
Higher Order Dual Lagrange Multiplier Spaes forMortar Finite Element DisretizationsBishnu P. Lamihhane� and Barbara I. Wohlmuth�April 1, 2004AbstratDomain deomposition tehniques provide a powerful tool for the numerial ap-proximation of partial di�erential equations. Here, we onsider mortar tehniques forquadrati �nite elements. In partiular, we fous on dual Lagrange multiplier spaes.These non-standard Lagrange multiplier spaes yield optimal disretization shemesand a loally supported basis for the assoiated onstrained mortar spaes. As a result,standard eÆient iterative solvers as multigrid methods an be easily adapted to thenononforming situation. We onstrut loally supported and ontinuous dual basisfuntions for quadrati �nite elements starting from the disontinuous quadrati dualbasis funtions for the Lagrange multiplier spae. In partiular, we ompare di�erentdual Lagrange multiplier spaes and pieewise linear and quadrati �nite elements. Theoptimality of the assoiated mortar method is shown. Numerial results illustrate theperformane of our approah.Key words. mortar �nite elements, Lagrangemultiplier, dual spae, domain deomposition,non-mathing triangulationAMS subjet lassi�ation. 65N30, 65N551 IntrodutionNononforming domain deomposition tehniques provide a more exible approah thanstandard onforming formulations. They are of speial interest for time dependent prob-lems, rotating geometries, di�usion oeÆients with jumps, problems with loal anisotropies,orner singularities, and when di�erent terms dominate in di�erent regions of the simula-tion domain. Very often heterogeneous problems an be deomposed into homogeneoussubproblems for whih eÆient disretization tehniques are available. To obtain a stableand optimal disretization sheme for the global problem, the information transfer and theommuniation between the subdomains are of ruial importane. We present our ap-proah within the framework of mortar methods [BMP93, BMP94℄. Originally introdued�Institute of Applied Analysis and Numerial Simulation, University of Stuttgart, Pfaf-fenwaldring 57, D{70 569 Stuttgart, Germany, lamihhane�mathematik.uni-stuttgart.de,wohlmuth�mathematik.uni-stuttgart.de 1



as a domain deomposition method for the oupling of spetral elements, these tehniquesare nowadays used in a large lass of nononforming situations. Thus, the oupling of di�er-ent physial models, disretization shemes, or non-mathing triangulations along interiorinterfaes of the domain an be analyzed by mortar methods. In this paper, we onentrateon mortar methods for quadrati �nite elements. Higher order mortar methods are onsid-ered in di�erent reent papers. Uniform hp onvergene results for the mortar method areestablished in [SS00, SS98℄, and in [OW01℄ disontinuous higher order Lagrange multiplierspaes are introdued. The generalization of the low order mortar method to 3D ase anbe found in [BM97, BD98, KLPV01℄. A di�erent nononforming tehnique is based on theNitshe method, see [Ste98, BHS01, HN01℄.The paper is organized as follows: In the rest of this setion, we briey reall the mortar�nite element method. We fous on so-alled dual Lagrange multiplier spaes. In Setion2, we onstrut new dual Lagrange multipliers being loally supported and ontinuous. Westart with the disontinuous dual Lagrange multiplier introdued in [Woh01℄ and add loalorretion terms. It an be shown that we obtain the same qualitative a priori estimates forthe disretization errors. In Setion 3, we give a negative result for dual Lagrange multiplierspae in 3D for simpliial triangulations. Finally in Setion 4, we present numerial resultsfor di�erent dual Lagrange multiplier spaes illustrating the performane of the nonon-forming approah. Numerial results are given for di�erent types of domain deompositionsin 2D. In partiular, we ompare the disretization error in the L2-norm, the energy normand in a weighted L2-norm for quadrati and linear mortar �nite elements. Additionally,we illustrate the inuene of di�erent Lagrange multiplier spaes on the auray.We onsider the following ellipti seond order boundary value problem�div(aru) + bu = f in 
 ;u = 0 on �
 :Here, 0 < a0 � a 2 L1(
), f 2 L2(
), 0 � b 2 L1(
), and 
 � R2, is a boundedpolygonal domain. Let 
 be deomposed into K non-overlapping polygonal subdomains 
ksuh that 
 = SKk=1 
k. We restrit ourselves to the geometrially onforming situationwhere the intersetion between the boundaries of any two di�erent subdomains �
l \ �
k,k 6= l, is either empty, a vertex or a ommon edge. We de�ne on eah subdomain a simpliialor quadrilateral triangulation Tk;hk , the meshsize of whih is bounded by hk. The disretespae of onforming pieewise quadrati or biquadrati �nite elements on 
k assoiated withTk;hk , whih satis�es homogeneous Dirihlet boundary onditions on �
\�
k, is denoted byXhk . Then, the mortar method is haraterized by the introdution of a disrete Lagrangemultiplier spae Mhm(m) on the interfaes m; 1 � m � M , of the deomposition. Foreah interfae, there exists a ouple 1 � l(m) < k(m) � K suh that m = �
l(m)\�
k(m).Moreover, eah interfae m is assoiated with a one-dimensional mesh Sm;hm , inherited fromeither Tk(m);hk(m) or Tl(m);hl(m) . The hoie is arbitrary but should be �xed. In general, thesemeshes do not oinide. The elements of Sm;hm are boundary edges of either Tl(m);hl(m) orTk(m);hk(m) . The subdomain from whih the interfae inherits its triangulation is alled slaveor non-mortar side, the opposite one master or mortar side.To obtain the mortar approximation uh, as a solution of a disrete variational problem, thereare two main approahes. The �rst one has been introdued in [BMP93, BMP94℄ and givesrise to a positive de�nite nononforming variational problem. It is de�ned on a subspaeVh of the produt spae Xh := fv 2 L2(
) j vj
k 2 Xhk ; 1 � k � Kg. The elements ofVh satisfy a weak ontinuity ondition aross the interfaes. The onstrained �nite element2



