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Outline

In this thesis we study the finite volume particle method (FVPM) presented
in [3], [6] which has the generic features of particle methods and finite volume
methods. Since the last decade, the particle methods for conservations laws are
gaining more and more popularity in industrial applications. These particle
methods are mesh-free and they are popular in handling the time-dependent
problems, complicated geometries and moving domains since the mesh dis-
cretization becomes expensive and complicated for such problems. For such
problems the scheme based on Lagrangian particles is a good choice, since they
are completely mesh-free.

In fact, application of the finite volume methods or finite element methods
for the problem which are time-dependent and based on complicated domains
which may be changing with respect to time is really expensive and sometime
complicated due to the necessity of handling the dynamic data-structures and
adaptation of mesh-discretization. That is why in such cases, the particle
methods are appropriate where we do not need to discretize the domain with
some mesh at all. Our aim here is to derive the FVPM for time-dependent
domains and test the scheme for some initial-boundary-value problems with
moving boundary and analyze the numerical convergence.



1 Derivation of Finite Volume Particle Schemes
in Bounded Domains

In the following we present the derivation of Finite Volume Particle Methods in
a bounded domain with moving boundary. This method for Cauchy problem
is first presented by Hietel, Steiner and Struckmeier in [3]. The consistency
analysis in one dimension is done by Junk and Struckmeier in [6]. We follow
almost the similar derivation as given in [6]. This method is mesh-free and
based on general partition of unity and standard numerical flux function. In
fact, classical finite volume schemes are recovered if we choose special kind of
partition of unity. That is why this class of particle method can be thought as
the generalization of finite volume schemes.

1.1 Derivation of the Method

We consider here the system of conservation laws in Q(#) for the open, bounded
and connected set Q(t) (called a domain) in R?

% +V.F(u) =0 in Q@) u(0,z)=u’(z)

with suitable boundary conditions, where u(t, x) is the vector of conservative
quantities, u(¢,z) € R? for t > 0 and x € R? and F(u)(t, z) is the flux function
of the conservation laws. We suppose that there is a continuously differentiable
velocity-field z : Rt x R? — R such that 7, € 9Q(0) moves according to
& = z(t,x), £(0) = 9. We want to give a brief explanation of the basic symbols
we have to use throughout this thesis. We assume M = {1,...,m} for some
m € N and take the set of points {z;(t) : i € M} in Q(t). To each z;(t) we
associate a function W;(t,z) > 0 defined in Q(¢), which will be called particle
placed at the point z;(t). Moreover, we set Q = {(t,z) : t € Rt x € Q(t)}.
Now we define the partition of unity in £

Definition 1 The set of functions {V; : i € M} where W; : Q — R* will form
a partition of unity if Y .-, U;(t,x) =1 for all x € Q(t) and for allt € R,

These particles may be irregularly spaced and moving. They have overlapping
support with one another and they are localized around z;(¢). In the next
subsection we will describe how the partition of unity is formed.



Construction of Partition of Unity

We take a Lipschitz continuous function w : R? — R* with compact support.
We define

where
U(t7 LI?) - Z U)7(t, LE)
i=1

In general, we can set
wi(t, x) = w(A;(t)(z — i(t)))

where A;(t) is symmetric, positive-definite matrix of size d by d for all ¢ > 0. In
the case of constant smoothing length in all directions, A;(t) = 1/h;(t)I where
I is the identity matrix of size d by d and h;(t) > 0 for all ¢ and for all i € M.
For simplicity we take here constant smoothing length for all spatial directions
(circular patch) although h;(t) can be taken as vector giving smoothing length
in different spatial directions. Thus

wi(t, ) = w(r — x;(t), hi(t))

for all i € M. The function w : R? — R* is known as the kernel function. For

the simplicity of notation we also define the derivative of w;(¢, x) with respect

Dyw;(t,z) =

Bhi(t)w(x — x;(t), hi(t)).

For example, taking some special kernel function w in one dimension defined

by

r+1 ifze(-1,0]
w(z)=< —z+1 ifze (0,1]
0 else
and some scalar smoothing length h, we get a particular partition of unity.
The construction of the function w;(¢, z) and the particle functions W;(t, z) for

irregularly spaced 12 particles are visualized in the Figures 1 and 2. On the
x-axis are indicated particle positions z; and around each point, the function
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Figure 1: The function w;(t, x)

Figure 2: The particle function W;(¢, x)

w;(t, z) are plotted. We have used this kernel in our numerical examples, al-
though other choices are also possible. After dividing by o(¢,z) = >_\", w;(t. z)
we get the particle function W;(¢, x).

Remark 2 :

(1) The functions ¥; in general may be non-symmetric and irreqularly spaced
and mouving.

(2) The supports of W; overlap, but we want to avoid overlapping of many
particles and that is why we choose the compactly supported kernel func-
tion w.

(3) The function o(t,x) = ;" w;(t, x) must be finite and non-zero for every
x € Q(t) and for every t > 0. Thus h;(t) should be chosen in such a way
that there is no gap in Q(t). That means every point x € Q(t) should lie
within the support of at least one V;(t,x) for all t > 0.

(4) The kernel function w is to be chosen in such a way that W,(t,.) € C*(Q)
and W;(t,.) is piece-wise C* in Q, every piece being a reqular domain.



We consider the following initial-boundary value problem of the system of
conservation laws in Q(t) for the open, bounded and connected set Q(t) in R?

% +V.F(u) =0 in Q) u(0,7)=u"(z) (1)
together with the suitable boundary conditions. Here u(t, x) is the vector of
conservative quantities, u(t,z) € R? for t > 0 and x € R? and F(u)(t,z) is
the flux function of the conservation laws.

Now we get the weak formulation of above equation by multiplying both sides
by the particle ¥; and integrating over the domain €(¢)

811

8 U,(t, x) (]T—I—/ V.F(u)Y;(t, z)dx = 0.

Including W¥; in the space and time derivative we obtain
O(u¥; ov;
/ (Vi) 4 +/ V.(F(u)W;)da — / <u + F(u).V\Ifj) dz = 0.
o Ot o) am \ Ot

Now we define the discrete particle property

1

u;(t) = A0

/ U, (t, z)u(t, x)dx (3)
Q)
where V;(t) is the volume of the particle U;(¢, z), given by

Vi(t) —/ U, (t, z)dx.
Q)

After multiplying both sides of the equation (3) by V;(¢) and differentiating
with respect to ¢, we get

d y
Vi) = /Q vt ey (1)

We have velocity-field z(t,z) such that z(¢,z) gives the velocity-field of the
boundary if € 9€Q(t), then we can use the transport theorem to get

E(uiVi) = /Q(t) ( 5 +V.(u® z)\IJZ> dx (5)




where u® z is the usual dyadic product of two vector-fields defined by (a®b) =
(a;b;);; and divergence applied to matrix A is defined by

V. A
V.A= V_'_/_h
V.A,
where A; represents the ith row of the matrix function A of size p by d. Now
if we use the results (2) in the equation (5) and use Gauss theorem, we get

%(u%) _ /m)(u ® 2 — F(u)Uinds + /

Q(t)

(ﬁ;i + F(u).V\I!,;) dz. (6)

Since generally we suppose that the smoothing length h;(¢) can vary with
respect to time and w;(t, z) = w(x — z;(t), h;(t)) we have

0 .
Ewi(t, x) = —&;(t).Vw;(t, x) + Dyw;(t, x)h;(t).

