
The Appli
ations of Finite VolumeParti
le Method for Moving BoundaryMaster Thesis
Submitted byBishnu Prasad Lami
hhane
Supervisors:Prof. Dr. Helmut NeunzertDr. Mi
hael JunkUniversity of KaiserslauternDepartment of Mathemati
sGermanyJuly 25, 2001

1



A
knowledgementsFirst, I want to thank my supervisor Prof. Dr. Neunzert who initiated andmotivated me in applied mathemati
s. I would like to express my deep grat-itude to my supervisor Dr. Mi
hael Junk who initiated me in this interestingtopi
 and devoted a lot of his time for giving me guidan
e for this thesis to beful�lled. I am also grateful to DAAD for giving me �nan
ial support to studyin Germany without whi
h there was no 
han
e for me to 
ome here to studymathemati
s. I would also like to thank my family who give me moral supportduring my study. Finally, I would like to thank all of the members of De-partment of Mathemati
s and members of ITWM who dire
tly and indire
tlysupported me in 
ourse of my study.

2



Contents1 Derivation of Finite Volume Parti
le S
hemes in Bounded Do-mains 61.1 Derivation of the Method . . . . . . . . . . . . . . . . . . . . . . 6Constru
tion of Partition of Unity . . . . . . . . . . . . . . . . . 72 Approximation 132.1 Redu
tion into One Dimension . . . . . . . . . . . . . . . . . . . 183 Finite Volume S
heme as a Limit of FVPM 194 Modeling and Model Problem 264.1 Derivation of Numeri
al Flux . . . . . . . . . . . . . . . . . . . 295 Treatment of Boundary Conditions 315.1 Method of Chara
teristi
s . . . . . . . . . . . . . . . . . . . . . 315.2 Ba
kward Method . . . . . . . . . . . . . . . . . . . . . . . . . . 325.3 Boundary Parti
les or Ghost Parti
les . . . . . . . . . . . . . . . 336 Numeri
al Results 366.1 Numeri
al Results from Finite Di�eren
e S
heme . . . . . . . . 376.2 Numeri
al Results from FVPM . . . . . . . . . . . . . . . . . . 406.3 Comparison of Errors in Di�erent Methods . . . . . . . . . . . . 436.4 Comparison between Regular Parti
les and Irregular Parti
les . 446.5 Constant Smoothing Length and Variable Smoothing Length . . 456.6 Longer Smoothing Length and Shorter Smoothing Length . . . 473



7 Numeri
al Convergen
e Analysis 477.1 Convergen
e Analysis for an Initial Value Problem . . . . . . . . 487.2 Convergen
e Analysis in the Case of Smooth Boundary Values . 527.3 Numeri
al Convergen
e Analysis for our Model Problem . . . . 54A Assumptions On the Flux Fun
tion g 58B The Computation of �ij and Vi 58

4



OutlineIn this thesis we study the �nite volume parti
le method (FVPM) presentedin [3℄, [6℄ whi
h has the generi
 features of parti
le methods and �nite volumemethods. Sin
e the last de
ade, the parti
le methods for 
onservations laws aregaining more and more popularity in industrial appli
ations. These parti
lemethods are mesh-free and they are popular in handling the time-dependentproblems, 
ompli
ated geometries and moving domains sin
e the mesh dis-
retization be
omes expensive and 
ompli
ated for su
h problems. For su
hproblems the s
heme based on Lagrangian parti
les is a good 
hoi
e, sin
e theyare 
ompletely mesh-free.In fa
t, appli
ation of the �nite volume methods or �nite element methodsfor the problem whi
h are time-dependent and based on 
ompli
ated domainswhi
h may be 
hanging with respe
t to time is really expensive and sometime
ompli
ated due to the ne
essity of handling the dynami
 data-stru
tures andadaptation of mesh-dis
retization. That is why in su
h 
ases, the parti
lemethods are appropriate where we do not need to dis
retize the domain withsome mesh at all. Our aim here is to derive the FVPM for time-dependentdomains and test the s
heme for some initial-boundary-value problems withmoving boundary and analyze the numeri
al 
onvergen
e.
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1 Derivation of Finite Volume Parti
le S
hemesin Bounded DomainsIn the following we present the derivation of Finite Volume Parti
le Methods ina bounded domain with moving boundary. This method for Cau
hy problemis �rst presented by Hietel, Steiner and Stru
kmeier in [3℄. The 
onsisten
yanalysis in one dimension is done by Junk and Stru
kmeier in [6℄. We followalmost the similar derivation as given in [6℄. This method is mesh-free andbased on general partition of unity and standard numeri
al 
ux fun
tion. Infa
t, 
lassi
al �nite volume s
hemes are re
overed if we 
hoose spe
ial kind ofpartition of unity. That is why this 
lass of parti
le method 
an be thought asthe generalization of �nite volume s
hemes.1.1 Derivation of the MethodWe 
onsider here the system of 
onservation laws in 
(t) for the open, boundedand 
onne
ted set 
(t) (
alled a domain) in Rd�u�t +r:F (u) = 0 in 
(t) u(0; x) = u0(x)with suitable boundary 
onditions, where u(t; x) is the ve
tor of 
onservativequantities, u(t; x) 2 Rp for t � 0 and x 2 Rd and F (u)(t; x) is the 
ux fun
tionof the 
onservation laws. We suppose that there is a 
ontinuously di�erentiablevelo
ity-�eld z : R+ � Rd ! R su
h that x0 2 �
(0) moves a

ording to_x = z(t; x), x(0) = x0. We want to give a brief explanation of the basi
 symbolswe have to use throughout this thesis. We assume M = f1; : : : ; mg for somem 2 N and take the set of points fxi(t) : i 2 Mg in �
(t). To ea
h xi(t) weasso
iate a fun
tion 	i(t; x) � 0 de�ned in �
(t), whi
h will be 
alled parti
lepla
ed at the point xi(t). Moreover, we set 
 = f(t; x) : t 2 R+; x 2 
(t)g.Now we de�ne the partition of unity in �
De�nition 1 The set of fun
tions f	i : i 2Mg where 	i : �
! R+ will forma partition of unity if Pmi=1	i(t; x) = 1 for all x 2 �
(t) and for all t 2 R+.These parti
les may be irregularly spa
ed and moving. They have overlappingsupport with one another and they are lo
alized around xi(t). In the nextsubse
tion we will des
ribe how the partition of unity is formed.6



Constru
tion of Partition of UnityWe take a Lips
hitz 
ontinuous fun
tion w : Rd ! R+ with 
ompa
t support.We de�ne 	i(t; x) = wi(t; x)�(t; x)where �(t; x) = mXi=1 wi(t; x):In general, we 
an set wi(t; x) = w(Ai(t)(x� xi(t)))where Ai(t) is symmetri
, positive-de�nite matrix of size d by d for all t � 0. Inthe 
ase of 
onstant smoothing length in all dire
tions, Ai(t) = 1=hi(t)I whereI is the identity matrix of size d by d and hi(t) > 0 for all t and for all i 2M .For simpli
ity we take here 
onstant smoothing length for all spatial dire
tions(
ir
ular pat
h) although hi(t) 
an be taken as ve
tor giving smoothing lengthin di�erent spatial dire
tions. Thuswi(t; x) = w(x� xi(t); hi(t))for all i 2M . The fun
tion w : Rd ! R+ is known as the kernel fun
tion. Forthe simpli
ity of notation we also de�ne the derivative of wi(t; x) with respe
tto hi(t) Dhwi(t; x) = ��hi(t)w(x� xi(t); hi(t)):For example, taking some spe
ial kernel fun
tion w in one dimension de�nedby w(x) = 8><>:x + 1 if x 2 (�1; 0℄�x + 1 if x 2 (0; 1℄0 elseand some s
alar smoothing length h, we get a parti
ular partition of unity.The 
onstru
tion of the fun
tion wi(t; x) and the parti
le fun
tions 	i(t; x) forirregularly spa
ed 12 parti
les are visualized in the Figures 1 and 2. On thex-axis are indi
ated parti
le positions xi and around ea
h point, the fun
tion7
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Figure 1: The fun
tion wi(t; x)
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Figure 2: The parti
le fun
tion 	i(t; x)wi(t; x) are plotted. We have used this kernel in our numeri
al examples, al-though other 
hoi
es are also possible. After dividing by �(t; x) =Pmi=1 wi(t; x)we get the parti
le fun
tion 	i(t; x).Remark 2 :(1) The fun
tions 	i in general may be non-symmetri
 and irregularly spa
edand moving.(2) The supports of 	i overlap, but we want to avoid overlapping of manyparti
les and that is why we 
hoose the 
ompa
tly supported kernel fun
-tion w.(3) The fun
tion �(t; x) =Pmi=1 wi(t; x) must be �nite and non-zero for everyx 2 
(t) and for every t � 0. Thus hi(t) should be 
hosen in su
h a waythat there is no gap in 
(t). That means every point x 2 
(t) should liewithin the support of at least one 	i(t; x) for all t � 0.(4) The kernel fun
tion w is to be 
hosen in su
h a way that 	i(t; :) 2 C0(
)and 	i(t; :) is pie
e-wise C1 in 
, every pie
e being a regular domain.8