spae Vh is given byVh := �v 2 Xh j Zm [v℄� d� = 0; � 2Mhm(m); 1 � m �M	 :Then, the nononforming formulation of the mortar method an be given in terms of theonstrained spae Vh: Find uh 2 Vh suh thata(uh; vh) = (f; vh)0; vh 2 Vh : (1.1)We refer to [BMP93, BMP94℄ for the original introdution of the onstrained spae. Here,the bilinear form a(�; �) is de�ned asa(v; w) := KXk=1 Z
k arv � rw + bv w dx; v; w 2 KYk=1H1(
k) :The seond approah is based on an equivalent saddle point formulation, see [Bel99℄. It isobvious that the quality of the nononforming approah (1.1) and the properties of Vh dependon the disrete Lagrange multiplier spae Mh := QMm=1Mhm(m). The mortar method isharaterized by the fat that a weak mathing ondition is imposed on the interfae interms of the L2-orthogonality of the jumps of the solutionZm [vh℄ �i d� = 0; 1 � i � nm; 1 � m �M ; (1.2)where nm := dimMhm(m) and f�ig1�i�nm de�nes a basis of Mhm(m). To obtain a dis-retization sheme of optimal order, the Lagrange multiplier spae has to be hosen arefully.It has to be large enough to obtain an optimal onsisteny error. On the other hand, it hasto be small enough to get an optimal best approximation error and a uniform disrete inf-supondition. A natural and eÆient hoie for the onstrution of good Lagrange multiplierspaes is to de�ne the nodal Lagrange multiplier basis funtion loally and to assoiatethem with the interior nodes of the slave side. In the following, we restrit ourselves to thesesituations. Now, we group the degrees of freedom of Xh assoiated with the interfae minto two groups ujm := (us; um). Here, us onsists of all nodal values of u at the interiornodes of m on the slave side and um represents all nodal values of u at the interior nodesof the master side and all nodal values at the nodes on the boundary of the interfae m,see Figure 1.
u

m
u

sFigure 1: The two groups of nodes on the interfaeThen (1.2) an be written in its algebrai form asMsus =Mmum ; (1.3)3