Now we want to prove the following:

Proposition 3 With the notations as above

m

8\15 o . Vmwj . VTU)7 . thj . th,;
ot = Z |:<‘I/ZT7 pn — ‘y7’I‘Z pn ) — <‘yzh7 pn — \Ijjhl pn .

Jj=1

Proof: Here

v, o Vwi(tr)  wit, 1) e .
= —; t . P oy t . ] t,./
5 (1) . + 2t 7) Z ;(t).Vw,(t, x)

J
- Dywi(tx)  wit, ) = ;
. =T )Zthhwj(t,x).

+h;
' 2
o(t,x) o%(t,x =
Now we use o(t,x) = > 7, w;(t, ) to get
ov; “ . Vuw Vw;
ot Z <‘IJZT7 ’ ;2 o )
j=1
= . D Djw;
-2 <\I’ihn‘ Wy >
=1 4

10



Proposition 4 The term V;(t,z) can be written as

ij@ﬁ)) '

o(t,x)

m

VU;(t,z) = Z <‘I/j(t,x)a’7

Jj=1

Proof: Note that

(o
VUi(t,z) =V (“’ ( ”) .

o(t,x)
Now using the product rule, we get

Vo(t,x

— W; (t, ’I))m

The result follows from the relations o(¢, z) = > 7", w;(t, z) and Y70, Wy(t, 2) =
1. [

Here, let us introduce the following notations:

Vw;(t, )
[i(t, @) = ‘Pi(tjﬂ?)m
and
th‘(t,ﬂ?)
ayj(t,z) = ‘Iji(tvx)ﬁ'

Using these symbols and the results from the propositions 3 and 4 in the
equation (6) and suppressing the arguments ¢ and = we have the equations of
motion as

d

—(u;V;) = / (u®z— F(u))¥;nds+
dt )

Z /Q(t) [U (:EJFU - $7F]7) + F(u) (Fﬁ - Fm) —Uu <ilj6lij — h,O@,)] d.%‘, (7)
j=1

Cni(t) = =(t. )

11



fori =1,...,m where
Vi(t) = / U, (t,2)da (8)
Q1)

Here we are interested in the particles which are moving with the velocity-field
z(t, z). These moving particles are called the Lagrangian particles. If we allow
the particles to move, even the volume of the particles may change with respect
to time and it is necessary to compute V;(t) for every particle at each time t.
We can compute the volume V;(t) by using the formula (8). We have exactly
used this formula for our numerical computation. However, we can get the
additional equation for V;(t) by differentiating the equation (8) with respect
to ¢, which yields

A - w;Vw; . w;Vw; . ; ;
- jzl/ﬂ(t) [ e A UL hiaﬂ)] e

o
/ W.z.nds
29(t)

and this equation can also be used to compute the volume of every particle
at each time f. Rearranging the terms of the equation (7), we obtain the
equations of motion as

d

L vy = / (u® 2 — F(u)Upnds +
dt 20(t)

Z/ [(F(u) —u® )Ty — (F(u) — u® a;)Ty;] de —
. Q(t)

Jj=1

/ U(ilj@jj_hiaji)dxa (9)
Q(t)

with the initial value

ol
u) = —— U, (0, 7)u’(z)dx
- Vi0) Jog

and the prescribed boundary conditions which we would discuss later. To
obtain the solution we use the interpolation formula

a(t,x) = Wit z)u(t).
i=1

12



From now on we will call
B(t,i) = / (u®z— F(u))¥;.nds
a0(t)

the boundary term and use the abbreviation FVPM for the Finite Volume
Particle Method.

2 Approximation

Let us consider the Lagrangian flux func‘rion G(t,z,u) = F(u) — u ® z and
set G = G(t,z,u;) and v;(t) = Jo,) T'ij(t, z)da then, the equation (9) can
approximately be written as

(u; V) Z [ Givji — Gjvij) — /Q(f) u,(f.),jozij — h,()/”)dr

/BQ( )(u ®z— F(u))¥;.nds.

which is valid even

Now we use the splitting ac — bd = (afb)Q(chd) + (a+b)2(cfd)

when a and b are matrices and ¢ and d are vectors, we get

m

Z(Gifyj?? - J’YU Z 5 '779' + ’Vji) - (Gi + Gj)(’yij - 'in)]'
7j=1

J=1

l\.’)b—t

Suppose that supp(W;) C By(z;(t), hi(t)) where By(x, h) is the d-dimensional
ball with radius h and center at 2. Then if we take the smoothing length h;(t)
and h;(t) sufficiently small we can assume that G; ~ G; for v;; + y;; # 0 since
vi; + vji # 0 implies that z; and z; are nearby particles (precisely ||z; — z;|| <
h; + h;, when +;; # 0), we can conclude that

Z(Gﬂji — G7ij) Z 5 (Gi +G5) (v — vij)
j=1

Jj=1

G+ G;
= > G,,
Jj=1

where (;; = vi; — vj; and n;; = B;;/]|5i]]. Since B;; carry geometrical infor-
mation of the relative positions of the particles we will call them geometric
coefficients. Here % is the numerical flux function of central differencing.

13



A more general approach is obtained if we replace this particular expression
by a general numerical flux function, ¢;; = ¢(t, i, u;, x;, u;, n;;) for G(¢, x,u)
which should be consistent with the Lagrangian flux function F(u) — u ® z.
The general assumptions on the numerical flux function g¢;; are presented in
the appendix A. Let us introduce one more symbol

Dyw;
bij(t) = / aij(t, x)dz = / W, 2 gy
Q(t) ) o

Since u; represents the solution averaged with respect to the function ¥;, which
is given by the equation (3), we can write

/Q(t) u(t, )y (t, x)de ~ u;(t) / ai;(t, z)dz.