We 
onsider the following initial-boundary value problem of the system of
onservation laws in 
(t) for the open, bounded and 
onne
ted set 
(t) in Rd�u�t +r:F (u) = 0 in 
(t) u(0; x) = u0(x) (1)together with the suitable boundary 
onditions. Here u(t; x) is the ve
tor of
onservative quantities, u(t; x) 2 Rp for t � 0 and x 2 Rd and F (u)(t; x) isthe 
ux fun
tion of the 
onservation laws.Now we get the weak formulation of above equation by multiplying both sidesby the parti
le 	i and integrating over the domain 
(t)Z
(t) �u�t	i(t; x)dx+ Z
(t)r:F (u)	i(t; x)dx = 0:In
luding 	i in the spa
e and time derivative we obtainZ
(t) �(u	i)�t dx + Z
(t)r:(F (u)	i)dx� Z
(t) �u�	i�t + F (u):r	i� dx = 0:(2)Now we de�ne the dis
rete parti
le propertyui(t) = 1Vi(t) Z
(t)	i(t; x)u(t; x)dx (3)where Vi(t) is the volume of the parti
le 	i(t; x), given byVi(t) = Z
(t)	i(t; x)dx:After multiplying both sides of the equation (3) by Vi(t) and di�erentiatingwith respe
t to t, we getddt(ui(t)Vi(t)) = ddt Z
(t)	i(t; x)u(t)dx: (4)We have velo
ity-�eld z(t; x) su
h that z(t; x) gives the velo
ity-�eld of theboundary if x 2 �
(t), then we 
an use the transport theorem to getddt(uiVi) = Z
(t) ��(u	i)�t +r:(u
 z)	i� dx (5)
9



where u
z is the usual dyadi
 produ
t of two ve
tor-�elds de�ned by (a
b) =(aibj)i;j and divergen
e applied to matrix A is de�ned byr:A = 0BB� r:A1r:A2� � �r:Ap 1CCAwhere Ai represents the ith row of the matrix fun
tion A of size p by d. Nowif we use the results (2) in the equation (5) and use Gauss theorem, we getddt(uiVi) = Z�
(t)(u
 z � F (u))	i:n ds+ Z
(t) �u�	i�t + F (u):r	i� dx: (6)Sin
e generally we suppose that the smoothing length hi(t) 
an vary withrespe
t to time and wi(t; x) = w(x� xi(t); hi(t)) we have��twi(t; x) = � _xi(t):rxwi(t; x) +Dhwi(t; x) _hi(t):Now we want to prove the following:Proposition 3 With the notations as above�	i�t = mXj=1 ��	i _xj:rxwj� �	j _xi:rxwi� �� �	i _hjDhwj� � 	j _hiDhwi� �� :Proof: Here�	i�t = � _xi(t):rwi(t; x)�(t; x) + wi(t; x)�2(t; x) mXj=1 _xj(t):rwj(t; x)+_hiDhwi(t; x)�(t; x) � wi(t; x)�2(t; x) mXj=1 _hjDhwj(t; x):Now we use �(t; x) =Pmj=1wj(t; x) to get�	i�t = mXj=1 �	i _xj:rwj� �	j _xi:rwi� �� mXj=1 �	i _hjDhwj� � 	j _hiDhwi� � :10



Proposition 4 The term r	i(t; x) 
an be written asr	i(t; x) = mXj=1 �	j(t; x)rwi(t; x)�(t; x) � 	i(t; x)rwj(t; x)�(t; x) � :Proof: Note that r	i(t; x) = r�wi(t; x)�(t; x) � :Now using the produ
t rule, we getr	i(t; x) = rwi(t; x)�(t; x) � wi(t; x)r�(t; x)�2(t; x) :The result follows from the relations �(t; x) =Pmj=1wj(t; x) andPmj=1	j(t; x) =1.Here, let us introdu
e the following notations:�ij(t; x) = 	i(t; x)rwj(t; x)�(t; x)and �ij(t; x) = 	i(t; x)Dhwj(t; x)�(t; x) :Using these symbols and the results from the propositions 3 and 4 in theequation (6) and suppressing the arguments t and x we have the equations ofmotion asddt(uiVi) = Z�
(t)(u
 z � F (u))	i:n ds+mXj=1 Z
(t) hu ( _xj:�ij � _xi:�ji) + F (u) (�ji � �ij)� u� _hj�ij � _hi�ji�i dx; (7)ddtxi(t) = z(t; xi)11



for i = 1; : : : ; m where Vi(t) = Z
(t)	i(t; x)dx: (8)Here we are interested in the parti
les whi
h are moving with the velo
ity-�eldz(t; x). These moving parti
les are 
alled the Lagrangian parti
les. If we allowthe parti
les to move, even the volume of the parti
les may 
hange with respe
tto time and it is ne
essary to 
ompute Vi(t) for every parti
le at ea
h time t.We 
an 
ompute the volume Vi(t) by using the formula (8). We have exa
tlyused this formula for our numeri
al 
omputation. However, we 
an get theadditional equation for Vi(t) by di�erentiating the equation (8) with respe
tto t, whi
h yieldsdVi(t)dt = mXj=1 Z
(t) �wirwj�2 _xj � wjrwi�2 _xi � ( _hj�ij � _hi�ji)� dx+Z�
(t)	iz:n dsand this equation 
an also be used to 
ompute the volume of every parti
leat ea
h time t. Rearranging the terms of the equation (7), we obtain theequations of motion asddt(uiVi) = Z�
(t)(u
 z � F (u))	i:nds+mXj=1 Z
(t) [(F (u)� u
 _xi)�ji � (F (u)� u
 _xj)�ij℄ dx�Z
(t) u( _hj�ij � _hi�ji)dx; (9)ddtxi(t) = z(t; xi)with the initial value u0i = 1Vi(0) Z
(t)	i(0; x)u0(x)dxand the pres
ribed boundary 
onditions whi
h we would dis
uss later. Toobtain the solution we use the interpolation formula~u(t; x) = mXi=1 	i(t; x)ui(t):12



From now on we will 
allB(t; i) = Z�
(t)(u
 z � F (u))	i:ndsthe boundary term and use the abbreviation FVPM for the Finite VolumeParti
le Method.2 ApproximationLet us 
onsider the Lagrangian 
ux fun
tion G(t; x; u) = F (u) � u 
 z andset Gi = G(t; xi; ui) and 
ij(t) = R
(t) �ij(t; x)dx then, the equation (9) 
anapproximately be written asddt(uiVi) � mXj=1 �(Gi
ji �Gj
ij)� Z
(t) u( _hj�ij � _hi�ji)dx�+Z�
(t)(u
 z � F (u))	i:n ds:Now we use the splitting a
 � bd = (a�b)(
+d)2 + (a+b)(
�d)2 whi
h is valid evenwhen a and b are matri
es and 
 and d are ve
tors, we getmXj=1(Gi
ji �Gj
ij) = mXj=1 12[(Gi �Gj)(
ij + 
ji)� (Gi +Gj)(
ij � 
ji)℄:Suppose that supp(	i) � Bd(xi(t); hi(t)) where Bd(x; h) is the d-dimensionalball with radius h and 
enter at x. Then if we take the smoothing length hi(t)and hj(t) suÆ
iently small we 
an assume that Gi � Gj for 
ij + 
ji 6= 0 sin
e
ij + 
ji 6= 0 implies that xi and xj are nearby parti
les (pre
isely kxi� xjk �hi + hj, when 
ij 6= 0), we 
an 
on
lude thatmXj=1(Gi
ji �Gj
ij) � mXj=1 12(Gi +Gj)(
ji � 
ij)= � mXj=1 k�ijk(Gi +Gj)2 nijwhere �ij = 
ij � 
ji and nij = �ij=k�ijk. Sin
e �ij 
arry geometri
al infor-mation of the relative positions of the parti
les we will 
all them geometri

oeÆ
ients. Here Gi+Gj2 is the numeri
al 
ux fun
tion of 
entral di�eren
ing.13



A more general approa
h is obtained if we repla
e this parti
ular expressionby a general numeri
al 
ux fun
tion, gij = g(t; xi; ui; xj; uj; nij) for G(t; x; u)whi
h should be 
onsistent with the Lagrangian 
ux fun
tion F (u) � u 
 z.The general assumptions on the numeri
al 
ux fun
tion gij are presented inthe appendix A. Let us introdu
e one more symbol�ij(t) = Z
(t) �ij(t; x)dx = Z
(t) 	iDhwj� dx:Sin
e ui represents the solution averaged with respe
t to the fun
tion 	i, whi
his given by the equation (3), we 
an writeZ
(t) u(t; x)�ij(t; x)dx � ui(t) Z
(t) �ij(t; x)dx:Then Z
(t) u( _hj�ij � _hi�ji)dx = ui _hj Z
(t) �ijdx� uj _hi Z
(t) �jidxand this 
an be written asZ
(t) u( _hj�ij � _hi�ji)dx = ui _hj�ij � uj _hi�ij:Now suppose that Bi(t) be some dis
retization of the boundary termB(t; i) = Z�
(t)(u
 z � F (u))	i:n dswhi
h will now depend on fui : i 2 Mg and the pres
ribed boundary 
on-ditions. Thus we end up with a system of ordinary di�erential equations inve
tor formddt(uiVi) = � mXj=1 hk�ijkgij + (ui _hj�ij � uj _hi�ji)i+Bi; (10)ddtxi(t) = z(t; xi) (11)with initial 
ondition u0i = 1Vi(0) Z
(0)	i(0; x)dx14



along with the pres
ribed boundary 
onditions whi
h should be 
omputed bytaking into a

ount the interpolation formula,~u(t; x) = mXi=1 	i(t; x)ui(t)and the given boundary 
onditions. The details about the boundary 
onditionswill be treated later in se
tion 5.Proposition 5 The FVPM de�ned by the equation (10) ful�lls the dis
retebalan
e property ddt mXi=1 (uiVi) = mXi=1 Biif the numeri
al 
ux fun
tion g ful�lls the 
ondition, g(t; xi; ui; xj; uj; nij) =�g(t; xj; uj; xi; ui; nji) where Bi(t) is a dis
retization of the boundary termB(t; i) = R�
(t)(u
 z � F (u))	i:n ds.Proof: We haveddt(uiVi) = � mXj=1 hk�ijkgij + (ui _hj�ij � uj _hi�ji)i+Bi:Summing over i we �ndddt mXi=1 (uiVi) = � mXi=1 " mXj=1 �k�ijkgij + ui _hj�ij � uj _hi�ji��Bi# :Now using the property k�ijkgij = �k�jikgji we obtainmXi=1 mXj=1 k�ijkgij = 0;and it is simple to observe thatmXi=1 mXj=1(ui _hj�ij � uj _hi�ji) = 0whi
h 
on
ludes the proof. 15



Lemma 6 The geometri
 
oeÆ
ients 
an be given by the following formula�ij = Z
(t)(	ir	j �	jr	i)dx:or equivalently �ij = 2 Z
(t)	ir	jdx� Z�
(t) 	i	jn ds:Proof: We have de�ned�ij = Z
(t) �	irwj(t; x)�(t; x) �	jrwj(t; x)�(t; x) � dx:Now if we use rwj = r(�	j) = 	jr� + �r	j in the above equation we get�ij = Z
(t)(	ir	j �	jr	i)dx:We 
an write this formula for �ij as�ij = Z
(t)(�r(	i	j) + 2	jr	i)dx:The se
ond result follows by using the Gauss divergen
e theorem.Proposition 7 The 
oeÆ
ients �ij satisfy�ij = ��ji 8i; j 2M: (12)mXj=1 �ij = � Z
(t)r	idx 8i 2M: (13)�ij = 0 if supp(	i) \ supp(	j) = ;: (14)Proof: Properties (12) and (14) are obvious from the de�nition of �ij andwe prove only (13). In Lemma (6) we have proved�ij = Z
(t)(	ir	j �	jr	i)dx:16



