. Finally, the result follows from

∫

Ω1

∇ · vh dx =

∫

Γ

vs
h · n dσ =

∫

γi

vs
h · n dσ = qc.
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Theorem 3.3. For any qh ∈ Rh, there exists a constant C independent of λ1 and the meshsize
such that

sup
vh∈Vh

b̃(vh, qh)

‖vh‖1
≥ C‖qh‖0,Ω1

.

Proof. As in the continuous case, we resort to the argument due to Boland and Nicolaides
[BN83] to prove the inf-sup condition. We take qh ∈ Rh and split qh = q0h + qch, where
∫

Ω1

q0h dx = 0 and qch is the L2-projection of qh onto R such that
∫

Ω1

qh dx =
∫

Ω1

qch dx. Since

q0h ∈ Rh ∩ L2
0(Ω1), from Assumption 3.1 (ii), we get a v0h ∈ X1 ∩ H1

0(Ω1) with ‖v0h‖1,Ω1
≤

C‖q0h‖0,Ω1
so that ‖q0h‖

2
0,Ω1

= b̃(v0h, q0h). Hence

‖qh‖
2
0,Ω1

= b̃(v0h, q0h) + q2
ch|Ω1|. (3.3)

From Lemma 3.2, we get a vch ∈ Vh such that
∫

Ω1

∇ ·vch qch dx = q2
ch|Ω1|. Using this in (3.3),

we get

‖qh‖
2
0,Ω1

= b̃(v0h, q0h) + b̃(vch, qch)

The rest of the proof follows exactly as in continuous setting.

Remark 3.4. Working with bilinear or trilinear finite elements and piecewise constant pressure
(Q1P0) in the subdomain with the nearly incompressible material, it is well known that the uni-
form inf-sup condition does not hold, and one can observe some spurious pressure modes. Since
Assumption 3.1 (ii) does not hold, the theoretical analysis does not cover this case. However, as
analyzed in [GR86] for a problem posed in a single domain with homogeneous Dirichlet boundary
condition, the spurious pressure modes do not substantially affect the displacement. Further-
more, through the numerical results we will show that the Q1P0 formulation can be successfully
used in a subdomain with nearly incompressible material.

Now we turn our attention to the ellipticity of the bilinear form ã(·, ·) on the space Vh. If
∂Ωk ∩ ∂Ω has a non-zero measure for k = 1, 2, we can apply Korn’s and Poincare’s inequalities
to each subdomain and obtain the desired results

ã(v,v) =

2
∑

k=1

ãk(v,v) ≥ C

2
∑

k=1

‖v‖2
1,Ωk

= C‖v‖2
1, v ∈ Xh,

where ãk(·, ·) stands for the restriction of ã(·, ·) to the subdomain Ωk. Thus ã(·, ·) is elliptic
on Xh ×Xh. Unfortunately, there are many interesting situations where we cannot satisfy this
assumption. However, it is sufficient to have ellipticity of ã(·, ·) in Vh × Vh for the problem
(3.2) to be uniquely solvable. Since the bilinear form ã(·, ·) does not involve λ1 the ellipticity
can been shown exactly as in [Woh01, Bre04, HT04] uniformly with respect to λ1. It is shown
in [Bre04, HT04] that the ellipticity constant is independent of the number and the size of
different subdomains of the decomposition.

Remark 3.5. Using the Stokes equation in the subdomain Ω1 instead of equation of elasticity
we arrive at the Stokes flow coupled with a linear elastic body. The coupled problem can be
written as: given l ∈ L2(Ω) find (uh, ph) ∈ Vh × Rh such that
∫

Ω2

C2ε(uh) : ε(vh) dx +µ1

∫

Ω1

∇uh : ∇vh dx +

∫

Ω1

divvh ph dx = l(vh), vh ∈ Vh

∫

Ω1

divuh qh dx = 0, qh ∈ Rh,
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where uh restricted to the subdomain Ω2 represents the displacement, uh restricted to the subdo-
main Ω1 represents the velocity, and µ1 is the kinematic viscosity for the incompressible fluid.
The mathematical analysis of mortar finite elements for the Stokes problem can be found in
[Ben00, Ben04]. The mortar finite element method for mixed elasticity problems is analyzed in
[BCS03].