Q(t)

Then

/ 1I,(I:L_7'(){Z'_7' — hz()’”)(]’l‘ = Uii'Lj/ O’”(]’I‘ — ’U,jhi/ ()’”dT
Q(t) Q(t) Q(t)

and this can be written as
/ U(ilj&ij - h,&ﬂ)dlﬁ = U,hjgém — Uthgém
Q(t)
Now suppose that B;(t) be some discretization of the boundary term
B(t,i) = / (0 > — F(u))Usnds
29(1)

which will now depend on {w; : i € M} and the prescribed boundary con-
ditions. Thus we end up with a system of ordinary differential equations in
vector form

m

4

d . )
o (Vi) = — > [||5z'j||9ij + (uihjdiy — ujhidyi) | + By, (10)

Jj=1

with initial condition




along with the prescribed boundary conditions which should be computed by
taking into account the interpolation formula,

m

a(t,z) = Wit )ui(t)

i=1

and the given boundary conditions. The details about the boundary conditions
will be treated later in section 5.

Proposition 5 The FVPM defined by the equation (10) fulfills the discrete
balance property

d m m
At Z(%‘Vi) = Z B;
i=1 i=1

if the numerical fluz function g fulfills the condition, g(t,x;, u;, xj, uj, n;;) =
—g(t,z;,uj, x;, u;,n;;) where Bi(t) is a discretization of the boundary term
B(t,i) = [oqu(u® 2= F(u)Pinds.

Proof: We have

m

d : :
(Vi) = =7 |18y lgis + (wihigi; — wshidyi)| + B
It =
Summing over ¢ we find
d m m m . .
7 Z(Uivi) = — Z [Z (||5ij||9ij + uihjgi; — U,jhiqs_ji) — B;
=1 i=1 Lj=1
Now using the property ||3i;]|9;; = —|5;illg;; we obtain
> 1Billgi =0,
i=1 j=1

and it is simple to observe that

m

Z Z(“7h3¢u — ujhigji) =0

i=1 j=1

which concludes the proof. [

15



Lemma 6  The geometric coefficients can be given by the following formula
Bij = / (U, V¥, — ¥;V¥;)dx.
Q(t)

or equivalently

Bij = 2/ U,V dr — / U, Winds.
o(t) 29(t)

Proof: We have defined

B Vw;(t, z) Vw;(t, z)
ﬁij_/ﬂ(t) <\I} U(Jtaw) Vi 0(;,96) )dx'

Now if we use Vw; = V(oW¥;) = ¥U;Vo + oVV¥; in the above equation we get

Bij = / (U, V¥, — ¥;V¥;)dx.
Q(t)
We can write this formula for 3;; as
Bij = / (—V (U, ¥;) + 2¥;V,)dz.
Q(t)

The second result follows by using the Gauss divergence theorem. [ ]

Proposition 7 The coefficients [3;; satisfy

Bij = —Bji Vi,j € M. (12)

> B = —/ VW de Yie M. (13)
j=1 Q(t)

Bij =0 if supp(¥;) N supp(V;) = 0. (14)

Proof: Properties (12) and (14) are obvious from the definition of 3;; and
we prove only (13). In Lemma (6) we have proved

Bij = / (U, V¥, — ¥;V¥;)dx.
Q)

16



Summing over all j, we get

> By= Z/ (U, VU, — U, VV,)dz
j=1 j=1 /)

Now we use

Zm:\pjzl and zm:V\Isz()

to get

j=1 Q(t)

Now we have the following corollary

Corollary 8 If the velocity field z(t,x) = 0 in Q(t) for all t > 0 and the
smoothing length h; does not vary with respect to time the property (13) in
above proposition ensures the preservation of constant state if the discretization
of the boundary term fulfills the consistency condition

B; = F(uc)./ U, (t, z)nds
a0(1)
for the constant solution u. of the initial-boundary-value problem given by (1).

Proof: Assume that the constant u, solves the given initial-boundary-value
problem given by (1). Here we want to show that u; = u.,i = 1,...,m, is a
stationary solution of

d m ) .
o (Vi) =~ [Z 18ijll gis + (wihji; — uihidi) — Bi
j=1
Suppose

Rlui, ... um) = — [Z 1Bl gis + (wihjbij — uihichji) — B;
J=1

To show that u, is the stationary solution we have to prove R(u.,...,u.) = 0.
Since the particles are not moving and the smoothing length h; is independent

17



of time ¢;; = 0 for all 4, j € M and due to the consistency of the numerical flux
function g;; with the Lagrangian flux function which we have already assumed
we get ¢;; = F'(u.).n;;. Now we use the result (13) of the Proposition (7)

Q(t)

and the consistency condition for the discretization B;(t) of the boundary term
to get

R(uc,...,u,) = — </ F(u)VV;dx — / F(u:)¥;.n ds) :
Q(t) 29(t)

Recalling the use of Gauss theorem, we can write the above equation as

R(ue, ..., u.) = — </ F(u,)VV;dx — / V.(F(uc)\lli)dm> .
Q) Q)

We rearrange the terms of this equation to obtain

R(ue, ... ,u.) = — (/ F(u,)VV,; — V.(F(uc)\lfi)dx> .
Q)

Now using the product rule of differentiation, we get

Rt 1) = —/ (=1)(V. F(u,)) Wy (15)
o)
which leads to
R(ue, ..., u.) =0. (16)
| ]

2.1 Reduction into One Dimension

Since we take model problem in one dimension which we will discuss later, we
want to reduce the equation of motion, we have derived, into one dimension.
Suppose the domain in one dimension be 2(t) = (a(t), b(t)). The equations of
motion in one dimension are

d n . )

%(uﬂ/?) = - Z [\5ij|.qij + (uih;pi; — ujhid;i)| + B, (17)

Jj=1

18



with initial conditions

o )|
0
b Vi0) Jag)
for+ =1,...,m along with the prescribed boundary conditions which we will
later di%(‘u%% in detail% Here B;(t) is the discretization of the boundary term
faﬂ uz — F(u))¥;.nds.

Slnce ds is the element of the boundary of a one dimensional domain, we have
ds = dd,) + doy) where dd is the point measure in one dimension. Then the

Gauss theorem in one dimension gives B(t,i) = — [(F(u) — uz)\IQ]Z((ff)), where

[(F(u) — uz)\I/,]z((?) = (F(u) —uz) ¥|pey — (F(u) — uz) ¥;|o). Hence in one

dimension B;(t) is just the discretization of — [(F(u) — uz)\I&]i((?) In the case
of constant smoothing length which simply means hi = 0, Vi € M, the

equation of motion is

d

d U V Z |Bz]‘gzg + B

with the similar initial and boundary condition as in the general case. If we
use the explicit Euler discretization for equation (17) for the time derivative,
we get

(Vi)' = — ot [i (185lgp + wrhioly — wihigly) — BY

J=1

Remark 9 In one dimension we construct g;; from a numerical flux function
g(t,x,u,y,v) which is consistent with Lagrangian flux function G(t,z,u) for
allt >0 and z,y € R and u,v € R”. Then we define g;; by

g(f, Ty, Uiy Ty, ’U,j) 7f Ni; = 1

t,$j,Uj,$‘7U'7nj' _= _ .
(]( b I U) {—g(t,.’I)j,Uj,xi,;Ui) Zf Nij = —1.