where the entries of the mass matries are given by mij := Rm �j �i d�, and �j orrespondsto the di�erent nodal basis funtions on the slave and master side. The mass matries aresparse due to the loal struture of the supports of the involved basis funtions. Formally,we an obtain the values on the slave side as us = M�1s Mmum. We note that Ms is asquare matrix whereas Mm is a retangular matrix. In general, the inverse of the massmatrix Ms is dense, and thus the values on the slave side depend globally on the values onthe master side. If Ms in (1.3) is a diagonal matrix, then the values of us depend loallyon the values of the master side. This observation motivates our interest in dual Lagrangemultiplier spaes. Let us denote the trae spae of �nite element funtions on the slave sidehaving zero boundary onditions on �m byW0;h(m). The assoiated nodal basis funtionsare alled 'i; 1 � i � nm, where nm := dim(W0;h(m)).De�nition 1 The Lagrange multiplier basis funtions f�ig1�i�nm of Mhm(m) and thenodal basis funtions f'ig1�i�nm of the trae spae W0;h(m) are alled biorthogonal andthe Lagrange multiplier spae dual if and only ifZm �i 'j d� = iÆij Zm 'j d� ; 1 � i; j � nm;where i 6= 0. Without loss of generality, we an assume that i = 1.2 Quadrati Dual Lagrange Multiplier SpaesDual Lagrange multiplier spaes have been onsidered in [Woh00℄ for low order �nite ele-ments. Reently they have been generalized to higher order �nite elements in [OW01℄. In[OW01℄, we annot satisfy supp'i = supp�i and the support of �i is larger. Here, we on-sider some examples of dual Lagrange multiplier spaes for quadrati �nite elements withsupp'i = supp�i. Starting with the pieewise quadrati biorthogonal basis funtions pre-sented in [Woh01℄, we onstrut loally supported ontinuous biorthogonal basis funtions.We denote by '̂0; '̂1 and '̂2 the quadrati nodal �nite element basis funtions on the ref-erene element [0,1℄ in one dimension, where '̂0 is the basis funtion orresponding to themidpoint of the referene element and '̂1 and '̂2 are the basis funtions orresponding tothe left and the right verties, respetively. Now, the quadrati dual Lagrange multiplierbasis funtions in the referene element are de�ned by�0 = 52 '̂0 � 1; �1 = '̂1 � 34 '̂0 + 12 ; �2 = '̂2 � 34 '̂0 + 12 : (2.4)Then it is easy to verifyZ 10 �i'̂j d� = Æij Z 10 '̂j d�; 0 � i; j � 2:The approximation property of the Lagrange multiplier for quadrati �nite elements requiresthat the onstants and the linear funtions are ontained in the Lagrange multiplier spaeMh(m). To satisfy these onditions, the Lagrange multipliers have to be modi�ed nearthe rosspoints. If t = 0 is the rosspoint, we use the following de�nition for the Lagrangemultipliers on the referene edge�0(t) = �2t+ 2; �1(t) = 2t� 1 (2.5)4



and if t = 1 is the rosspoint �0(t) = 2t; �1(t) = 1� 2t: (2.6)We note that �2 does not exist if t = 0 or t = 1 is a rosspoint. The global basis funtions �iare obtained by using an aÆne mapping and glueing the loal ones at the verties together,see [Woh01℄. The two pitures in the left of the Figure 2 illustrate the interior Lagrangemultipliers. The left one is assoiated with the midpoint of an edge and the right one witha vertex. In the two pitures on the right, the situation of a left rosspoint is shown. Theleft one gives the Lagrange multiplier assoiated with the interior vertex and the right oneshows the one assoiated with the midpoint of the edge.
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Figure 2: Interior dual basis funtions (left 1 and 2) and modi�ation at a left rosspoint(right 1 and 2), disontinuous aseAlthough these dual basis funtions are loally supported and optimal a priori bounds hold,the use of disontinuous Lagrange multiplier spaes an be disadvantageous if some inexatquadrature formulas are used. To assemble the mass matrix Mm, we have to ompute theintegral of the produt of two disrete funtions de�ned on two ompletely di�erent meshes.The disontinuities of the Lagrange multipliers whih are living on the slave side will leadto a onsiderable loss of auray in the integral omputation if the quadrature nodes arenot adapted to the disontinuities. Sine we have independent meshes on the slave and themaster side, the disontinuities of the Lagrange multiplier basis funtions are not apturedby quadrature points based on the master side. Therefore, it might be better to work withontinuous Lagrange multiplier spaes. Now, the idea is to modify loally the pieewisequadrati dual basis funtions by adding some loal orretion funtions g, h1 and h2, i.e.,�̂0 = �0 + g, �̂1 = �1 + h1 and �̂2 = �2 + h2. The assoiated global Lagrange multiplierbasis funtions �̂i have to satisfy[P0 ℄ �̂i is ontinuous[P1 ℄ supp �̂i = supp �i[P2 ℄ nmPi=1 �̂i = 1[P3 ℄ Rm �̂i 'j d� = Æij Rm 'j d�[P4 ℄ k�̂ik0 � k'ik0 and j�̂ij1 � j'ij1. 5