3.2. A priori estimates. The immediate consequence of the above discussion is the well-
posedness of the discrete problem (3.2). From the theory of saddle point problem, see, e.g.,
[BF91], we have

Lemma 3.6. The discrete problem (3.2) has exactly one solution (uh, ph) ∈ Vh × Rh which is
uniformly stable with respect to the data f i, i = 1, 2, and there exists a constant C independent
of Lamé parameter λ1 such that

‖uh‖1 + ‖ph‖0,Ω1
≤ C‖f‖0.

The convergence theory is provided by an abstract result about the approximation of saddle
point problems by nonconforming methods, see [DM87, Ben00, BCS03].

Lemma 3.7. Assume that (u, p) and (uh, ph) be the solutions of problems (2.6) and (3.2),
respectively. Then, we have the following error estimate uniform with respect to λ1:

‖u− uh‖1 + ‖p − ph‖0,Ω1

≤ C

(

inf
vh∈Vh

‖u− vh‖1 + inf
qh∈Rh

‖p− qh‖0,Ω1
+ sup

vh∈Vh\{0}

|ã(u,vh) + b̃(vh, p) − l(vh)|

‖vh‖1

)

. (3.4)

We note that the first two terms in the right hand side of (3.4) denote the best approximation
error and the last one is the consistency error. In the following, any integral over Γ is to be
understood as a duality pairing between H− 1

2 (Γ) and H
1

2 (Γ).

Lemma 3.8. The following identity holds for the consistency error in Lemma 3.7

sup
vh∈Vh\{0}

|ã(u,vh) + b̃(vh, p) − l(vh)|

‖vh‖1
= sup

vh∈Vh\{0}

|
∫

Γ C2ε(u2)n · [vh] dσ|

‖vh‖1
.

Proof.

ã(u,vh) + b̃(vh, p) − l(vh) =

2
∑

k=1

∫

Ωk

Ckε(u) : ε(vh) dx

+

∫

Ω1

(p − λ1∇ · u)∇ · vh dx − l(vh)

=

∫

Γ

C2ε(u2)n · [vh] dσ,

where in the last step we have used the second equation of (2.2), and u ∈ H1
0(Ω).

The a priori error estimate is obtained by combining the approximation of the saddle point
problem in our nonconforming situation with the best approximation property of Vh, Rh and
Mh.
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Theorem 3.9. Assume that u ∈ Π2
k=1H

rk+1(Ωk), p ∈ Hr1(Ω1), and χ := C2ε(u2)n ∈

ΠN
i=1H

r2−
1

2 (γi) with rk > 1
2 , k = 1, 2. Moreover, assume that

inf
qh∈Rh

‖q − qh‖0,Ω1
≤ Ch

p1

1 ‖q‖p1,Ω1
, q ∈ Hp1(Ω1).

Then the following a priori error estimate holds for the discretization error

‖u− uh‖1 + ‖p − ph‖0,Ω1
≤C

(

2
∑

k=1

htk

k ‖u‖tk+1,Ωk
+ ht1

1 ‖p‖t1,Ω1

)

,

where tk := min(rk, pk), k = 1, 2.

Proof. The best approximation property of Vh is quite standard and can be found, e.g., in
[BMP93, BMP94]. Hence using Lemma 3.7 it is sufficient to consider the consistency error.
The definition of space Vh, the best approximation property of Mh and the trace theorem
yield for ψh ∈ Mh

∫

Γ

χ · [vh] dσ =

∫

Γ

(C2ε(u2)n −ψh) · [vh] dσ

≤
N
∑

i=1

inf
ψh∈Mi

‖C2ε(u2)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

≤ Cht2
2

N
∑

i=1

‖C2ε(u2)n‖t2−1/2,γi
‖vh‖1

≤ Cht2
2 ‖u‖t2+1,Ω2

‖vh‖1.