3 Finite Volume Scheme as a Limit of FVPM

In this section we want to show how the special choice of a partition of unity
leads to a finite volume scheme. Suppose the domain Q(t) = (a(t),b(t))

19



be subdivided into equal cells (intervals) (zg, z1], (%1, Z2], . .. (T, Timy1) where
xo = a(t) and z,,41 = b(t). We will take dx as the length of every subinterval.
We choose the regular distribution of the particles, each particle placed in the
middle of the cell and the partition of unity is induced by the family of the
indicator functions {/; : ¢+ € M} where [; is the indicator function of the ith
cell and M = {0,1,...,m + 1}. Here by family we mean the set of functions.
Thus

: 5 )
It z) = {1 if 7€ (w1 + 2,200 — 22,

0 else
fori=1,...,m and for 2 = 0 and m + 1, we have,
1 ifze — &
IS S
0 else
and

. )
1 lf.’L' - ($m+1 - §7mm+1)7

Imyi(t,z) = {

0 else

Our aim here is to compute the geometric coefficients 3;; and ¢;; for the par-
tition of unity formed by the family of indicator functions with the help of
partition of unity formed by the family of hat functions. We will prove some
Lemmas concerning the computation of coefficients 3;; and ¢;; for the partition
of unity formed by hat functions and we will show that the partition of unity
formed by the family of regular indicator functions is the limiting case of the
partition of unity formed by the family of regularly spaced hat functions when
h — d0x/2. Here, by regular particles, we mean that the particles are placed
regularly in Q(¢). To form the partition of unity from the hat functions we
will take the kernel function w as in the first section, defined by

r+1 ifzxe(-1,0],
w(x)=<¢ —x+1 ifzel0,1],

0 else

then, set

wi(t,z) = w (T

The particles are then defined by




where

m

o(t,z) = Z w;(t, z).

i=1
Here we define the k-interaction of the particles

Definition 10 If the k pairwise distinct particles V;, (¢, x), ..., V; (t,z) has
the property that p(supp(¥;,) N --- N supp(¥;,)) > 0 then we will speak of
k-interaction where 1 is the Lebesque measure in R,

Since in one dimension it is necessary that at least two neighboring particles
should interact to form the partition of unity we define

Definition 11 The family of partition of unity {V;(t,x) : i € M} will be called
minimal overlapping family of partition of unity if there is no 3-interaction
among the particles and V;(t,z)¥;(t,x) = 0 for all x € 0Q(t) and for all
1, € M,1# 5 and for allt > 0.

The immediate consequence of Lemma 6 in one dimension is that

Lemma 12  [f the family of partition of unity is minimal overlapping then,
for i # j, Bij can be given by the formula,

ov
=2 —Ldx. 18
g2 WG (18)

Proof: Since the family of partition of unity is minimal overlapping, we get

aQ(t) '

Now the result follows by using the formula of 3;; given in Lemma 6 ]

Definition 13 A minimal overlapping family of partition of unity with parti-
cle independent smoothing length h(t) formed by reqularly spaced hat functions
ordered according to their positions on the x-axis will be called a regular par-
tition of unity.
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Since for the regular partition of unity the particles are ordered according
to their positions in the x-axis, intersection of supports of two neighboring
particles can be taken as an interval, if it is not empty. We prove the following
assertions for the regular partition of unity we have just defined.

Lemma 14  In the case of reqular partition of unity the geometric coeffi-
cients [3;; are simply given by

L dfj=i+1,

Bij =4 1 ifj=1i-1,
0 else.

Proof: Assume that two particles U; and ¥; interact which means p(supp(¥;)N
supp(V;)) > 0. If i = j, B;; = 0 for all ¢ by the definition of 3;;. If i # j then
U, +¥; =1if x € supp(¥;) Nsupp(¥;). When the family of partition of unity
is minimal, we can use the formula (18)

oV ;
Bij = 2/ i—=Ldx

Hence

oV,
= 2 1—W,)—2Ld
/6/3 /S;(t)( ]) 87) €T

Since the particles are ordered we can assume [sq, s3] = supp(¥;) N supp(\Ifj),
then
] 1 ifj=01+1
Bij = 2[¥; — 5‘1{3]2 =1 ifj=i—1
0 else.

First we take the smoothing length h = 0x and then the partition of unity
formed by the family of regular hat functions will tend to the partition of unity
formed by the family of regular indicator functions when h — %m, h < dx. For
the following Lemma we will write W;(¢, 2, h), B;;(t. h), w;(t, z. h) and ¢;;(t, h)
to represent the explicit dependence of ;. 8;;, w; and ¢;; on h.

Lemma 15  For the reqular partition of unity

gowith € (z; — h,xi_q + h),

2h—dx
W;(t, . h) ! if o € @iy + h@igs — b,
i\l, T, - _ ) .
—Erthif g€ (241 — by + B,
0 else.

22



for%ghg&r and

almost everywhere when h — %93, h <dz.

Proof: First we take the particle U;(¢,z, h) for 1 <i <m and h < ox

w;(t,x,h) : L .
TR ) if v € (x; — h,x; 1+ hl,

1 if x € (.’1?1'71 + h,, Tip1 — h],

ot if w € (wia — hyi+ ),
0 else.
Now
w;—1(t,z, h) +w;(t,x, h) = w if v € (x; — h,x; 1+ h]
and
wiv1(t, z, h) +w;(t,x, h) = w if € (z;41 — h,z; + h].

Thus, the particle function ¥; is given by

v with —if p € (z; — h, w1 + ),

2h—dx
\I/(f . h)— 1 if x € (fI}i,1+h,.’L‘i+1*h],
ne —ztrith if g € (w540 — hy 3 + B,
0 else.

If h — %, the intervals, (x; — h,z; 1 + h] and (z;11 — h,z; + h] are empty.
Hence

almost everywhere when h — %T The similar reasoning holds for ¢+ = 0 and

1=m+ 1. ]

When we decrease the smoothing length, how the partition of unity formed by
the family of regularly spaced hat functions with %T < h < dx, approximate
the partition of unity formed by the family of indicator functions of each cell
can be seen in the Figures (3).
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0] 0.2 0.4 0.6 0.8 1

smoothing length h=0.5dx

Figure 3: The partition of unity formed by hat functions with greater and
lower smoothing length
We have already shown that

1 ifj=di+1,

0 else.

Hence f3;;(t, h) are independent of h for regular partition of unity and so we
can define

or )
2 h—)%
Lemma 16  For the reqular partition of unity

bii = bidrif j =i+ 1l.and j =i —1
! 0 else

foralli,jEM,i#j(md(irZhZ%x.