To do so, we start with the pieewise quadrati dual Lagrange multiplier basis funtions onthe referene element. Let �0, �1 and �2 be the quadrati dual basis funtions orrespondingto the midpoint, left and right verties of the referene element, we have to �nd a funtiong for �0 suh that the onditions[g0 ℄ g(1) + �0(1) = 0,[g1 ℄ g(0) + �0(0) = 0 and[g2 ℄ R 10 g p dt = 0 for all quadrati funtions p 2 P2([0; 1℄)are satis�ed. Similarly, we have to �nd funtions h1 for �1 and h2 for �2 suh that[h0 ℄ h1(1) + �1(1) = 0; h2(1) + �2(1) = 1[h1 ℄ h1(0) + �1(0) = 1; h2(0) + �2(0) = 0 and[h2 ℄ R 10 hi p dt = 0 for all quadrati funtions p 2 P2([0; 1℄), i = 1; 2,are satis�ed. Furthermore, we require that h1 + h2 + g = 0 on [0; 1℄ and that g; h1; h2 2H1([0; 1℄). Then the modi�ed Lagrange multipliers �̂i are obtained by an aÆne mappingfrom the ones on the referene edge. We note that we do not modify the de�nition of aLagrange multiplier restrited to an edge having one rosspoint.Lemma 2 The modi�ed basis funtions �̂i satisfy the properties [P0℄{[P4℄.The properties [P0℄{[P4℄ follow by onstrution. Of ourse, there are many hoies for g, h1and h2. Regarding [h0℄ and [h1℄, we an hoose h1 = h2 = h. In the following, we disussdi�erent possibilities for h and g. One possibility is to onsider the ase where g and hare polynomials of minimal degree satisfying the given onditions. Another possibility is tode�ne g and h as pieewise quadrati funtions on [0; 1℄. Following the �rst possibility, weget unique quarti polynomials g and h on [0; 1℄ suh that the modi�ed Lagrange multipliershave all the properties listed above. The polynomial g on [0; 1℄ is expliitly given byg(t) := 70t4 � 140t3 + 90t2 � 20t+ 1 and h := �g=2: (2.7)The modi�ed Lagrange multipliers are shown in Figure 3, and the orretion g is given inthe left piture of Figure 4. The onditions [g2℄ and [h2℄ ensure the biorthogonality, and itan be easily seen that the orretion g is reetion invariant on [0,1℄, i.e., g(t) = g(1� t).The maximum value of the nodal Lagrange multiplier basis funtion assoiated with themidpoint is 1:875.In the following examples, we onsider pieewise quadrati orretions in [0; 1℄ satisfying theproperties [g0℄� [g2℄ and [h0℄� [h2℄. We have to deompose the unit interval at least intotwo subintervals. In the ase of two subintervals, the orretion g is uniquely de�ned. If weuse more than two subintervals, we an impose additional onditions on g. Using [0; 1=2)and [1=2; 1℄, we �ndg(t) := � 30t2 � 14t+ 1; 0 � t < 12 ;30t2 � 46t+ 17; 12 � t � 1 ; and h := �g=2: (2.8)6
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Figure 3: Interior dual basis funtions (left 1 and 2) and modi�ation at a left rosspoint(right 1 and 2), quarti orretion
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Figure 4: The quarti orretion g (left) and the pieewise quadrati one (right)The orretion g is given in the right of Figure 4, and the assoiated dual basis funtionsare shown in Figure 5.Another possibility is to deompose the unit interval [0; 1℄ into three subintervals and on-sider pieewise linear polynomials in two subintervals and a pieewise quadrati in the thirdone. Then, we get a unique orretion funtion g. If we hoose pieewise linear funtions inthe left and right subintervals [0; 1=3) and [2=3; 1℄ and a quadrati polynomial in the middlesubinterval [1=3; 2=3), g is de�ned byg(t) := 8>><>>: 1� 18922 t; 0 � t < 13 ;� 162011 t2 + 162011 t� 76122 ; 13 � t < 23 ;18922 t� 16722 ; 23 � t � 1; and h := �g=2:The orretion funtion g is shown in the left of Figure 7 and the assoiated basis funtionin Figure 6.Although there are many possibilities to onstrut ontinuous Lagrange multipliers, thenumerial experiments show that the Lagrange multipliers with smaller maximum value onthe referene element give better results. To get a symmetri Lagrange multiplier whih hasa smaller maximum, we onsider another ase with pieewise quadrati funtions in [0; 1=3)and [2=3; 1) and being onstant in the middle interval [1=3; 2=3). Then, we get a unique g7
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Figure 5: Interior dual basis funtions (left 1 and 2) and modi�ation at a left rosspoint(right 1 and 2), pieewise quadrati orretion
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Figure 6: Interior dual basis funtions (left 1 and 2) and modi�ation at a left rosspoint(right 1 and 2), pieewise linear and quadrati orretionde�ned byg(t) := 8>><>>: 81019 t2 � 62138 t+ 1; 0 � t < 13 ;1138 ; 13 � t < 23 ;81019 t2 � 261938 t+ 103738 ; 23 � t � 1 ; and h := �g=2: (2.9)The orretion funtion g is given in the right piture of Figure 7, and the assoiated dualbasis funtions are shown in Figure 8. We note that if we want to minimize the maximumvalue of the Lagrange multiplier on the referene element orresponding to the midpointof the edge by relaxing the ondition of symmetry, it is possible to �nd another Lagrangemultiplier with a smaller maximum value. But the di�erene is very small.Remark 3 The Lagrange multiplier spae spanned by the disontinuous quadrati funtionsgiven by (2.4), (2.5) and (2.6) will be denoted by Mdh , and the Lagrange multiplier spaesspanned by the ontinuous funtions whih are orreted by g and h given in (2.7), (2.8)and (2.9) will be denoted by M qh, M bh and M h, respetively. Similarly we will denote byM lh the dual Lagrange multiplier spae for linear �nite elements spanned by pieewise linearfuntions.The optimality of the disretization sheme depends on the veri�ation of the properties (Sa)-(Sd) of the Lagrange multiplier spae presented in [Woh01℄. In the ase of dual Lagrange8
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Figure 7: The pieewise linear and quadrati orretion g (left) and pieewise onstant andquadrati one (right)
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Figure 8: Interior dual basis funtions (left 1 and 2) and modi�ation at a left rosspoint(right 1 and 2), pieewise quadrati and onstant orretionmultiplier spaes this an be easily done by verifying that the onstants and the linearfuntions are ontained in the Lagrange multiplier spaes. In partiular, we �nd for all ourspaes �lp = �p + 12(�e1 + �e2);where �lp is the hat funtion at the vertex p, and �p is the Lagrange multiplier basis funtionorresponding to the same vertex, and �e1 and �e2 are the basis funtions assoiated withthe midpoints of the two adjaent edges. We measure the error in the Lagrange multiplier� in a broken dual norm de�ned byk�� �hkM = MXm=1 k�� �hk�1=2;mwhere k:k�1=2;m is the dual norm of H1=200 (m) and � = a �u�n .Lemma 4 Under the assumption that the weak solution is smooth enough, we obtain thefollowing a priori estimates for the disretization error1hku� uhk0 + ku� uhk1 + k�� �hkM = O(h2):9