The assumption of Theorem 3.9 requires a strong assumption on the regularity of the solution
u ∈ Π2

k=1H
rk+1(Ωk) with rk > 1

2 , k = 1, 2. In the following, invoking a result about the
regularity of the co-normal derivative on Lipschitz domain [Cos88], we prove an optimal estimate
under a weaker regularity assumption such that 0 < rk < 1

2 . We note that we have to exclude
the case rk = 1

2 as the result in [Cos88] does not cover this case.

Theorem 3.10. Assume that u ∈ Π2
k=1H

rk+1(Ωk), p ∈ Hr1(Ω1) with 0 < rk < 1
2 , k = 1, 2. If

inf
qh∈Rh

‖q − qh‖0,Ω1
≤ Chr1

1 ‖q‖r1,Ω1
, q ∈ Hr1(Ω1),

the following a priori error estimate holds for the discretization error

‖u− uh‖1 + ‖p − ph‖0,Ω1
≤ C

(

2
∑

k=1

hrk

k ‖u‖rk+1,Ωk
+ hr1

1 ‖p‖r1,Ω1
+ hr2

2 ‖f2‖0,Ω2

)

.

Proof. As f2 ∈ (L2(Ω2))
d and u|Ω2

∈ Hr2(Ω2), Lemma 4.3 of [Cos88] yields χ|Γ ∈ Hr2−
1

2 (Γ)
with

‖χ‖r2−
1

2
,Γ ≤ C (‖u‖1+r2,Ω2

+ ‖f2‖0,Ω2
) .
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Let ψh ∈ Mh. Proceeding exactly as in Theorem 3.9 and using the previous result, we obtain

∫

Γ

χ · [vh] dσ ≤ Chr2

2

N
∑

i=1

‖C2ε(u2)n‖r2−1/2,γi
‖vh‖1

≤ Chr2

2 (‖u‖1+r2,Ω2
+ ‖f2‖0,Ω2

) ‖vh‖1.

We note that the inegral
∫

Γ
χ·[vh] dσ is to be understood as a duality pairing between Hr2−

1

2 (Γ)

and H
1

2
−r2(Γ).

Here we have assumed f2 ∈ (L2(Ω2))
d to use the result of [Cos88]. For a loading function f2

with low regularity and for the case with some rk = 1
2 , results similar to those of [Cos88] are

obtained in [Hu08].

Remark 3.11. If Ω1 is on the slave side of the interface Γ, then we have to estimate the term

N
∑

i=1

inf
ψh∈Mi

‖C1ε(u1)n −ψh‖(H1/2(γi))′ ,

where now the Lagrange multiplier spaces Mi are defined on γi, 1 ≤ i ≤ N , with the mesh
inherited from T1. In this case, assuming r2, r1 > 1

2 , we can use the second equation of (2.2)
to obtain

∫

Γ

χ · [vh] dσ ≤
N
∑

i=1

inf
ψh∈Mi

‖C1ε(u1)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

=
N
∑

i=1

inf
ψh∈Mi

‖C2ε(u2)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

≤ Cht1
1

N
∑

i=1

‖C2ε(u2)n‖t1−1/2,γi
‖vh‖1

≤ Cht1
1 ‖u‖t1+1,Ω2

‖vh‖1.

4. Numerical results. In this section, we investigate the computational performance of
our approach through some numerical examples. In particular, we compare the results from the
standard approach and mortar approach for different test examples. In the following, Q1 or Q2

denotes that standard bilinear or quadratic serendipity elements are used in the whole domain
Ω, whereas Q1-Q1P0, Q2-Q2P0 or Q2-Q2P1 denotes that Q1P0, Q2P0 or Q2P1 formulation is
used in subdomains with a nearly incompressible material (ν → 0.5) in combination with the
standard Q1 or Q2 formulation in subdomains with smaller ν. We note that the mathematical
theory presented in the previous sections do not cover the case of Q1P0 discretizations as these
discretizations do not satisfy a local inf-sup condition.