Proof: Here, ¢;;(t, h) are definded by

U,(t,z, h) OQw,;(t,z, h)
St h) = & ) UL )
¢ ]( ) /Q(f) O'(t, z, h) Oh v
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Suppose j = ¢ — 1. Using the first result of Lemma 15

zi_1+h (.’L‘ —x; + h) (33 - «'L'ifl)
T

A simple computation shows that

h + dx

i (t,h) =
¢Z.7(7 ) 6h

We can use similar computation for j =7+ 1 and the other cases are obvious.
|

Hence, using h — dz/2 we get, ¢;; = %, for the partition of unity formed by the
family of indicator functions. We are interested here to change the smoothing
length h;(t) according to the compression and the expansion of the domain due
to the movement of the boundary but independent of all particles. Therefore,
we can write h(t) for h;(t) and thus h(t) = (b(t) — a(t))/m, where m + 1 is the
number of particles we use for computation. Then h(t) = (uvy(t) — v, (t))/m.
Here b(t) and a(t) are the positions and v(t) and v,(t) are the velocities of
the right and left boundary respectively. The particle velocity-field z(t, z) is
chosen in such a way that the particles are always equidistant and the function

z(t, ) satisfies

_ Jw,(t) for z =a(t) and
z“”)_{%@ for & = b(t).

The equation of motion for variable smoothing length is given by

m—+1
d

S (wiVi) = — > {|5v:j\.% + (wihjdi; — ushipi;) — B; (19)
=0

where B;(t) is the discretization of

Bf¥(t,i) = lim (uz — F(u))¥;(t,x,h).nds
h—% Joqt)

= lim [(uz — F(u))W;(t, 2, B,

Here we can set B;(t) =0 for i = 1,..., m because we have

lim [(F(u) — uz2)Wi(t,z, h)|y) =0

Sz
h— ¢
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fori =1,...,m. Now using the values of 8;; and ¢;; in the equation of motion
(19) and using the construction of the numerical flux function as described in
remark 9 the equation of motion for regular partition of unity is reduced to

d 3 N h(t
—(u; Vi) = —[Giis1 — Gi—1i + %(2%’ — U1 — Uiy1)| + Bi

dt
d
5 (@) = 2(t i)
Vi(t) = h(t)
fori =0,...,m-+1, with initial condition u} = u°(x;) and boundary conditions
v(t, z9) = v,(t) and v(t, z,,11) = vp(t). Here, the term @(211,,- — Ui — Ujyq)

in the scheme can work as the anti-diffusive or diffusive agent according as the
sign of h. However, this probably does not affect the stability of the scheme
as long as the integral

t

lim [ h(s)ds

t—o00 0

stays close to zero which is certainly true for small A and slow periodic change
of h.

4 Modeling and Model Problem

We have a cylindrical tube of length L filled with gas and a piston is moving
backward and forward in the left side of the tube whereas the right side is kept
fixed on the wall. (see Figure 4)

S Y AR )
. T
/ \\ S / = < /L/

Figure 4: Model problem for the linear equations of acoustics

In the Figure 4, p, v and n represents pressure, velocity and outer normal
respectively. When the piston will start moving forth the waves of pressure
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will be propagated since the gas inside the tube will be compressed. Indeed,
when the piston is moving back and forth the gas will be somewhere compressed
and somewhere rarefied inside the tube giving the variation of pressure inside
it. Because of axial symmetry, we just treat this problem as one-dimensional
problem. To facilitate the exact solution, we have chosen that the piston is
moving backward and forward with constant velocity. More natural choice
would be a smooth motion. Then we will see the wave of velocity and pressure
running to the right boundary and reflecting back after they hit the right
boundary. The position and velocity of the piston with respect to time is
visualized in the Figure 5.

velocity of the piston

o 0.5 1 1.5 2 2.5 3
postition of the piston

Figure 5: The position and velocity of the piston

This type of physical problem can be modeled by the linearized isentropic Fuler
systems in one dimension if the velocity of the piston is much less than the ve-
locity of the sound. Our aim is to apply the numerical scheme we have derived
(i.e. FVPM) for the isentropic Euler equations in one dimension linearized
around some constant solution in the case of moving boundary to compute the
velocity and pressure inside the cylinder at any time ¢ and compare the result
with finite volume case and finite difference case. The isentropic Euler system
in one dimension is given by

(p’; >t+<m’2mjrp>m_0' (20)
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Where p is the density, v is the velocity and p is the pressure. Now we use the
constitutive relation p = cp” to write down the above equation in the form

dp dp ov Ov Ua_v N (B)fl/n@ _o.
c

ot or T ar o o r

We wish to consider the equations satisfied by a small perturbation of the
constant solution p(t,z) = pg and u(t,z) = 0. Thus we look for the perturbed
pressure and the velocity of the form p(t, z) = py+ p and u(t,z) = 9+ 0. Sim-
ilarly the velocity of the piston is also much less than the velocity of sound.
That is, |2(¢, )| is much less than the velocity of the sound. We also introduce
co = v/P'(po) the sound speed in the gas. We have the relation p'(p) = crp™'.
Now if we linearize the isentropic Euler equation around p(¢,z) = p, and
v(t,x) = 0 we get the linear system

op 0v v Do\ 1/, OD
— + kpo=— =0, — + ()= =0
ot "o o )
If we remove the tilde and write the above equation as a system we get
ou ou
—+A—=0
ot * Ox

where

0 kpo p
A= [laye gt o= (7).

We have the following initial and boundary conditions

where a(t) and v, (t) are the position and velocity of the piston respectively with
respect to time. We want to make the equation dimensionless, and therefore,

introduce the following dimensionless variables ¢ = %7 rT=7,p= KL;O, U= %
Then the above system becomes
op 0v
—pi + — —
ot  0r
ov T? 0p
Y4 B0y P,
ot c L? 0%
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But the sound speed is given by 3 = /ﬁpg(%‘))’l/"'. Therefore, using ¢ =

fpo(22) 1% we get
dp Ov
ot Or
0v  cyT? 9p
ot L? 0%
If we choose T and L such that C‘%Lj: = 1, that is , we scale the characteristic

speed to one and remove the bar and use the same symbol p, v, x and t again,
our system becomes
Ju ou

I/ P
8t+ ox 0

A—(?é) and u—<€>. (21)

We want to solve this equation in the case of moving boundary as described
above with the given initial value and boundary values. The speed of the
piston is taken to be much less than one.

where

4.1 Derivation of Numerical Flux

In this subsection, we want to derive the numerical flux function for FVPM
and upwind scheme. In the case of FVPM, our numerical flux function which
is given by ¢;; = g(t, x;, u;, 2, uj, n;;) should be consistent with the Lagrangian
flux-function G(t,z,u) = F(u) — uz(t,z) where F(u) = Au and z(t, x) is the
velocity-field of the particles. For FVPM and finite difference scheme, we want
to take the upwind numerical flux function consistent with G(¢, z, ) and F(u)
respectively. To derive the numerical flux function we need to analyze the
eigenvalues of the matrix (A — zI), where