Summing over all j, we getmXj=1 �ij = mXj=1 Z
(t)(	ir	j �	jr	i)dxNow we use mXj=1 	j = 1 and mXj=1 r	j = 0to get mXj=1 �ij = � Z
(t)r	idx:
Now we have the following 
orollaryCorollary 8 If the velo
ity �eld z(t; x) = 0 in 
(t) for all t � 0 and thesmoothing length hi does not vary with respe
t to time the property (13) inabove proposition ensures the preservation of 
onstant state if the dis
retizationof the boundary term ful�lls the 
onsisten
y 
onditionBi = F (u
): Z�
(t)	i(t; x)n dsfor the 
onstant solution u
 of the initial-boundary-value problem given by (1).Proof: Assume that the 
onstant u
 solves the given initial-boundary-valueproblem given by (1). Here we want to show that ui = u
; i = 1; : : : ; m, is astationary solution ofddt(uiVi) = �" mXj=1 k�ijkgij + (ui _hj�ij � uj _hi�ji)� Bi# :SupposeR(u1; : : : ; um) = �" mXj=1 k�ijkgij + (ui _hj�ij � uj _hi�ji)�Bi# :To show that u
 is the stationary solution we have to prove R(u
; : : : ; u
) = 0.Sin
e the parti
les are not moving and the smoothing length hi is independent17



of time �ij = 0 for all i; j 2M and due to the 
onsisten
y of the numeri
al 
uxfun
tion gij with the Lagrangian 
ux fun
tion whi
h we have already assumedwe get gij = F (u
):nij. Now we use the result (13) of the Proposition (7)mXj=1 �ij = � Z
(t)r	idxand the 
onsisten
y 
ondition for the dis
retization Bi(t) of the boundary termto getR(u
; : : : ; u
) = ��Z
(t) F (u
)r	idx� Z�
(t) F (u
)	i:n ds� :Re
alling the use of Gauss theorem, we 
an write the above equation asR(u
; : : : ; u
) = ��Z
(t) F (u
)r	idx� Z
(t)r:(F (u
)	i)dx� :We rearrange the terms of this equation to obtainR(u
; : : : ; u
) = ��Z
(t) F (u
)r	i �r:(F (u
)	i)dx� :Now using the produ
t rule of di�erentiation, we getR(u
; : : : ; u
) = � Z
(t)(�1)(r:F (u
))	idx (15)whi
h leads to R(u
; : : : ; u
) = 0: (16)
2.1 Redu
tion into One DimensionSin
e we take model problem in one dimension whi
h we will dis
uss later, wewant to redu
e the equation of motion, we have derived, into one dimension.Suppose the domain in one dimension be 
(t) = (a(t); b(t)): The equations ofmotion in one dimension areddt(uiVi) = � mXj=1 hj�ijjgij + (ui _hj�ij � uj _hi�ji)i +Bi; (17)18



ddtxi(t) = z(t; xi)with initial 
onditions u0i = 1Vi(0) Z
(0)	i(0; x)dxfor i = 1; : : : ; m along with the pres
ribed boundary 
onditions whi
h we willlater dis
uss in details. Here Bi(t) is the dis
retization of the boundary termB(t; i) = R�
(t)(uz � F (u))	i:n ds.Sin
e ds is the element of the boundary of a one dimensional domain, we haveds = dÆa(t) + dÆb(t) where dÆ is the point measure in one dimension. Then theGauss theorem in one dimension gives B(t; i) = � [(F (u)� uz)	i℄b(t)a(t), where[(F (u)� uz)	i℄b(t)a(t) = (F (u)� uz)	ijb(t) � (F (u)� uz)	ija(t). Hen
e in onedimension Bi(t) is just the dis
retization of � [(F (u)� uz)	i℄b(t)a(t). In the 
aseof 
onstant smoothing length whi
h simply means _hi = 0; 8i 2 M; theequation of motion is ddt(uiVi) = � mXj=1 j�ijjgij +Biwith the similar initial and boundary 
ondition as in the general 
ase. If weuse the expli
it Euler dis
retization for equation (17) for the time derivative,we get(uiVi)n+1 = (uiVi)n � Æt" mXj=1 �j�nijjgnij + uni _hnj �nij � unj _hni �nij��Bni # :Remark 9 In one dimension we 
onstru
t gij from a numeri
al 
ux fun
tion~g(t; x; u; y; v) whi
h is 
onsistent with Lagrangian 
ux fun
tion G(t; x; u) forall t � 0 and x; y 2 R and u; v 2 Rp. Then we de�ne gij byg(t; xi; ui; xj; uj; nij) = (~g(t; xi; ui; xj; uj) if nij = 1�~g(t; xj; uj; xi; ui) if nij = �1:3 Finite Volume S
heme as a Limit of FVPMIn this se
tion we want to show how the spe
ial 
hoi
e of a partition of unityleads to a �nite volume s
heme. Suppose the domain 
(t) = (a(t); b(t))19



be subdivided into equal 
ells (intervals) (x0; x1℄; (x1; x2℄; : : : (xm; xm+1) wherex0 = a(t) and xm+1 = b(t). We will take Æx as the length of every subinterval.We 
hoose the regular distribution of the parti
les, ea
h parti
le pla
ed in themiddle of the 
ell and the partition of unity is indu
ed by the family of theindi
ator fun
tions fIi : i 2 Mg where Ii is the indi
ator fun
tion of the ith
ell and M = f0; 1; : : : ; m+ 1g. Here by family we mean the set of fun
tions.Thus Ii(t; x) = (1 if x 2 (xi�1 + Æx2 ; xi+1 � Æx2 ℄;0 elsefor i = 1; : : : ; m and for i = 0 and m+ 1, we have,I0(t; x) = (1 if x 2 (x0; x1 � Æx2 ℄;0 elseand Im+1(t; x) = (1 if x 2 (xm+1 � Æx2 ; xm+1);0 elseOur aim here is to 
ompute the geometri
 
oeÆ
ients �ij and �ij for the par-tition of unity formed by the family of indi
ator fun
tions with the help ofpartition of unity formed by the family of hat fun
tions. We will prove someLemmas 
on
erning the 
omputation of 
oeÆ
ients �ij and �ij for the partitionof unity formed by hat fun
tions and we will show that the partition of unityformed by the family of regular indi
ator fun
tions is the limiting 
ase of thepartition of unity formed by the family of regularly spa
ed hat fun
tions whenh ! Æx=2. Here, by regular parti
les, we mean that the parti
les are pla
edregularly in 
(t). To form the partition of unity from the hat fun
tions wewill take the kernel fun
tion w as in the �rst se
tion, de�ned byw(x) = 8><>:x+ 1 if x 2 (�1; 0℄;�x + 1 if x 2 [0; 1℄;0 elsethen, set wi(t; x) = w�x(t)� xi(t)h(t) � :The parti
les are then de�ned by	i(t; x) = wi(t; x)�(t; x)20



where �(t; x) = mXi=1 wi(t; x):Here we de�ne the k-intera
tion of the parti
lesDe�nition 10 If the k pairwise distin
t parti
les 	i1(t; x); : : : ;	ik(t; x) hasthe property that �(supp(	i1) \ � � � \ supp(	ik)) > 0 then we will speak ofk-intera
tion where � is the Lebesgue measure in R1.Sin
e in one dimension it is ne
essary that at least two neighboring parti
lesshould intera
t to form the partition of unity we de�neDe�nition 11 The family of partition of unity f	i(t; x) : i 2Mg will be 
alledminimal overlapping family of partition of unity if there is no 3-intera
tionamong the parti
les and 	i(t; x)	j(t; x) = 0 for all x 2 �
(t) and for alli; j 2M; i 6= j and for all t � 0.The immediate 
onsequen
e of Lemma 6 in one dimension is thatLemma 12 If the family of partition of unity is minimal overlapping then,for i 6= j, �ij 
an be given by the formula,�ij = 2 Z
(t)	i�	j�x dx: (18)Proof: Sin
e the family of partition of unity is minimal overlapping, we getZ�
(t)	i	jn ds = 0:Now the result follows by using the formula of �ij given in Lemma 6De�nition 13 A minimal overlapping family of partition of unity with parti-
le independent smoothing length h(t) formed by regularly spa
ed hat fun
tionsordered a

ording to their positions on the x-axis will be 
alled a regular par-tition of unity. 21



Sin
e for the regular partition of unity the parti
les are ordered a

ordingto their positions in the x-axis, interse
tion of supports of two neighboringparti
les 
an be taken as an interval, if it is not empty. We prove the followingassertions for the regular partition of unity we have just de�ned.Lemma 14 In the 
ase of regular partition of unity the geometri
 
oeÆ-
ients �ij are simply given by�ij = 8><>:1 if j = i + 1;�1 if j = i� 1;0 else:Proof: Assume that two parti
les 	i and 	j intera
t whi
h means �(supp(	i)\supp(	j)) > 0. If i = j, �ii = 0 for all i by the de�nition of �ij. If i 6= j then	i+	j = 1 if x 2 supp(	i)\ supp(	j). When the family of partition of unityis minimal, we 
an use the formula (18)�ij = 2 Z
(t)	i�	j�x dxHen
e �ij = 2 Z
(t)(1� 	j)�	j�x dxSin
e the parti
les are ordered we 
an assume [s1; s2℄ = supp(	i) \ supp(	j),then �ij = 2[	j � 12	2j ℄s2s1 = 8><>:1 if j = i + 1�1 if j = i� 10 else:First we take the smoothing length h = Æx and then the partition of unityformed by the family of regular hat fun
tions will tend to the partition of unityformed by the family of regular indi
ator fun
tions when h! Æx2 ; h � dx. Forthe following Lemma we will write 	i(t; x; h), �ij(t; h); wi(t; x; h) and �ij(t; h)to represent the expli
it dependen
e of 	i; �ij; wi and �ij on h.Lemma 15 For the regular partition of unity	i(t; x; h) = 8>>><>>>:x�xi+h2h�Æx if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;�x+xi+h2h�Æx if x 2 (xi+1 � h; xi + h℄;0 else:22