In all our examples, we work with non-matching triangulations and employ dual Lagrange
multiplier spaces introduced in [Woh01] to realize the weak matching condition. Construction of
dual Lagrange multiplier spaces for higher order finite elements can be found in [Lam06]. For the
pressure space, piecewise constant pressure is used for Q1P0 and Q2P0, whereas discontinuous
linear pressure is used for Q2P1 case. Furthermore, we do not specify the measurement units,
and they should be understood with proper scaling.
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Example 1: Cook’s membrane problem. In this example, we consider a structure
occupying a region Ω := conv{(0, 0), (48, 44), (48, 60), (0, 44)}, where conv ξ is the convex hull
of the set ξ. The left boundary of Ω is fixed and an in-plane shearing load of 100N is applied
along the positive y-direction on the right boundary. Here, the domain Ω is decomposed into
two subdomains Ω1 and Ω2 with

Ω2 := conv{(12, 20.25), (36, 38.75), (36, 50.25), (12, 38.75)},

and Ω1 := Ω\Ω̄2. The decomposition of domain Ω and the initial triangulation are given in
Figure 4.1. The material parameters are taken to be E1 = 250, E2 = 80, ν1 = 0.49999, and

T

Fig. 4.1: Cook’s membrane decomposed into two subdomains

ν2 = 0.35 to get a nearly incompressible response in Ω1. We recall that Lamé parameters λ

and µ are related to Young’s modulus E and Poisson ratio ν by

λ =
Eν

(1 + ν)(1 − 2ν)
, and µ =

E

2(1 + ν)
,

and note that λ → ∞ corresponds to ν → 0.5. In Figure 4.2, we have shown the absolute
error in the vertical tip displacement of the membrane at point T . We have used a reference
solution in a fine mesh computed by using Q2P1 formulation in the whole domain Ω to obtain
the error. We see that uniform convergence is obtained if we work with Q1-Q1P0, Q2-Q2P0,
Q2-Q2P1 or Q2, see Figure 4.2. In this problem, we see that Q1-Q1P0 and Q2 elements work
as good as Q2-Q2P0 and Q2-Q2P1. To show the influence of the choice of the master and the
slave side, we have given the plot of the absolute error in the vertical tip displacement at the
top right corner of the membrane in the left and right pictures of Figure 4.2 for different choices
of master and slave sides. Comparing both of these pictures, we can see that there is not any
essential difference between choosing Ω1 or Ω2 as the slave side. However, since the Lagrange
multiplier space Mh is based on a coarser mesh if Ω2 is on the slave side, we see some influence
in the first step.

In a next step, we investigate the situation with the nearly incompressible material in Ω2 so
that the material parameters are E1 = 80, E2 = 250, ν1 = 0.35, and ν2 = 0.49999. As before
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Fig. 4.2: Absolute error in the vertical tip displacement at the top right corner versus number of
elements (Ω1 master, Ω2 slave) (left) and (Ω2 master, Ω1 slave) (right), Ω1 nearly incompressible,
Example 1

we also want to see the influence of the choice of the master and the slave side. The vertical tip
displacement at the top right corner of the membrane for different levels of refinement are shown
in the left and the right pictures of Figure 4.3 for different choices of master and slave sides. The
standard approach in both subdomains leads to locking, whereas we obtain a good convergence
behavior if a mixed formulation is used in Ω2. As before, we do not see any influence of the
choice of the master and slave side when we refine the mesh.
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Fig. 4.3: Absolute error in the vertical tip displacement at the top right corner versus number of
elements (Ω1 master, Ω2 slave) (left), and (Ω2 master, Ω1 slave) (right), Example 1, Ω2 nearly
incompressible