-(20)

and [ is the 2 by 2 identity matrix. The velocity-field of the particles is chosen
as follows:

2(t, ) = {1}a(t) for z = a(t) and

0 forz =1
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and we choose the velocity-field of particles inside the domain by using some
interpolation between these values. This is natural since one of our boundary
is moving and we can imagine the particles to be compressed and expanded
due to the movement of the boundary as the compression and expansion of a
spring from one side. Now let us set A = (A — zI) and hence the eigenvalues
of A are A =1—zand Ay = —1 — z. Since we have scaled the characteristic
speed to one, the velocity of the particles should be much less than one and
thus the eigenvalues satisfy 1 — 2z > 0 and —1 — 2z < 0. In the upwind method
one-sided stencil points in the 'upwind’ direction from which the characteristic
information propagates. Thus when applying upwind scheme to the linear
system with eigenvalues of mixed signs, we should take into account the correct
direction of propagation and the stencil should also point to this direction. This
is exactly the Godunov method applied to linear system which is discussed in
[8]. Since the characteristic speed of the system is both negative and positive,
we have to decompose the matrix A into two matrices AT and A~ so that
A" has only positive eigenvalues and A~ has only negative eigenvalues and
A = At + A~ Here the characteristic lines go into both directions and hence
the information is propagated towards both directions. That is why we can
not prescribe both pressure and velocity on the same boundary. Only one can
be prescribed on one boundary. Indeed, if we prescribe both variables on the
boundary x = 0, the solution does not exist in the case of negative eigenvalues
of the matrix A. We take the matrix R consisting of right eigenvectors of A
ordered in the same way as the eigenvalues. Then

(11 L1 1
R_[ll} and R _[11]

Now we get R™TAR = A = diag(1 — z, —1 — z). Multiplying the right side of
this equation by R~! and the left side by R, we get, A = RAR™!. Assume
that for the eigenvalues A\; and A, of the matrix A, A} = max();,0) and
A; = min(\;,0). We define At = RATR™" and A~ = RAR™! where AT =

diag(A, A\J) and A~ = diag(A;, Ay ). Then

1—2 0 0 0
+ _ - _
A—{ 0 0] andA—[O l—z}'

Hence we get,

e e ER T e R
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The matrices AT and A~ has the required properties as asserted above. Now

we define §(t, ;, u;, ., u;) = Atu; + A~ u;. Hence the numerical flux function
for FVPM is defined by

g(t. i, ui, ), u)) ifn;; =1
—1.

Q(t7$77u77$]7u]7n7]) = ~ .
—g(t7$j7uj7$iauqz) lfni,j

This numerical flux function is consistent with Lagrangian flux function F'(u)—
uz. The consistency is clear since ¢(t,z,u,xz,u,n) = (F(u) — uz)n. The
numerical-flux for the upwind difference scheme can be obtained by simply
setting z(¢,2) = 0. Thus the numerical flux function for upwind difference
scheme is given by

g(ug, uipr) = (Atu; + A uip)

where

5 Treatment of Boundary Conditions

5.1 Method of Characteristics

The term B;(t) is an approximation of boundary term B(t,i) = fm(t)(u ®
z — F(u))¥;.nds, i.e., the boundary term should be computed by using the
value of the solution on the boundary at every time-step. For our model
problem only the velocity is prescribed on the boundary and the pressure is not
known. Therefore we have to use some techniques to extract the pressure on the
boundary. We can use the information from characteristics to get the pressure
on the boundary, which can be obtained by following the characteristic line
one time-step backward. Since we know the solution on Q(t) at time t = T — ot
we can trace back following the characteristic line and get the pressure on the
boundary at time ¢t = T". However, the numerical experiments shows that this
method is quite sensitive to the approximation of the boundary values and
for our model problem as soon as the particle distribution is quite irregular
we see the strange behavior around the boundary which is due to the poor
approximation of the pressure on the boundary by this method. The problem
can be seen in Figure 6. In the Figure 6 the upper wave is the pressure wave
and the lower wave is the velocity wave. The numerical experiment also shows
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that this method is more sensitive with respect to time-step in comparison
to other methods which we will discuss later. The value of pressure which is
approximated by the method of characteristic on the boundary along with the
prescribed velocity is given by the formula

p(t,1) \ [ p(t—dt, 1 —dt)+v(t—dt,1—dt) (22)
v(t, 1) ) 0

for the boundary z =1 and

< p(t,a(t)) ) _ (p(t —dt,a(t) +dt) — vt — dt,a(t) + dt) + v,(t) ) (23)

v(t,a(t)) va(t)

for the boundary = = a(t). Now the value of B;(t) is computed by using these
values in the expression

/ (u®z— F(u))V;.nds.
29(#)

3 T
— — exact solution
>5 numerical solution | |
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Figure 6: Problem on the boundary in the characteristic methods

5.2 Backward Method

Since in some cases the method of characteristic will not give the result with
desired accuracy and may be difficult to apply, the boundary values of the
variable which are not prescribed on the boundary can also approximated
by the backward method. In this method , the boundary term is computed
by using the values of the variables from one time-step back. In this case we
propose to approximate the boundary term B(t,i) = fm(t) (u®z—F(u))V;.nds
(i.e. compute B;(t)) in the following way:
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e [f the variable is not prescribed on the boundary, use the computed value
of this variable on the boundary from one time-step back.

e If the variable is prescribed on the boundary, use the boundary value
evaluating at time ¢t =T — 0t.

However, we get the same defect also in the backward method as in the char-
acteristic method.

5.3 Boundary Particles or Ghost Particles

There is also another approach to treat the boundary value problem in hy-
perbolic partial differential equations which is more general than the method
of characteristics and backward methods. We can introduce extra particles
near the boundary to maintain the boundary flux and then the boundary term
can be completely dropped. The particles which are placed nearest to the
boundary are more important than the other particles for the treatment of
the boundary conditions, since they carry the boundary information in the
numerical schemes. We will call them either boundary particles if they are in-
side the domain or on the boundary, or the ghost particles if they are outside
the domain. In FVPM, we can use either the ghost particles or the boundary
particles to approximate the boundary term. We partition the collection of
indices M of all particles into two disjoint sets N and D, M = N U D, such
that ¢ € D means the particle ¥; is the ghost particle or the boundary particle
and ¢ € N means that W; is inner particle (i.e. not ghost particle or boundary
particle). One can prescribe the particle properties for the ghost particle or
the boundary particles in such a way that the given boundary conditions are
fulfilled. We have implemented this idea and this can easily be generalized to
higher dimensional problems and even non-linear cases. We choose the particle
properties for the ghost particles or the boundary particles in such a way that
the reconstructed solution