3 Dual Lagrange Multiplier Spaes in 3DIn this setion, we onsider the extension to the 3D ase. Using hexahedral triangulationsand �nite element spaes having a tensor produt struture, we an diretly apply the 2Dresults, and de�ne the Lagrange multipliers as tensor produt. However, the situation isnot as simple for simpliial triangulations. To obtain optimal a priori error estimates, itis suÆient that the linear funtions are ontained in Mh(m). We denote by W 1h (m) the�nite element spae of pieewise linear hat funtions. In all our 2D examples, even the hatfuntions are elements of Mh(m). Unfortunately, this does not hold in 3D for simpliialtriangulations. Let us assume that the nodal basis funtions of our dual Lagrange multiplierspae satisfy supp'i = supp�i, where 'i are the standard nodal quadrati �nite elementbasis funtions.Lemma 5 Under the above assumption, there exists no dual Lagrange multiplier spaeMh(m) suh that W 1h (m) �Mh(m).Proof: The proof is arried out by ontradition. Let us assume thatXi �i�i = �lp; (3.10)where �lp is the hat funtion assoiated with the interior vertex p, see Figure 9.PSfrag replaements 'j0 �lpT1 T2 supp'j0supp�lp
Figure 9: 2D interfae of 3D simpliial triangulationBeause of the duality, the funtions �i are biorthogonal to the �nite element basis funtions'j on the slave side of the interfae. Hene, after multiplying (3.10) by some �nite elementbasis funtion 'j and integrating over the interfae m, we get�j = Rm 'j�lp d�Rm 'j d� :Let j0 be another interior vertex suh that j0 and p share one edge, see Figure 9. Then, wean write Zm 'j0�lp d� = ZT1 'j0�lp d� + ZT2 'j0�lp d� = �(jT1j+ jT2j)=60and thus �j0 6= 0. Sine the basis funtions �i are loally linearly independent, we obtainthat suppPj �j�j � supp�j0 . By onstrution, we �nd supp�j0 ( supp�lp.10