for Æx2 � h � Æx and 	i(t; x; h)! Ii(t; x)almost everywhere when h! Æx2 , h � Æx.Proof: First we take the parti
le 	i(t; x; h) for 1 � i � m and h � Æx	i(t; x; h) = 8>>>><>>>>: wi(t;x;h)wi�1(t;x;h)+wi(t;x;h) if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;wi(t;x;h)wi+1(t;x;h)+wi(t;x;h) if x 2 (xi+1 � h; xi + h℄;0 else:Now wi�1(t; x; h) + wi(t; x; h) = 2h� Æxh if x 2 (xi � h; xi�1 + h℄and wi+1(t; x; h) + wi(t; x; h) = 2h� Æxh if x 2 (xi+1 � h; xi + h℄:Thus, the parti
le fun
tion 	i is given by	i(t; x; h) = 8>>><>>>:x�xi+h2h�Æx if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;�x+xi+h2h�Æx if x 2 (xi+1 � h; xi + h℄;0 else:If h ! Æx2 , the intervals, (xi � h; xi�1 + h℄ and (xi+1 � h; xi + h℄ are empty.Hen
e 	i(t; x; h)! Ii(t; x)almost everywhere when h ! Æx2 . The similar reasoning holds for i = 0 andi = m + 1.When we de
rease the smoothing length, how the partition of unity formed bythe family of regularly spa
ed hat fun
tions with Æx2 � h � Æx, approximatethe partition of unity formed by the family of indi
ator fun
tions of ea
h 
ell
an be seen in the Figures (3). 23
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tions with greater andlower smoothing lengthWe have already shown that�ij(t; h) = 8><>:1 if j = i + 1;�1 if j = i� 1;0 else:Hen
e �ij(t; h) are independent of h for regular partition of unity and so we
an de�ne �ij(t; Æx2 ) = limh! Æx2 �ij(t; h):Lemma 16 For the regular partition of unity�ij = (h+Æx6h if j = i + 1,and j = i� 10 elsefor all i; j 2M; i 6= j and Æx � h � Æx2 .Proof: Here, �ij(t; h) are de�nded by�ij(t; h) = Z
(t) 	i(t; x; h)�(t; x; h) �wj(t; x; h)�h dx24



Suppose j = i� 1. Using the �rst result of Lemma 15�ij(t; h) = Z xi�1+hxi�h (x� xi + h)(2h� Æx)2 (x� xi�1)h dx:A simple 
omputation shows that�ij(t; h) = h+ Æx6h :We 
an use similar 
omputation for j = i+ 1 and the other 
ases are obvious.Hen
e, using h! Æx=2 we get, �ij = 12 , for the partition of unity formed by thefamily of indi
ator fun
tions. We are interested here to 
hange the smoothinglength hi(t) a

ording to the 
ompression and the expansion of the domain dueto the movement of the boundary but independent of all parti
les. Therefore,we 
an write h(t) for hi(t) and thus h(t) = (b(t)� a(t))=m; where m+1 is thenumber of parti
les we use for 
omputation. Then _h(t) = (vb(t) � va(t))=m.Here b(t) and a(t) are the positions and vb(t) and va(t) are the velo
ities ofthe right and left boundary respe
tively. The parti
le velo
ity-�eld z(t; x) is
hosen in su
h a way that the parti
les are always equidistant and the fun
tionz(t; x) satis�es z(t; x) = (va(t) for x = a(t) andvb(t) for x = b(t):The equation of motion for variable smoothing length is given byddt(uiVi) = �m+1Xj=0 hj�ijjgij + (ui _hj�ij � uj _hi�ij)�Bii (19)where Bi(t) is the dis
retization ofBfv(t; i) = limh! Æx2 Z�
(t)(uz � F (u))	i(t; x; h):n ds= limh! Æx2 [(uz � F (u))	i(t; x; h)℄b(t)a(t):Here we 
an set Bi(t) = 0 for i = 1; : : : ; m be
ause we havelimh! Æx2 [(F (u)� uz)	i(t; x; h)℄b(t)a(t) = 025



for i = 1; : : : ; m. Now using the values of �ij and �ij in the equation of motion(19) and using the 
onstru
tion of the numeri
al 
ux fun
tion as des
ribed inremark 9 the equation of motion for regular partition of unity is redu
ed toddt(uiVi) = �[~gi;i+1 � ~gi�1;i + _h(t)2 (2ui � ui�1 � ui+1)℄ +Biddt(xi) = z(t; xi)Vi(t) = h(t)for i = 0; : : : ; m+1, with initial 
ondition u0i = u0(xi) and boundary 
onditionsv(t; x0) = va(t) and v(t; xm+1) = vb(t). Here, the term _h(t)2 (2ui � ui�1 � ui+1)in the s
heme 
an work as the anti-di�usive or di�usive agent a

ording as thesign of _h. However, this probably does not a�e
t the stability of the s
hemeas long as the integral limt!1 Z t0 _h(s)dsstays 
lose to zero whi
h is 
ertainly true for small h and slow periodi
 
hangeof h.4 Modeling and Model ProblemWe have a 
ylindri
al tube of length L �lled with gas and a piston is movingba
kward and forward in the left side of the tube whereas the right side is kept�xed on the wall. (see Figure 4)
PSfrag repla
ements p v

n n
Figure 4: Model problem for the linear equations of a
ousti
sIn the Figure 4, p, v and n represents pressure, velo
ity and outer normalrespe
tively. When the piston will start moving forth the waves of pressure26



will be propagated sin
e the gas inside the tube will be 
ompressed. Indeed,when the piston is moving ba
k and forth the gas will be somewhere 
ompressedand somewhere rare�ed inside the tube giving the variation of pressure insideit. Be
ause of axial symmetry, we just treat this problem as one-dimensionalproblem. To fa
ilitate the exa
t solution, we have 
hosen that the piston ismoving ba
kward and forward with 
onstant velo
ity. More natural 
hoi
ewould be a smooth motion. Then we will see the wave of velo
ity and pressurerunning to the right boundary and re
e
ting ba
k after they hit the rightboundary. The position and velo
ity of the piston with respe
t to time isvisualized in the Figure 5.
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Figure 5: The position and velo
ity of the pistonThis type of physi
al problem 
an be modeled by the linearized isentropi
 Eulersystems in one dimension if the velo
ity of the piston is mu
h less than the ve-lo
ity of the sound. Our aim is to apply the numeri
al s
heme we have derived(i.e. FVPM) for the isentropi
 Euler equations in one dimension linearizedaround some 
onstant solution in the 
ase of moving boundary to 
ompute thevelo
ity and pressure inside the 
ylinder at any time t and 
ompare the resultwith �nite volume 
ase and �nite di�eren
e 
ase. The isentropi
 Euler systemin one dimension is given by� ��v �t + � �v�v2 + p �x = 0: (20)
27



Where � is the density, v is the velo
ity and p is the pressure. Now we use the
onstitutive relation p = 
�k to write down the above equation in the form�p�t + v �p�x + kp�v�x = 0; �v�t + v �v�x + (p
 )�1=� �p�x = 0:We wish to 
onsider the equations satis�ed by a small perturbation of the
onstant solution p(t; x) = p0 and u(t; x) = 0. Thus we look for the perturbedpressure and the velo
ity of the form p(t; x) = p0+ ~p and u(t; x) = ~v+0. Sim-ilarly the velo
ity of the piston is also mu
h less than the velo
ity of sound.That is, jz(t; x)j is mu
h less than the velo
ity of the sound. We also introdu
e
0 =pp0(�0) the sound speed in the gas. We have the relation p0(�) = 
����1:Now if we linearize the isentropi
 Euler equation around p(t; x) = p0 andv(t; x) = 0 we get the linear system�~p�t + kp0 �~v�x = 0; �~v�t + (p0
 )�1=� �~p�x = 0:If we remove the tilde and write the above equation as a system we get�u�t + A�u�x = 0where A = � 0 kp0(p0
 )�1=� 0 � and u = � pv � :We have the following initial and boundary 
onditionsv(t; a(t)) = va(t)v(t; 1) = 0v(0; x) = 0p(0; x) = 1where a(t) and va(t) are the position and velo
ity of the piston respe
tively withrespe
t to time. We want to make the equation dimensionless, and therefore,introdu
e the following dimensionless variables �t = tT ; �x = xL ; �p = p�p0 ; �v = TvL .Then the above system be
omes ��p��t + ��v��x = 0��v��t + (p0
 )�1=��p0T 2L2 ��p��x = 0:28



But the sound speed is given by 
20 = �p0(p0
 )�1=�: Therefore, using 
20 =�p0(p0
 )�1=� we get ��p��t + ��v��x = 0��v��t + 
0T 2L2 ��p��x = 0:If we 
hoose T and L su
h that 
20T 2L2 = 1, that is , we s
ale the 
hara
teristi
speed to one and remove the bar and use the same symbol p, v, x and t again,our system be
omes �u�t + A�u�x = 0where A = � 0 11 0 � and u = � pv � : (21)We want to solve this equation in the 
ase of moving boundary as des
ribedabove with the given initial value and boundary values. The speed of thepiston is taken to be mu
h less than one.4.1 Derivation of Numeri
al FluxIn this subse
tion, we want to derive the numeri
al 
ux fun
tion for FVPMand upwind s
heme. In the 
ase of FVPM, our numeri
al 
ux fun
tion whi
his given by gij = g(t; xi; ui; xj; uj; nij) should be 
onsistent with the Lagrangian
ux-fun
tion G(t; x; u) = F (u)� uz(t; x) where F (u) = Au and z(t; x) is thevelo
ity-�eld of the parti
les. For FVPM and �nite di�eren
e s
heme, we wantto take the upwind numeri
al 
ux fun
tion 
onsistent with G(t; x; u) and F (u)respe
tively. To derive the numeri
al 
ux fun
tion we need to analyze theeigenvalues of the matrix (A� zI), whereA = � 0 11 0 �and I is the 2 by 2 identity matrix. The velo
ity-�eld of the parti
les is 
hosenas follows: z(t; x) = (va(t) for x = a(t) and0 for x = 129



and we 
hoose the velo
ity-�eld of parti
les inside the domain by using someinterpolation between these values. This is natural sin
e one of our boundaryis moving and we 
an imagine the parti
les to be 
ompressed and expandeddue to the movement of the boundary as the 
ompression and expansion of aspring from one side. Now let us set ~A = (A� zI) and hen
e the eigenvaluesof ~A are �1 = 1� z and �2 = �1� z. Sin
e we have s
aled the 
hara
teristi
speed to one, the velo
ity of the parti
les should be mu
h less than one andthus the eigenvalues satisfy 1� z > 0 and �1� z < 0. In the upwind methodone-sided sten
il points in the 'upwind' dire
tion from whi
h the 
hara
teristi
information propagates. Thus when applying upwind s
heme to the linearsystem with eigenvalues of mixed signs, we should take into a