u(t,z) = Z U, (t, x)u;(t)

satisfies the boundary conditions. Thus after the introduction of the boundary
particles or the ghost particles our numerical FVPM scheme in one dimension
becomes

d m+l . .
%(uﬂ/;) = - Z “512;‘\.(]7:9' +uihjdi; — ujhigji
=0
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for : = 1,...,m where we introduce the new particles at =y and z,,,,. Here
M={0,....m+1}, N={1,...,m} and D = {0, m+1}. In the case of ghost
particles zy and x,,,; will lie outside the domain but near the boundary and
in the case of boundary particles xy and z,,; will lie exactly on the boundary,
or inside the domain. We update the particle properties inside the domain for
all particles except boundary particles or the ghost particles by the numerical
scheme and we use the boundary conditions to get the particle properties for
the ghost particles or for the boundary particles. In one dimension it is quite
simple, however the same idea works also for higher dimensional cases. For the
boundary particles or the ghost-particles we follow the following procedures:

e We get the values uq, ..., u, by the numerical schemes.

e We have the interpolation formula for the solution

m+1

a(t, z) = Z W, (¢, 2)uq(t). (24)

e For all boundary particles or the ghost particles we choose the particle
properties by solving the linear system which comes from imposing the
boundary conditions on (24).

In this modification of the scheme, if we introduce the ghost particles it is
necessary to extend the partition of unity in the outer neighborhood of the
boundary 0€2(t). Indeed, the partition of unity should cover also the ghost
particles. However, in case of boundary particles it is not necessary to extend
the partition of unity, since all the particles stay inside Q(t) in this case. Thus
we get the linear system which should give particle properties for all boundary
particles or for all ghost particles. Since generally in hyperbolic problems the
boundary conditions for all variables can not be prescribed, we do not get the
value of all variables on the boundary and the linear system may be under-
determined. This problem can be overcome in some cases where the boundary
conditions for the variables which are not prescribed on the boundary can
be found by using the equation itself or where the boundary values of these
variables can be approximated by the methods of characteristics which we have
already discussed. However, in general case one has to recourse to the idea of
extrapolation. We get the values of the variables which are not prescribed on
the boundary by using the values of the variables we have inside the domain
by using some extrapolation techniques. Also for our model problem we have
to find the right boundary value for the pressure, since only the velocity is
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prescribed on the both boundaries. However, we find the boundary conditions
for the pressure by using the equation itself. Using the equation (21) we get,

ov op

ot oz
and thus
Op v Op
*—|x:a(t) and §|x:1 = *%\mzb

Then after getting the values of all variables on the boundary, the linear system
should be uniquely solvable. Now we have the following scheme:

v |
at == T "5y

+
[y

m

d ) .
ZH(wiVi) = = 37 Bl + wibs by — s (25)
0

<.
Il

for i =1,....m with the initial values u} = [, ¥;(0, z)dz/V;(0) along with
the following boundary conditions

ug = fi(ug, ..., um)

Um4+1 = fr(ul, .. .,Um)

where f; and f, depends on the boundary conditions prescribed for the vari-
ables. The values ug and w,,,; are obtained by solving the linear system. To
write the linear system explicitly, let us suppose u; = (p;, v;)T, where p; and
v; are the particle properties for the pressure and the velocity respectively.
Thus we want to compute py = (po, Pms1)’ and vy = (vo, Umi1)? . Let us write
a; = Wi(t,x1) — Ui(t, 20), bi = Wi(t, wmi1) — Vilt, @), Ag = — D0, pia; and
By = — > pib;. Using the numerical differentiation of the pressure at the
boundary we get the conditions p(¢,z9) = p(t,z1) and p(t, z,,) = p(t, Tpi1)
which gives

Appb = (Ao, BO)T

where

_ | G Gm4a
Ap_[bo bmﬂ]'

To get the particle properties for the velocity at the boundary we use the

symbols A; = v,(t) — Y1, v;¥i(t,a(t)) and By = — Y7, v;¥,(t, 1), we have

i=1
the linear system,

Avvb - (A17 BI)T
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where

A = ‘Ilﬂ(fva(f)) ‘I]m+1(taa‘(t))
T Wt 1) (1)

The numerical experiment shows that this method is highly robust against the
variation of time-step and the particle distribution. Indeed, we have always
used 0t = h/2, where h is the smoothing length. If we use the same time-step
and same smoothing length with same distribution of the particles we see the
oscillation in the characteristic method and backward method whereas we do
not see any oscillation in the boundary particle or ghost particle case which
can be seen in the Figure 7. The solution oscillates when the piston was re-
turning back. The idea of putting the boundary particles or the ghost particles
is a natural generalization of the similar idea in finite volume method to ap-
proximate the boundary term. However, putting the ghost particles may be
problematic if the computational domain is complicated. If the two boundaries
of the domain are very near and we have to put the ghost particles for both of
them, we have to be very careful about the interaction of the ghost particles
of the two boundaries.

3 — — exact solution
numerical solution
2.5
oLk
1.5
1|
0.5
ol
—0.5

Figure 7: Oscillation in characteristic method

6 Numerical Results

In this section we will present all the numerical solutions we have computed
by using different schemes. Indeed, we have compared the numerical results
from finite difference scheme, finite volume schemes and FVPM. We have also
compared various results from FVPM exploiting its flexibilities. In all of the
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figures below the wave up is the pressure-wave and the wave down is the
velocity-wave. Since finite difference scheme is the simplest of all the schemes,
first of all, we implement the finite difference methods for our model problem.

6.1 Numerical Results from Finite Difference Scheme

We use the upwind numerical flux function that we derived in section 4.1.
When applying the finite difference method in moving boundary one has to
change the mesh at every time step. Here, instead of re-meshing whole domain
at every time, we only change the mesh in the neighborhood of the moving
boundary. When the boundary is moving forward or backward, we delete the
mesh-point nearest to the boundary, if the distance of this point from the
boundary is less than the half of the grid-size and otherwise, keep it. Since
we fix the grid, we may need the information from some points behind the
boundary. This we have obtained by some extrapolation. We also implement
the other scheme, which is similar to the above method in all respects, except
that it always uses one point exactly on the boundary and hence it is not
necessary to use the extrapolation in this method. This method will deform the
stencil around the moving boundary. Both of the schemes seem to be equally
effective and we have presented the numerical results from these schemes in the
following figures. In fact, we implemented also some other techniques, among
which, re-meshing around the moving boundary seems to be the best choice.
The pressure and the velocity waves run from the left moving boundary until
they reach the right boundary and they reflect back. The Figure 8 shows how
the stencil looks like around the boundary in both schemes. It is clear from the
figure that we need to extrapolate the value in the first scheme at one point,
since the stencil demands the value at that point.
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stencil when we do not use the point on the boundary