4 Numerial ResultsHere, we present some numerial examples whih illustrate the exibility and eÆieny ofthe mortar �nite element method with dual Lagrange multipliers. Our numerial realizationis based on the �nite element toolbox ug, [BBJ+97℄. In the �rst subsetion, we present theomparison of linear and pieewise quadrati mortar �nite elements. In the seond subse-tion, we ompare the performane of the disontinuous quadrati dual Lagrange multiplierspae Mdh with the ontinuous dual Lagrange multiplier spaes M qh, M bh and M h.4.1 Comparison of Linear and Quadrati Mortar Finite ElementsIn this subsetion, we present the numerial results in two dimensions for various types ofdomain deompositions omparing the disretization errors for linear and quadrati mortar�nite elements. Here, we use a mesh dependent L2-norm for the Lagrange multiplierk�� �hk2h := MXm=1 Xe2Sm;hm hek�� �hk20;e ;where he is the length of the edge e on the slave side.In our �rst example, we onsider a deomposition of a square 
 = (0; 1)�(0; 1) into two sub-domains 
1 and 
2, where 
1 is a losed polygonal non-onvex subdomain joining the points(0; 0); (1; 0); (1=2; 1=2); (1; 1) and (0; 1) and 
2 is a triangle with the verties (1; 0); (1; 1) and(1=2; 1=2). Figure 10 shows the deomposition into two subdomains, the non-mathing initialtriangulation and the isolines of the solution. We have two interfaes and three rosspoints.The master sides are de�ned to be on the non-onvex subdomain, and the slave subdomainis the triangle. Here, we solve the Poisson equation ��u = f in 
, where the right handside and the Dirihlet boundary onditions are determined by hoosing the exat solutionu(x; y) = xy(x � 1)(y � 1). We denote the mortar solution for linear �nite elements by ulhand the one for quadrati �nite elements using the spae Mdh by udh.