Example 2: Comparison of errors in the L2- and H1-norms. In this example, a two-
dimensional region Ω := (−1, 1)× (−1, 1) is decomposed into four non-overlapping subdomains
defined by Ω1 := (−1, 0) × (−1, 0), Ω2 := (0, 1) × (−1, 0), Ω3 := (−1, 0) × (0, 1) and Ω4 :=
(0, 1) × (0, 1). The problem for this example is taken from [Bre93] with a slight modification
to enforce that the jump of the flux across the interface Γ is zero. Here, the exact solution
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u = (u1, u2) is

u1(x, y) :=
sin (2 π y) (−1 + cos (2 π x)) (2 + 2 ν)

E
+ xy sin (π x) sin (π y)

(1 + ν) (1 − 2 ν)

1 − ν − 2 ν2 + Eν
,

u2(x, y) :=
sin (2 π x) (1 − cos (2 π y)) (2 + 2 ν)

E
+ xy sin (π x) sin (π y)

(1 + ν) (1 − 2 ν)

1 − ν − 2 ν2 + Eν
,

where ν = 0.3, E = 25 in Ω1 and Ω4, and ν = 0.49999, E = 250 in Ω2 and Ω3 so that a nearly
incompressible response is obtained in Ω2 and Ω3. In this example, the right hand side and the
Dirichlet boundary conditions are computed by using the exact solution. We have given the
decomposition of the domain and the initial triangulation in the left picture of Figure 4.4, and
the error plot versus number of degrees of freedom for different levels of refinement for the L2

and H1-norms are given in the middle and the right pictures, respectively. From Figure 4.4,
we can see that the optimality can be obtained by using Q1P0 and Q2P1-approaches for the
nearly incompressible material, whereas the standard Q1-approach locks. Furthermore, we can
observe the sub-optimal behavior for Q2P0 and Q2-discretizations.
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Fig. 4.4: Decomposition of the domain and initial triangulation (left), error plot versus number
degrees of freedom in L2-norm (middle) and error plot versus number of degrees of freedom in
H1-norm (right), Example 2

Example 3: Three-dimensional I-beam. In this numerical test, we consider the cou-
pling of compressible and nearly incompressible elasticity in three-dimensional elasticity. The
computational domain Ω, which is an I-beam, is decomposed into three subdomains Ω1, Ω2

and Ω3 with Ω1 := (0, 50) × (0, 10) × (0, 2), Ω2 := (0, 50) × (3, 7) × (2, 11) and Ω3 := (0, 50) ×
(0, 10) × (11, 13). We impose zero Dirichlet boundary condition on ΓD, where ΓD is a part of
the boundary of Ω with x = 0 and x = 50 so that the left and the right sides of each subdomain
are fixed. And a constant vertical force is applied on a small part of the top boundary (z = 13)
so that σ(u)n = gN on ΓN with ΓN := ∂Ω\ΓD. The function gN = (g1, g2, g3) on ΓN is given
as g1 = g2 = 0, and

g3 =

{

−20.35 if 22 ≤ x ≤ 28 and z = 13

0 otherwise
.

The material parameters are E1 = 250, ν1 = 0.3, E2 = 300, ν2 = 0.4, and E3 = 350, ν3 =
0.49999. We have shown the setting of the problem in the left picture of Figure 4.5, and the
resulting deformation of the structure is shown in the right.

In Figure 4.6, we have shown the error in the vertical displacement along the line y = 0, z = 13
versus x-coordinates. The error is obtained by using a reference solution computed in a fine
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Fig. 4.5: Left: I-beam decomposed into three subdomains, Right: the distorted mesh

mesh with Q2P1 formulation in the whole domain Ω. As can be seen from this figure, the
standard approaches show performance worse than a coupled approach due to the locking
effect. In the case of coupled approach, the mixed formulation is used only in subdomain Ω3.
The vertical displacements from Q2, Q2-Q2P1 and Q2-Q2P0-approaches are computed by using
a one-level coarser mesh than those from Q1-approach. We can see that numerical solutions
from the coupled approach with Q2P0 and Q2P1 discretizations are almost the same.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

Q
1

Q
2

Q
2
−Q

2
P

0

Q
2
−Q

2
P

1

Fig. 4.6: Absolute error in the vertical displacement on the line y = 0, z = 13 versus x-
coordinates
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