ount the 
orre
tdire
tion of propagation and the sten
il should also point to this dire
tion. Thisis exa
tly the Godunov method applied to linear system whi
h is dis
ussed in[8℄. Sin
e the 
hara
teristi
 speed of the system is both negative and positive,we have to de
ompose the matrix ~A into two matri
es ~A+ and ~A�, so that~A+ has only positive eigenvalues and ~A� has only negative eigenvalues and~A = ~A+ + ~A�. Here the 
hara
teristi
 lines go into both dire
tions and hen
ethe information is propagated towards both dire
tions. That is why we 
annot pres
ribe both pressure and velo
ity on the same boundary. Only one 
anbe pres
ribed on one boundary. Indeed, if we pres
ribe both variables on theboundary x = 0, the solution does not exist in the 
ase of negative eigenvaluesof the matrix ~A. We take the matrix R 
onsisting of right eigenve
tors of ~Aordered in the same way as the eigenvalues. ThenR = � 1 11 �1 � and R�1 = � 1 11 �1 � :Now we get R�1 ~AR = � = diag(1� z;�1 � z). Multiplying the right side ofthis equation by R�1 and the left side by R, we get, ~A = R�R�1. Assumethat for the eigenvalues �1 and �2 of the matrix ~A, �+i = max(�i; 0) and��i = min(�i; 0). We de�ne ~A+ = R�+R�1 and ~A� = R��R�1 where �+ =diag(�+1 ; �+2 ) and �� = diag(��1 ; ��2 ). Then�+ = � 1� z 00 0 � and �� = � 0 00 �1� z � :Hen
e we get,~A+ = (1� z(t; x))2 � 1 11 1 � and ~A� = (1 + z(t; x))2 � �1 11 �1 � :30



The matri
es ~A+ and ~A� has the required properties as asserted above. Nowwe de�ne ~g(t; xi; ui; xj; uj) = ~A+ui + ~A�uj. Hen
e the numeri
al 
ux fun
tionfor FVPM is de�ned byg(t; xi; ui; xj; uj; nij) = (~g(t; xi; ui; xj; uj) if nij = 1�~g(t; xj; uj; xi; ui) if nij = �1:This numeri
al 
ux fun
tion is 
onsistent with Lagrangian 
ux fun
tion F (u)�uz. The 
onsisten
y is 
lear sin
e g(t; x; u; x; u; n) = (F (u) � uz)n: Thenumeri
al-
ux for the upwind di�eren
e s
heme 
an be obtained by simplysetting z(t; x) = 0. Thus the numeri
al 
ux fun
tion for upwind di�eren
es
heme is given by g(ui; ui+1) = (A+ui + A�ui+1)where ~A+ = 12 � 1 11 1 � and ~A� = 12 � �1 11 �1 � :5 Treatment of Boundary Conditions5.1 Method of Chara
teristi
sThe term Bi(t) is an approximation of boundary term B(t; i) = R�
(t)(u 
z � F (u))	i:n ds, i.e., the boundary term should be 
omputed by using thevalue of the solution on the boundary at every time-step. For our modelproblem only the velo
ity is pres
ribed on the boundary and the pressure is notknown. Therefore we have to use some te
hniques to extra
t the pressure on theboundary. We 
an use the information from 
hara
teristi
s to get the pressureon the boundary, whi
h 
an be obtained by following the 
hara
teristi
 lineone time-step ba
kward. Sin
e we know the solution on 
(t) at time t = T�Ætwe 
an tra
e ba
k following the 
hara
teristi
 line and get the pressure on theboundary at time t = T . However, the numeri
al experiments shows that thismethod is quite sensitive to the approximation of the boundary values andfor our model problem as soon as the parti
le distribution is quite irregularwe see the strange behavior around the boundary whi
h is due to the poorapproximation of the pressure on the boundary by this method. The problem
an be seen in Figure 6. In the Figure 6 the upper wave is the pressure waveand the lower wave is the velo
ity wave. The numeri
al experiment also shows31



that this method is more sensitive with respe
t to time-step in 
omparisonto other methods whi
h we will dis
uss later. The value of pressure whi
h isapproximated by the method of 
hara
teristi
 on the boundary along with thepres
ribed velo
ity is given by the formula� p(t; 1)v(t; 1) � = � p(t� dt; 1� dt) + v(t� dt; 1� dt)0 � (22)for the boundary x = 1 and� p(t; a(t))v(t; a(t)) � = � p(t� dt; a(t) + dt)� v(t� dt; a(t) + dt) + va(t)va(t) � (23)for the boundary x = a(t). Now the value of Bi(t) is 
omputed by using thesevalues in the expressionZ�
(t)(u
 z � F (u))	i:nds:
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Figure 6: Problem on the boundary in the 
hara
teristi
 methods5.2 Ba
kward MethodSin
e in some 
ases the method of 
hara
teristi
 will not give the result withdesired a

ura
y and may be diÆ
ult to apply, the boundary values of thevariable whi
h are not pres
ribed on the boundary 
an also approximatedby the ba
kward method. In this method , the boundary term is 
omputedby using the values of the variables from one time-step ba
k. In this 
ase wepropose to approximate the boundary term B(t; i) = R�
(t)(u
z�F (u))	i:n ds(i.e. 
ompute Bi(t)) in the following way:32



� If the variable is not pres
ribed on the boundary, use the 
omputed valueof this variable on the boundary from one time-step ba
k.� If the variable is pres
ribed on the boundary, use the boundary valueevaluating at time t = T � Æt.However, we get the same defe
t also in the ba
kward method as in the 
har-a
teristi
 method.5.3 Boundary Parti
les or Ghost Parti
lesThere is also another approa
h to treat the boundary value problem in hy-perboli
 partial di�erential equations whi
h is more general than the methodof 
hara
teristi
s and ba
kward methods. We 
an introdu
e extra parti
lesnear the boundary to maintain the boundary 
ux and then the boundary term
an be 
ompletely dropped. The parti
les whi
h are pla
ed nearest to theboundary are more important than the other parti
les for the treatment ofthe boundary 
onditions, sin
e they 
arry the boundary information in thenumeri
al s
hemes. We will 
all them either boundary parti
les if they are in-side the domain or on the boundary, or the ghost parti
les if they are outsidethe domain. In FVPM, we 
an use either the ghost parti
les or the boundaryparti
les to approximate the boundary term. We partition the 
olle
tion ofindi
es M of all parti
les into two disjoint sets N and D, M = N [ D, su
hthat i 2 D means the parti
le 	i is the ghost parti
le or the boundary parti
leand i 2 N means that 	i is inner parti
le (i.e. not ghost parti
le or boundaryparti
le). One 
an pres
ribe the parti
le properties for the ghost parti
le orthe boundary parti
les in su
h a way that the given boundary 
onditions areful�lled. We have implemented this idea and this 
an easily be generalized tohigher dimensional problems and even non-linear 
ases. We 
hoose the parti
leproperties for the ghost parti
les or the boundary parti
les in su
h a way thatthe re
onstru
ted solution~u(t; x) =Xi2M 	i(t; x)ui(t)satis�es the boundary 
onditions. Thus after the introdu
tion of the boundaryparti
les or the ghost parti
les our numeri
al FVPM s
heme in one dimensionbe
omes ddt(uiVi) = �m+1Xj=0 hj�ijjgij + ui _hj�ij � uj _hi�jii33



for i = 1; : : : ; m where we introdu
e the new parti
les at x0 and xm+1. HereM = f0; : : : ; m+1g, N = f1; : : : ; mg and D = f0; m+1g. In the 
ase of ghostparti
les x0 and xm+1 will lie outside the domain but near the boundary andin the 
ase of boundary parti
les x0 and xm+1 will lie exa
tly on the boundary,or inside the domain. We update the parti
le properties inside the domain forall parti
les ex
ept boundary parti
les or the ghost parti
les by the numeri
als
heme and we use the boundary 
onditions to get the parti
le properties forthe ghost parti
les or for the boundary parti
les. In one dimension it is quitesimple, however the same idea works also for higher dimensional 
ases. For theboundary parti
les or the ghost-parti
les we follow the following pro
edures:� We get the values u1; : : : ; um by the numeri
al s
hemes.� We have the interpolation formula for the solution~u(t; x) = m+1Xi=0 	i(t; x)ui(t): (24)� For all boundary parti
les or the ghost parti
les we 
hoose the parti
leproperties by solving the linear system whi
h 
omes from imposing theboundary 
onditions on (24).In this modi�
ation of the s
heme, if we introdu
e the ghost parti
les it isne
essary to extend the partition of unity in the outer neighborhood of theboundary �
(t). Indeed, the partition of unity should 
over also the ghostparti
les. However, in 
ase of boundary parti
les it is not ne
essary to extendthe partition of unity, sin
e all the parti
les stay inside �
(t) in this 
ase. Thuswe get the linear system whi
h should give parti
le properties for all boundaryparti
les or for all ghost parti
les. Sin
e generally in hyperboli
 problems theboundary 
onditions for all variables 
an not be pres
ribed, we do not get thevalue of all variables on the boundary and the linear system may be under-determined. This problem 
an be over
ome in some 
ases where the boundary
onditions for the variables whi
h are not pres
ribed on the boundary 
anbe found by using the equation itself or where the boundary values of thesevariables 
an be approximated by the methods of 
hara
teristi
s whi
h we havealready dis
ussed. However, in general 
ase one has to re
ourse to the idea ofextrapolation. We get the values of the variables whi
h are not pres
ribed onthe boundary by using the values of the variables we have inside the domainby using some extrapolation te
hniques. Also for our model problem we haveto �nd the right boundary value for the pressure, sin
e only the velo
ity is34