Figure 10: Deomposition into two subdomains and initial triangulation (left) and isolinesof the solution (right), (Example 1)Figure 11 shows the disretization errors in the L2-, H1- and Lagrange multiplier normversus the number of elements. The asymptoti rates on�rm the theory of linear andquadrati mortar �nite element methods. We �nd that the energy error is of order h and h211



whereas the error in the L2-norm is of order h2 and h3 for the linear and the quadrati ase,respetively. The orret order an be observed from the beginning. In the right piture ofFigure 11, the error in the Lagrange multiplier at the interfae is given.
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Figure 12: Deomposition into three subdomains and initial triangulation (left) and isolinesof the solution (right), (Example 2)In our next example, we onsider a polygonal domain 
 with verties (0; 0), (1;�1), (2; 0),(2; 1), (1; 2) and (0; 1) whih is deomposed into three subdomains, see Figure 12. Here 
1is (0; 2) � (0; 1) whereas 
2 is the triangle with verties (0; 0); (1;�1) and (1; 0), and 
312



is also a triangle joining the points (0; 1); (1; 2) and (2; 1). The subdomain 
1 is the slavesubdomain and 
2 and 
3 are master subdomains. We have two interior interfaes and fourrosspoints. We ompute the numerial solution of the Poisson equation ��u = f , wherethe right hand side and the Dirihlet boundary onditions are determined by hoosing theexat solution u(x; y) = exp(�10(x � y)2) os(x2 + 2y2) + sin(2x) + os(10y). Figure 12shows the initial non-mathing triangulation and the isolines of the solution. We note thatthe triangulation on 
1 is non-symmetri with respet to the x-axis.
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Figure 14: Deomposition into six subdomains and initial triangulation (left) and isolines ofthe solution (right), (Example 3)In our last example, we onsider the deomposition of 
 = (0; 1)�(0; 1) into six subdomainsde�ned by 
ij := ((i�1)=3; i=3)�((j�1)=2; j=2); 1� i � 3; 1 � j � 2, and the triangulationsdo not math at the interfaes. We have two interior rosspoints and seven interfaes. Themeshes at the interfaes are non-mathing and the master sides are hosen randomly. Theright hand side f and the Dirihlet boundary onditions of ��u = f are hosen suh thatthe exat solution is given by u(x; y) = (x � y) exp(�5(x � 0:5)2 � 5(y � 0:5)2). Figure14 shows the deomposition into subdomains, initial non-mathing triangulation and theisolines of the solution. The numerial results for the disretization errors in the L2-, H1-and the weighted Lagrange multiplier norm are given in Figure 15. A good agreement13



between numerial and theoretial results an be observed.
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O(h5/2)Figure 15: Error plot versus number of elements, L2-norm (left), H1-norm (middle),weighted Lagrange multiplier norm (right), (Example 3)4.2 Comparison of Disontinuous and Continuous Lagrange Multi-pliersIn this subsetion, we ompare the performane of our new ontinuous dual Lagrange multi-plier spaes M qh, M bh and M h with the pieewise quadrati but disontinuous dual Lagrangemultiplier spae Mdh . Due to the fat that the ontinuous quarti Lagrange multiplier isloally a fourth order polynomial, we have to use a higher order quadrature formula toompute the integral in the mass matrix and the weighted error norm for the Lagrangemultiplier. We denote by udh, uqh, ubh and uh the mortar �nite element solutions assoiatedwith the di�erent Lagrange multiplier spaesMdh , M qh,M bh andM h, respetively. We use thesame test examples as before. Tables 1-3 show the numerial results for the three di�erentexamples and for the four di�erent hoies of Lagrange multipliers. The disretization errorsin the L2- and H1-norm for the weak solution u are exatly the same for the �rst example,and in the two other examples the di�erenes are extremely small. Therefore, we do notgive the tables. A small di�erene an be observed only in the error in the Lagrange multi-plier. If we ompare the other Lagrange multiplier spaes with the disontinuous Lagrangemultiplier spae, we observe that the ontinuous quarti Lagrange multiplier spae yieldsan error of about 3 % higher in the �rst level and in the �nal level the di�erene is about5 % whereas the error for the broken-quadrati Lagrange multiplier spae is about 24 %higher in the �rst level whih goes up to 58 % in the �nal re�nement level. The error for thebroken-onstant Lagrange multiplier spae is about 0.3 % less in the �rst level and around2 % in the �nal re�nement level. The bigger error in the Lagrange multiplier norm for M bhis due to the fat that the maximum value of the nodal basis funtion is higher omparedto the other Lagrange multiplier basis funtions. In fat, the maximum value of nodal basisfuntion from M bh orresponding to the midpoint of the edge is 3 whereas the maximumvalue of the disontinuous Lagrange multiplier at this node is 1.5. The broken-onstantLagrange multiplier has a maximum value of 1.8.

14



Table 1: Disretization errors in the weighted Lagrange multiplier norm, (Example 1)level # elem. k�� �dhkh k�� �qhkh k�� �bhkh k�� �hkh0 28 9.470143e-03 9.731379e-03 1.252511e-02 9.435581e-031 112 1.620246e-03 1.674903e-03 2.265275e-03 1.604492e-032 448 2.767632e-04 2.880399e-04 4.077914e-04 2.728400e-043 1792 4.787615e-05 5.007306e-05 7.302227e-05 4.707297e-054 7168 8.362299e-06 8.771935e-06 1.300681e-05 8.210304e-065 28672 1.468960e-06 1.543415e-06 2.308726e-06 1.441193e-066 114688 2.588398e-07 2.721896e-07 4.089964e-07 2.538517e-07Table 2: Disretization errors in the weighted Lagrange multiplier norm, (Example 2)level # elem. k�� �dhkh k�� �qhkh k�� �bhkh k�� �hkh0 20 2.393161e+00 2.515256e+00 3.143823e+00 2.492000e+001 80 8.601690e-01 9.046823e-01 1.309716e+00 8.742536e-012 320 1.680722e-01 1.488028e-01 2.678213e-01 1.622111e-013 1280 2.113279e-02 2.279722e-02 3.357682e-02 2.199264e-024 5120 3.480169e-03 3.699532e-03 5.332353e-03 3.548563e-035 20480 5.915244e-04 6.262941e-04 8.860717e-04 6.020646e-046 81920 1.034967e-04 1.094254e-04 1.542287e-04 1.051368e-04Table 3: Disretization errors in the weighted Lagrange multiplier norm, (Example 3)level # elem. k�� �dhkh k�� �qhkh k�� �bhkh k�� �hkh0 47 3.435663e-02 3.472259e-02 3.746504e-02 3.457403e-021 188 6.794099e-03 7.249089e-03 1.011761e-02 7.118611e-032 752 1.031815e-03 1.094674e-03 1.515990e-03 1.068923e-033 3008 1.829821e-04 1.968839e-04 2.880542e-04 1.904619e-044 12032 3.198112e-05 3.459908e-05 5.179677e-05 3.335310e-055 48128 5.642177e-06 6.117301e-06 9.213434e-06 5.887483e-066 192512 9.928575e-07 1.076081e-06 1.628637e-06 1.034036e-06In all our examples the di�erene in the errors for the di�erent Lagrange multiplier spaesin the L2- and in the H1-norm an be negleted. Only in the weighted Lagrange multipliernorm, we observe some quantitative di�erene. However, the qualitative results are thesame. We note that better results an be obtained if Lagrange multiplier basis funtionsare used having a small maximum value. The Lagrange multiplier spaes Mdh and M h yieldbetter results than the spae M bh. In ontrast to the disretization error in the L2-normand in the H1-norm, the weighted L2-norm for the Lagrange multiplier is very sensitive tothe hoie of the Lagrange multiplier spae. It turns out that the quality of the Lagrangemultiplier spae depends on the maximum value of its nodal basis funtions.In our last example, we onsider a deomposition of 
 = (0; 1)� (0; 1) into four subdomainsde�ned by 
ij := ((i� 1)=2; i=2)� ((j � 1)=2; j=2); 1 � i � 2; 1 � j � 2, with non-mathingtriangulations at the interfaes. For this example, we use�div(aru) + u = f in 
;and we hoose a to be 1 in 
11 and 
22, and a = 3 in 
21 and 
12. Figure 16 shows thedeomposition into four subdomains, our initial non-mathing triangulation and the isolines15



Figure 16: Deomposition into four subdomains and initial triangulation (left), isolines ofthe solution (middle) and exat solution (right), (Example 4)of the solution. Here, we hoose the exat solution u(x; y) = (x�1=2)(y�1=2) exp(�10 (x�1=2)2 � 5 (y � 1=2)2)=a, see Figure 16.
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