pres
ribed on the both boundaries. However, we �nd the boundary 
onditionsfor the pressure by using the equation itself. Using the equation (21) we get,�v�t = ��p�xand thus �v�t jx=a(t) = ��p�x jx=a(t) and �v�t jx=1 = ��p�x jx=1:Then after getting the values of all variables on the boundary, the linear systemshould be uniquely solvable. Now we have the following s
heme:ddt(uiVi) = �m+1Xj=0 hj�ijjgij + ui _hj�ij � uj _hi�jii (25)for i = 1; : : : ; m with the initial values u0i = R
(0)	i(0; x)dx=Vi(0) along withthe following boundary 
onditionsu0 = fl(u1; : : : ; um)um+1 = fr(u1; : : : ; um)where fl and fr depends on the boundary 
onditions pres
ribed for the vari-ables. The values u0 and um+1 are obtained by solving the linear system. Towrite the linear system expli
itly, let us suppose ui = (pi; vi)T , where pi andvi are the parti
le properties for the pressure and the velo
ity respe
tively.Thus we want to 
ompute pb = (p0; pm+1)T and vb = (v0; vm+1)T . Let us writeai = 	i(t; x1) � 	i(t; x0), bi = 	i(t; xm+1) � 	i(t; xm), A0 = �Pmi=1 piai andB0 = �Pmi=1 pibi. Using the numeri
al di�erentiation of the pressure at theboundary we get the 
onditions p(t; x0) = p(t; x1) and p(t; xm) = p(t; xm+1)whi
h gives Appb = (A0; B0)Twhere Ap = � a0 am+1b0 bm+1 � :To get the parti
le properties for the velo
ity at the boundary we use thesymbols A1 = va(t) �Pmi=1 vi	i(t; a(t)) and B1 = �Pmi=1 vi	i(t; 1), we havethe linear system, Avvb = (A1; B1)T35



where Av = � 	0(t; a(t)) 	m+1(t; a(t))	0(t; 1) 	m+1(t; 1) � :The numeri
al experiment shows that this method is highly robust against thevariation of time-step and the parti
le distribution. Indeed, we have alwaysused Æt = h=2, where h is the smoothing length. If we use the same time-stepand same smoothing length with same distribution of the parti
les we see theos
illation in the 
hara
teristi
 method and ba
kward method whereas we donot see any os
illation in the boundary parti
le or ghost parti
le 
ase whi
h
an be seen in the Figure 7. The solution os
illates when the piston was re-turning ba
k. The idea of putting the boundary parti
les or the ghost parti
lesis a natural generalization of the similar idea in �nite volume method to ap-proximate the boundary term. However, putting the ghost parti
les may beproblemati
 if the 
omputational domain is 
ompli
ated. If the two boundariesof the domain are very near and we have to put the ghost parti
les for both ofthem, we have to be very 
areful about the intera
tion of the ghost parti
lesof the two boundaries.
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Figure 7: Os
illation in 
hara
teristi
 method6 Numeri
al ResultsIn this se
tion we will present all the numeri
al solutions we have 
omputedby using di�erent s
hemes. Indeed, we have 
ompared the numeri
al resultsfrom �nite di�eren
e s
heme, �nite volume s
hemes and FVPM. We have also
ompared various results from FVPM exploiting its 
exibilities. In all of the36



�gures below the wave up is the pressure-wave and the wave down is thevelo
ity-wave. Sin
e �nite di�eren
e s
heme is the simplest of all the s
hemes,�rst of all, we implement the �nite di�eren
e methods for our model problem.6.1 Numeri
al Results from Finite Di�eren
e S
hemeWe use the upwind numeri
al 
ux fun
tion that we derived in se
tion 4.1.When applying the �nite di�eren
e method in moving boundary one has to
hange the mesh at every time step. Here, instead of re-meshing whole domainat every time, we only 
hange the mesh in the neighborhood of the movingboundary. When the boundary is moving forward or ba
kward, we delete themesh-point nearest to the boundary, if the distan
e of this point from theboundary is less than the half of the grid-size and otherwise, keep it. Sin
ewe �x the grid, we may need the information from some points behind theboundary. This we have obtained by some extrapolation. We also implementthe other s
heme, whi
h is similar to the above method in all respe
ts, ex
eptthat it always uses one point exa
tly on the boundary and hen
e it is notne
essary to use the extrapolation in this method. This method will deform thesten
il around the moving boundary. Both of the s
hemes seem to be equallye�e
tive and we have presented the numeri
al results from these s
hemes in thefollowing �gures. In fa
t, we implemented also some other te
hniques, amongwhi
h, re-meshing around the moving boundary seems to be the best 
hoi
e.The pressure and the velo
ity waves run from the left moving boundary untilthey rea
h the right boundary and they re
e
t ba
k. The Figure 8 shows howthe sten
il looks like around the boundary in both s
hemes. It is 
lear from the�gure that we need to extrapolate the value in the �rst s
heme at one point,sin
e the sten
il demands the value at that point.
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Figure 8: The sten
il for both s
hemes
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Figure 9: When we do not use the point exa
tly on the boundary
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Figure 10: When we use the point exa
tly on the boundaryIn the Figure 9, we have plotted the result of the s
heme whi
h does notuse the point exa
tly on the boundary, but use the boundary-information byextrapolation. In the Figure 10, we have plotted the results of the s
hemewhi
h always uses the point from the boundary and so we do not need to doextrapolation. The numeri
al results are derived using 200 points in spa
eand CFL 0:5. The plotted solution is at the time t = 1:186: Although we donot see any di�eren
e in the results from these two di�erent te
hniques here,if we plot the results at the time when the wave is just moving ahead of thepiston or just returning ba
k we 
an see that the extrapolation 
an 
ause smallos
illation around the jump whi
h 
an be seen from the Figures 11 and 12.That is why it is advisable to use the points on the boundary rather than �xthe grid and use extrapolation. To show the di�eren
e more 
learly we haveused only 100 grid points here and we plot the solution at time t = :6 whenthe piston was just returning ba
k. If we 
ompare the Figure 11 with Figure12 we see a small os
illation of the solution near the left jump in the Figure11, whi
h is due to the extrapolation. However, the os
illation will die downafter some time.
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Figure 11: When we do not use the point exa
tly on the boundary
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Figure 12: When we use the point exa
tly on the boundary
6.2 Numeri
al Results from FVPMIn this se
tion we want to present the numeri
al results from FVPM. Sin
ethere are a lot of 
exibilities one 
an implement in FVPM, we have also usedseveral methods whi
h we want to dis
uss here. Flexibilities in FVPM are dueto the followings:� Treatment of the boundary 
onditions40



� Smoothing length� Parti
le-distribution� Velo
ity-�eld of the parti
lesHere we want to 
on
entrate on the �rst three items. In fa
t, in our opinion thevelo
ity-�eld of the parti
les does not in
uen
e the solution too mu
h if one
hooses a reasonable velo
ity-�eld. In se
tion 4.1, we have already dis
ussedhow we 
hoose our velo
ity-�eld. For all numeri
al results we have presentedhere we have used the expli
it Euler dis
retization for the time derivative.Thus the numeri
al s
heme we have derived in se
tion 2 looks like(uiVi)n+1 = (uiVi)n � Æt" mXj=1 �j�nijjgnij + uni _hnj �ij � unj _hni �nij��Bni #ddtxi(t) = z(t; xi); and Vi(t) = Z
(t)	i(t; x)dx: (26)All the numeri
al simulations are performed by using the partition of unityformed by the hat fun
tion with the parti
le independent smoothing length.Even we have used 
onstant smoothing for almost all simulations unless westate expl
itly that we have used adaptive smoothing length, whi
h is alsodepending only on time (not on parti
les). We have already dis
ussed thispartition of unity in the �rst se
tion. In this 
ase, we 
ompute �ij, Vi, �ijand xi exa
tly. Therefore, it is not ne
essary to dis
retize these equationshere. However, one 
an do similar dis
retization for them also. All numeri
alresults presented in this se
tion are obtained by using 200 regularly spa
edparti
les in the domain 
(t) and the result at time t = 1:186 is plotted in the�gures. We have used the time-step Æt = h=2 where h is the smoothing length.The smoothing length in the 
ase of regularly distributed parti
les is takento be the distan
e between two neighboring parti
les whereas in the 
ase ofirregularly distributed parti
les we 
hoose dm=2 < h < dm where dm is themaximal distan
e between two neighboring parti
les. In the Figure 14, we haveplotted the di�eren
e in the solution between the 
hara
teristi
 method andthe boundary parti
le method. Although we do not see the di�eren
e betweenthese methods if we plot the solution as in the Figure 13, their di�eren
e isquite high in the neighborhood of the sho
k whi
h we 
an see in the Figure14. We will see whi
h method is better when we present the plot of the errorsin various methods in later subse
tion.
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Figure 13: Exa
t and numeri
al solution from the method of boundary parti-
les
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Figure 14: Di�eren
e in the solution between 
hara
teristi
 method and bound-ary parti
les methodWe have presented the numeri
al result from the �nite volume s
heme we havederived in se
tion 3 in the Figure 15. This is just the parti
ular 
ase of theFVPM when we 
hange the smoothing length adaptively and use the partitionof unity formed by regularly spa
ed indi
ator fun
tions. The numeri
al simu-lation is performed using 200 spatial points and we plot the solution at timet = 1:186. All of the results we have presented here seem to be quite 
ompara-ble with �nite volume method. Although we do not see any di�eren
e in thesemethods we will see some di�eren
e when we analyze the errors between exa
tsolution and the numeri
al solution in di�erent 
ases.42
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Figure 15: The exa
t solution and numeri
al solution from �nite volumemethod6.3 Comparison of Errors in Di�erent MethodsNow we want to present some plot of the errors in various methods we haveimplemented so far. In fa
t, we plot E = juexa
t�unumeri
alj against the pointswhere we 
ompute them. For all numeri
al results we get the solution using200 degrees of freedom. In the Figure 16, we have 
ompared the errors betweenthe �nite volume method and �nite di�eren
e method. The error plot showsthat the �nite volume s
heme gives better resolution than the �nite di�eren
es
heme. Therefore, from now on we will 
ompare the FVPM only with �nitevolume methods.
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Figure 16: Error plots from �nite volume method and �nite di�eren
e method43



We 
an see in the Figure 17 that the errors are large where there is jump in thesolution and the error is almost zero in the 
onstant part for di�erent s
hemes.
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Figure 17: Error plots of di�erent s
hemesThis error plot shows that the �nite volume method gives the best sho
kresolution whereas the 
hara
teristi
 method and boundary parti
le 
ases arealso quite 
omparable to �nite volume method.6.4 Comparison between Regular Parti
les and Irregu-lar Parti
lesWe do not get mu
h di�eren
e in the 
ase when the parti
les are regularly dis-tributed between the �nite volume methods and FVPM. The power of FVPMis that we 
an easily use irregularly spa
ed parti
les. Therefore, we want to
ompare the numeri
al results between the irregularly distributed parti
lesand regularly distributed parti
les. The irregularly distributed parti
les aregenerated by the fun
tion y = x5=4 initially, and thus the parti
les are densenear the moving boundary and sparse near the �xed boundary. The parti
ledistribution in the irregular 
ase for 20 parti
les is visualized in Figure 18.
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Figure 18: Parti
le distribution in irregular 
aseThe irregularly distributed parti
les give a little bit better sho
k resolution nearthe moving boundary (i.e. where the parti
les are dense) and not better sho
kresolution near the �xed boundary (i.e. where the parti
les are sparse) whi
his quite interesting. This shows that we 
an probably in
rease the a

ura
yof the result lo
ally by in
reasing the number of parti
les in this region. This
an be seen from the Figure 19.

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
regular particles  
irregular particles
exact solution     

Figure 19: Comparison between regular and irregular parti
les6.5 Constant Smoothing Length and Variable Smooth-ing LengthThe 
hoi
e of parti
le velo
ity is 
exible in FVPM. If we take the parti
lesto be spatially �xed, we get _xi = 0 for i = 1; : : : ; m and for all t � 0. Theneven _Vi = 0 for ea
h parti
le if the smoothing length is also taken to be45




onstant. However, we are interested in moving parti
les, that is, in the 
asewhen the parti
le-positions are 
hanging with respe
t to time. When we movethe parti
les either with the velo
ity-�eld of the 
uid or any other way andif we adhere to the �xed smoothing length, the diÆ
ulty may arise if thereare more parti
les 
on
entrated on some parts of the domain or there are fewparti
les in other parts. If there are few parti
les in some part, a gap may arisein the domain if the smoothing length is not big enough and this will 
ausethe partition of unity to break down. The partition of unity will break downif there is some point x in the domain su
h that x =2 supp(	i) for all i 2 M .On the other hand if there are many parti
les 
on
entrated on some part ofthe domain there will also be a many intera
tions of the parti
les in this partif the smoothing length is not small enough and this will in
rease the 
ostof 
omputation (two parti
les will intera
t with ea
h other if their supportsinterse
t). This problem leads to the idea of 
hanging the smoothing lengthin an adaptive way su
h that we 
an avoid the gap in the domain and theparti
le-intera
tions 
an be kept under a 
ertain level. The idea of 
hangingthe smoothing length in an adaptive way 
an also in
rease the a

ura
y of thenumeri
al solution whi
h 
an be seen in Figure 20. In this Figure we havepresented the 
omparison of errors between adaptive smoothing length and
onstant smoothing length. In adaptive 
ase, we 
hange the smoothing lengthin su
h a way that there is intera
tion of only two parti
les.
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Figure 20: Comparison of errors between adaptive smoothing length and 
on-stant smoothing length
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6.6 Longer Smoothing Length and Shorter SmoothingLengthNow we 
ompare the results from shorter and longer smoothing length. Usingshorter smoothing length will redu
e the time-step, sin
e the stability 
onditionis related to the smoothing length here, and using the longer smoothing lengthwill de
rease the a

ura
y of the solution. That is why it is advisable to
hoose the smoothing length in a wise way. Now we 
ompare the results fromthe shorter and longer smoothing length. To show the 
hange in the resultsdue the 
hange in the smoothing length, we have used here 50 parti
les whosepositions are generated by the fun
tion y = x5=4 initially and the solution attime t = 1:186 is plotted in the Figure 21. Instead of giving the smoothinglength to determine the time-step we use the same time step for both 
ases.That is, we use Æt = 0:8dx2 . Here dx means the maximum of distan
es betweenthe two neighboring parti
les. We see the little steps in Figure 21 whi
h is dueto the re
onstru
tion of the solution from the formula~u(t; x) = m+1Xi=0 	i(t; x)ui(t) (27)and the stru
ture of the parti
le 	i(t; x) whi
h 
an be seen in the Figure 3.
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Figure 21: Comparison between longer and shorter smoothing length7 Numeri
al Convergen
e AnalysisIn this se
tion we want to analyze the order of our numeri
al s
heme by takingdi�erent initial and boundary values and di�erent norms. We 
ompute the47



numeri
al solution for a sequen
e of parti
le distributions and expe
t that thenumeri
al solution will approximate the exa
t solution in a better and betterway, ultimately tending to the exa
t solution when the number of parti
lesrea
hes to in�nity. We want to see the di�eren
e among various 
ases, regularand irregular parti
les, smooth and non-smooth data and also want to 
omparethe 
ases where both initial and boundary values are pres
ribed. We start withthe 
onvergen
e analysis for some simple initial value problems.Generally, we want to analyse the numeri
al order of 
onvergen
e in the Lp-norm, whi
h is de�ned for general measurable fun
tions v(x) bykvkp = �Z
(t) jv(x)jpdx�1=pso that the norm of the spatial error at the �xed time t iskE(:; t)kp = �Z
(t) jE(t; x)jpdx�1=p :Sin
e all the numeri
al methods for solving hyperboli
 problems have the in-trinsi
 numeri
al di�usion, jumps in the solution are smeared and the point-wise error in the neighborhood of the dis
ontinuity does not go to zero as thegrid is more and more re�ned. That is why we are not interested in point-wiseerror and thus Lp norm is appropriate for showing 
onvergen
e for the 
onser-vation laws. In fa
t, we will see later that the solution of our model problemdoes not 
onverge in L1-norm be
ause of the dis
ontinuity in the boundaryvalue we have used on the left boundary. Suppose the exa
t solution is denotedby u(t; x). We get the numeri
al solution by using the re
onstru
tion from theinterpolation formula, ~u(t; x) = mXi=1 	i(t; x)ui(t)and 
ompute the point-wise error E(t; x) = u(t; x)� ~u(t; x) and then we inte-grate the fun
tion jE(t; x)jp numeri
ally by taking 1000 points and 
omputethe Lp-norm by taking the pth root of the integral. Indeed, it is better to takeat least 5n points to 
ompute the numeri
al integral for the solution 
omputedby n parti
les.7.1 Convergen
e Analysis for an Initial Value ProblemIn the beginning, we take a very simple initial value problem whi
h is posed inthe full spa
e. Here we solve the linearized isentropi
 Euler equation given by48



equation (21) posed in full spa
e with smooth and non-smooth initial valueswhere we do not need the boundary 
onditions. The positions of the parti
lesare kept �xed. When simulating the full spa
e problem in 
omputer, we needto introdu
e arti�
ial boundary. Therefore, we plot the solution before thearti�
ial boundary a�e
ts our solution. For the 
ase of smooth initial value,we take the velo
ity to be initially zero and the initial pressure is des
ribed bythe fun
tion y(x) = 100w(x� 0:5), where,w(x) = 8><>:(x+ h)2 for �h � x < �h2�2x2+h22 for �h2 � x < h2(x� h)2 for h2 � x < hand h = 0:08. (see Figure 22) Indeed, the fun
tion y(x) is in C1(R). The nu-meri
al solution together with the exa
t solution at time T=0.25 are visualizedin the Figure 23. The numeri
al solution is 
omputed by using 400 irregularlyspa
ed points whose positions are generated by the fun
tion y = x5=4. Indeed,unless otherwise stated, by irregular we mean the parti
le-positions are gener-ated by the fun
tion y = x5=4 and by random we mean that the positions ofthe parti
les are generated by a random number generator. The initial wavegets separated into two waves, one of them moving forwards and other mov-ing ba
kwards with the same velo
ity. The logarithmi
 error-plot for di�erentnorms is plotted in the Figure 24. The slope of the line giving logarithmi
error-plot in the 
ase of regular and irregular parti
les for di�erent norms aretabulated in the following tables.The slopes in the 
ase of regular parti
lestypes of norms L1 L2 L3 L1slopes -0.8798 -0.8658 -0.8726 -0.9493The slopes in the 
ase of irregular parti
lesslopes -0.8676 -0.8496 -0.8558 -0.9133The slopes in the 
ase of random parti
lesslopes -0.8263 -0.7880 -0.7972 -0.8663This table shows that the order of 
onvergen
e is almost one for di�erent normsalthough the order is less for the irregular and random parti
les than for theregular parti
les. 49
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Figure 22: The initial wave
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Figure 23: Exa
t and numeri
al solution for the problem with C1-initial value

3 4 5 6 7
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

error in L1−norm       
error in L2−norm       
error in L3−norm       

error in L∞−norm

Figure 24: Logarithmi
 error-plot for smooth initial value50



Now, we want to implement our s
heme for the linearized isentropi
 Eulersystem posed in full spa
e with dis
ontinuous initial values. The initial pro�leis now a sho
k at the the point x = 0:5 and as time pro
eeds, the sho
k getsseparated into two parts, moving in opposite dire
tion. The exa
t solution andnumeri
al solution using 400 irregularly spa
ed points are visualized in Figure25. The distribution of points are generated as before. The logarithmi
 error-plot of the solution of the problem involving initial sho
k pro�le is plotted inthe Figure 26. The slopes of the lines giving logarithmi
 error-plot for di�erentnorms and for di�erent distributions of parti
les are tabulated in the followingtables. This table shows that the order of 
onvergen
e really depends on theregularity of the data we have pres
ribed.The slopes in the 
ase of regular parti
lestypes of norms L1 L2 L3 L1slopes -0.5019 -0.2534 -0.1714 -0.0333The slopes in the 
ase of irregular parti
lesslopes -0.5014 -0.2515 -0.1683 -0.0185The slopes in the 
ase of random parti
lesslopes -0.3624 -0.2110 -0.1548 -0.0134
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Figure 25: Exa
t and numeri
al solution involving initial sho
k pro�le
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k problem7.2 Convergen
e Analysis in the Case of Smooth Bound-ary ValuesTo see the e�e
t of the boundary value in the order of 
onvergen
e of the s
hemewe implement our numeri
al s
heme for the same linearized isentropi
 Eulerequation given in equation 21 with smooth boundary values. In fa
t, we 
hangethe boundary value of our model problem only in the left boundary keepingother boundary value and initial values the same as before and get the solutionin the 
ase of non-moving boundary. That is, we do not move the boundaryand impose new boundary 
onditions v(t; 0) = 1� 
os(2�t); v(t; 1) = 0. Sin
ethe boundary is kept �xed we do not 
hange the positions of the parti
les withrespe
t to time. We use the in
reasing number of parti
les as 25,50,100,200 and400 to 
ompute the numeri
al solution. The numeri
al solution from FVPMwhi
h is 
omputed by using 200 irregularly spa
ed parti
les and the exa
tsolution at time t = 1:186 are visualized in the Figure 27. The distribution ofparti
les is generated again by the fun
tion y = x5=4. The logarithmi
 errorplot for di�erent norms whi
h is visualized in the Figure 28 shows that we
an a
hieve the 
onvergen
e even in L1-norm even for irregular parti
les andthe order of 
onvergen
e in all types of norms is almost one. The slope ofthe line giving logarithmi
 error-plot in the 
ase of various norms and variousdistribution of parti
les are tabulated in the following table.
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The slopes in the 
ase of regular parti
lestypes of norms L1 L2 L3 L1slopes -1.0094 -0.9715 -0.9506 -0.9351The slopes in the 
ase of irregular parti
lesslopes -0.9494 -0.9398 -0.9288 -0.8744
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Figure 27: Exa
t and numeri
al solution of the problem with smooth initialand boundary data
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Figure 28: Logarithmi
 error plot for smooth boundary and initial data
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7.3 Numeri
al Convergen
e Analysis for our Model Prob-lemIn this subse
tion we want to give the numeri
al 
onvergen
e analysis of FVPMapplied to our model problem. As before, we use the in
reasing number of par-ti
les as 25,50,100,200 and 400 to 
ompute the numeri
al solution and expe
tthat the numeri
al solution will approximate the exa
t solution in a betterand better way. The Figure 29 shows that the numeri
al solution 
onverges tothe exa
t solution when the number of parti
les rea
hes to in�nity. In fa
t, inthe Figure 29 we have plotted the solution 
omputed with various numbers ofirregularly spa
ed parti
les. Their initial positions are generated by the fun
-tion y = x5=4 as before. In the Figure 30 we have plotted the L1-error in thelogarithmi
 s
ale. This shows that although the numeri
al solution 
onvergesto the exa
t solution when the number of parti
les rea
hes to in�nity, for themodel problem, we 
an not a
hieve the 
onvergen
e of the �rst order from thiss
heme. The slopes of the line giving the logarithmi
 error-plot in L1-norm are�0:575 and �0:545 for regular and irregular parti
les respe
tively. However,this is not the defe
t of the FVPM. We 
an see that even the �nite volumemethod, whi
h gives the best numeri
al solution as we showed above, doesnot have the 
onvergen
e of the �rst order for our model problem, whi
h isdue to the dis
ontinuity in the boundary data. The logarithmi
 error-plot inL1-norm from �nite volume method is presented in Figure 31. The slope ofthe line in the 
ase of �nite volume method is �0:588. We have already seenthat in the 
ase of smooth boundary data we 
an a
hieve the 
onvergen
e ofthe �rst order. By 
omparing the di�erent 
ases we have presented so far, we
an 
on
lude that the order of 
onvergen
e depends mainly on the regularityof the boundary and initial values while there is almost no di�eren
e betweenthe regular and irregular parti
les.
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al solution approa
hing the exa
t solutions
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 s
ale for �nite volume methodFinally, we want to 
ompare the 
onvergen
e of the numeri
al solution amongdi�erent norms. As we told earlier, the L1-norm is appropriate to analyze the
onvergen
e of any numeri
al s
heme for 
onservation laws. Sin
e even for ourmodel problem, the boundary value whi
h we have pres
ribed is dis
ontinuous,the numeri
al solution does not 
onverge to the exa
t solution in point-wisesense. Even the order of 
onvergen
e depends upon the 
hoi
e of the norms.We have presented the logarithmi
 error-plot for various norms in the Figures32 and 33 for regularly spa
ed parti
les and irregularly spa
ed parti
les respe
-tively. The slopes of the lines giving logarithmi
 error-plot in di�erent normsare tabulated in the following tables. The �gures in the table show that the
onvergen
e is almost of zeroth order for L1-norm and the order is graduallyde
reasing when we in
rease p in Lp-norm.The slopes in the 
ase of regular parti
lestypes of norms L1 L2 L3 L1slopes -0.5751 -0.3175 -0.2250 -0.0580The slopes in the 
ase of irregular parti
lesslopes -0.5449 -0.3011 -0.2137 -0.0510
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A Assumptions On the Flux Fun
tion gWe assume that g(t; x1; u1; x2; u2; n) with t � 0, x1; x2,n 2 Rd and u1; u2 2 Rpis a numeri
al 
ux fun
tion for G whi
h satis�es
onsisten
y� g(t; x; u; x; u; n) = G(t; x; u)n
onservativity� g(t; x; u; y; v;�n) = g(t; y; v; x; u; n)
ontinuity� kg(t; x; u; y; v; n)�g(t; �x; �u; �y; �v; n)k � L(kx��xk+ky��yk+ku��uk+kv��vk), where L depends monotoni
ally on t and maxfkuk; k�uk; kvk; k�vkg.Also, g is assumed to be 
ontinuous in t 2 R+.B The Computation of �ij and ViHere we want to present the 
omputation of �ij and Vi for the 
ase of partitionof unity indu
ed by the family of hat fun
tions in one dimensional domain.For this purpose we suppose that the parti
les are pla
ed in the set �
(t) at thepoints fxi : i 2 Mg where 
(t) = (~a(t);~b(t)) and M = f1; : : : ; mg. Now let ustake one parti
le 	i, whi
h is pla
ed at the point xi. Sin
e all 
al
ulations areperformed for a �xed t � 0, we drop the t-dependan
e for all fun
tions. Then	i(x) = wi(x)�(x)and �(x) = mXi=1 wi(x):The partition of unity in this 
ase is generated by the kernel fun
tion whi
h isde�ned by w(x) = 8><>:x + 1 if x 2 (�1; 0℄�x + 1 if x 2 (0; 1℄0 else58



and thus wi(x) = w�x� xih �where h is the so-
alled smoothing length. Suppose 1+i and 1�i be the indi
atorfun
tions for the left- and right-half of the interval (xi � h; xi + h℄. Now,wi(x) = x� xi + hh 1�i (x) + �x + xi + hh 1+i (x)and hen
ewi(x) = x(1�i (x)� 1+i (x))h + �xi(1+i (x)� 1�i (x))h + (1+i (x) + 1�i (x))�= x ~Ai(x) + ~Bi(x)where ~Ai = (1�i � 1+i )h and ~Bi = �xi(1+i � 1�i )h + (1+i + 1�i )�Now de�ning, mXi=1 ~Ai = ~A and mXi=1 ~Bi = ~Bwe 
an write �(x) = x ~A(x) + ~B(x)Thus 	i(x) = x ~Ai(x) + ~Bi(x)x ~A(x) + ~B(x)Here, ~Ai; ~Bi; ~A and ~B are pie
e-wise 
onstant fun
tions de�ned on the domain
(t). The idea of getting the exa
t integral of fun
tion 	i(x) over the domain
(t) is to partition the domain 
(t) into small sub-intervals su
h that the fun
-tion is a rational polynomial in ea
h sub-interval and the fun
tions ~Ai; ~Bi; ~Aand ~B are 
onstant in these sub-intervals. In fa
t, if we take the 
olle
tionof points fxi; xi + h; xi � h : i 2 Mg and sort them out in as
ending order,the parti
le fun
tion 	i is rational polynomial in ea
h pie
e of interval and~Ai; ~Bi; ~A and ~B are 
onstants in ea
h pie
e. Hen
e, we integrate the parti
lefun
tion 	i in every pie
e and sum the results to get the integral of 	i in59




(t). For this purpose let us take a typi
al interval (a; b) in whi
h the fun
-tions ~Ai; ~Bi; ~A and ~B are 
onstant and get the integral of 	i in this interval.Suppose that Ai; Bi; A and B be the values of the fun
tions ~Ai; ~Bi; ~A and ~Bin (a; b) respe
tively. IndeedZ ba 	i(x)dx = Z ba xAi +BixA+B dx:By following the elementary 
al
ulations, if A 6= 0 in this pie
e, we getZ ba 	i(x)dx = (b� a)AiA + ABi � BAiA2 log ����Ab +BAa+B ���� :The 
ase A = 0, 
an be treated easily, whi
h yieldsZ ba 	i(x)dx = (b� a)(b+ a)Ai + 2Bi2B :Sin
e �ij = 
ij�
ji, we 
an 
ompute 
ij in similar way as we 
ompute Vi. The
ij 
an be written as 
ij = Z
(t) wi�2 �wj�x dxand �wj�x = 1h(1�j (x)� 1+j (x))and hen
e 
ij = Z
(t) (1�j (x)� 1+j (x))h (xAi +Bi)(xA +B)2 dx:In a similar fashion as we did for 
omputing Vi we 
an partition the domain
(t) into similar pie
es also here and get 
ij by summing the integral of ea
hpie
e. Finally �ij is be obtained by using the relation, �ij = 
ij � 
ji. Indeedfrom the elementary 
al
ulation, if A 6= 0 in the pie
e (a; b), we getZ ba wi(x)�(x)2 �wj(x)�x dx = AiAjA2 log ����Ab+BAa+B ���� + Aj(b� a)(ABi � BAi)A(Aa +B)(Ab +B)and if A = 0 in the pie
e (a; b), we have simplyZ ba wi(x)�(x)2 �wj(x)�x dx = Aj(b� a)(b + a)Ai + 2Bi2B2 :60



Con
lusionsIn this thesis, we have studied the �nite volume parti
le method (FVPM)presented in [3℄, [6℄ whi
h 
ombines the generi
 features of �nite volume meth-ods and parti
le methods. In fa
t, the s
heme is the generalization of 
lassi
al�nite volume method and from the 
hoi
e of the parti
ular partition of unitythe 
lassi
al �nite volume method 
an be re
overed.Here, we have derived the FVPM for time-dependent and bounded domainsbased on the Lagrangian parti
les following the similar te
hniques as in [6℄in quite general settings. We have tested the s
heme we have derived forthe isentropi
 Euler system in one dimension in the 
ase of moving boundaryand �xed boundary for di�erent initial and boundary data. We have shownthat the s
heme reasonably approximates the exa
t solution even for arbitraryparti
le distribution and even for dis
ontinuous data, however the numeri
al
onvergen
e analysis shows that the order of the 
onvergen
e depends on theregularity of the boundary and initial data we pres
ribe. We have also derivedthe �nite volume method for moving boundary in one dimension by 
hoos-ing the parti
ular partition of unity. The next step would be to extend thes
heme to higher orders and to higher dimensions. In these 
ases, an exa
t
omputation of the geometri
 
oeÆ
ients and volumes is no longer possible.In fa
t, the eÆ
ient and a

urate 
omputation of the geometri
 
oeÆ
ientsand volumes for the general family of partition of unity in higher dimension isquite 
hallenging task in this method.Referen
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