0.2r
< 0.15
=}
©
o 0.1 €}
.1|3
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(0] 0.2 0.4 0.6 0.8 1
t—direction
0.2 stencil when we use the point on the boundary
< 0.15
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©
o 0.1
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o
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t—direction
Figure 8: The stencil for both schemes
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Figure 9: When we do not use the point exactly on the boundary
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exact solution
251 . numerical solution | |

Figure 10: When we use the point exactly on the boundary

In the Figure 9, we have plotted the result of the scheme which does not
use the point exactly on the boundary, but use the boundary-information by
extrapolation. In the Figure 10, we have plotted the results of the scheme
which always uses the point from the boundary and so we do not need to do
extrapolation. The numerical results are derived using 200 points in space
and CFL 0.5. The plotted solution is at the time ¢ = 1.186. Although we do
not see any difference in the results from these two different techniques here,
if we plot the results at the time when the wave is just moving ahead of the
piston or just returning back we can see that the extrapolation can cause small
oscillation around the jump which can be seen from the Figures 11 and 12.
That is why it is advisable to use the points on the boundary rather than fix
the grid and use extrapolation. To show the difference more clearly we have
used only 100 grid points here and we plot the solution at time ¢ = .6 when
the piston was just returning back. If we compare the Figure 11 with Figure
12 we see a small oscillation of the solution near the left jump in the Figure
11, which is due to the extrapolation. However, the oscillation will die down
after some time.
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Figure 11: When we do not use the point exactly on the boundary
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Figure 12: When we use the point exactly on the boundary

6.2 Numerical Results from FVPM

In this section we want to present the numerical results from FVPM. Since
there are a lot of flexibilities one can implement in FVPM, we have also used
several methods which we want to discuss here. Flexibilities in FVPM are due
to the followings:

e Treatment of the boundary conditions
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e Smoothing length
e Particle-distribution

e Velocity-field of the particles

Here we want to concentrate on the first three items. In fact, in our opinion the
velocity-field of the particles does not influence the solution too much if one
chooses a reasonable velocity-field. In section 4.1, we have already discussed
how we choose our velocity-field. For all numerical results we have presented
here we have used the explicit Euler discretization for the time derivative.
Thus the numerical scheme we have derived in section 2 looks like

m

(V)" = (u;V;)" — ot [Z (|5;;.\g;; +ulhl gy — w R ;.,;) — B!

Jj=1

d
Sty = (t.m). and Vifr) = /Q vt )

All the numerical simulations are performed by using the partition of unity
formed by the hat function with the particle independent smoothing length.
Even we have used constant smoothing for almost all simulations unless we
state explcitly that we have used adaptive smoothing length, which is also
depending only on time (not on particles). We have already discussed this
partition of unity in the first section. In this case, we compute B;;. Vi, ¢;;
and z; exactly. Therefore, it is not necessary to discretize these equations
here. However, one can do similar discretization for them also. All numerical
results presented in this section are obtained by using 200 regularly spaced
particles in the domain Q(#) and the result at time ¢ = 1.186 is plotted in the
figures. We have used the time-step 6t = h/2 where h is the smoothing length.
The smoothing length in the case of regularly distributed particles is taken
to be the distance between two neighboring particles whereas in the case of
irregularly distributed particles we choose dm/2 < h < dm where dm is the
maximal distance between two neighboring particles. In the Figure 14, we have
plotted the difference in the solution between the characteristic method and
the boundary particle method. Although we do not see the difference between
these methods if we plot the solution as in the Figure 13, their difference is
quite high in the neighborhood of the shock which we can see in the Figure
14. We will see which method is better when we present the plot of the errors
in various methods in later subsection.
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Figure 13: Exact and numerical solution from the method of boundary parti-
cles
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Figure 14: Difference in the solution between characteristic method and bound-
ary particles method

We have presented the numerical result from the finite volume scheme we have
derived in section 3 in the Figure 15. This is just the particular case of the
FVPM when we change the smoothing length adaptively and use the partition
of unity formed by regularly spaced indicator functions. The numerical simu-
lation is performed using 200 spatial points and we plot the solution at time
t = 1.186. All of the results we have presented here seem to be quite compara-
ble with finite volume method. Although we do not see any difference in these
methods we will see some difference when we analyze the errors between exact
solution and the numerical solution in different cases.
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Figure 15: The exact solution and numerical solution from finite volume
method

6.3 Comparison of Errors in Different Methods

Now we want to present some plot of the errors in various methods we have
implemented so far. In fact, we plot £ = |tepact — Unumerical| against the points
where we compute them. For all numerical results we get the solution using
200 degrees of freedom. In the Figure 16, we have compared the errors between
the finite volume method and finite difference method. The error plot shows
that the finite volume scheme gives better resolution than the finite difference
scheme. Therefore, from now on we will compare the FVPM only with finite
volume methods.

—— error in finite volume method
— — error in finite difference method

Figure 16: Error plots from finite volume method and finite difference method
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We can see in the Figure 17 that the errors are large where there is jump in the
solution and the error is almost zero in the constant part for different schemes.
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Figure 17: Error plots of different schemes

This error plot shows that the finite volume method gives the best shock
resolution whereas the characteristic method and boundary particle cases are
also quite comparable to finite volume method.

6.4 Comparison between Regular Particles and Irregu-
lar Particles

We do not get much difference in the case when the particles are regularly dis-
tributed between the finite volume methods and FVPM. The power of FVPM
is that we can easily use irregularly spaced particles. Therefore, we want to
compare the numerical results between the irregularly distributed particles
and regularly distributed particles. The irregularly distributed particles are
generated by the function y = 2% initially, and thus the particles are dense
near the moving boundary and sparse near the fixed boundary. The particle
distribution in the irregular case for 20 particles is visualized in Figure 18.
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Figure 18: Particle distribution in irregular case

The irregularly distributed particles give a little bit better shock resolution near
the moving boundary (i.e. where the particles are dense) and not better shock
resolution near the fixed boundary (i.e. where the particles are sparse) which
is quite interesting. This shows that we can probably increase the accuracy
of the result locally by increasing the number of particles in this region. This
can be seen from the Figure 19.
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Figure 19: Comparison between regular and irregular particles
6.5 Constant Smoothing Length and Variable Smooth-
ing Length

The choice of particle velocity is flexible in FVPM. If we take the particles
to be spatially fixed, we get #; = 0 for s = 1,...,m and for all £ > 0. Then
even V; = 0 for each particle if the smoothing length is also taken to be
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constant. However, we are interested in moving particles, that is, in the case
when the particle-positions are changing with respect to time. When we move
the particles either with the velocity-field of the fluid or any other way and
if we adhere to the fixed smoothing length, the difficulty may arise if there
are more particles concentrated on some parts of the domain or there are few
particles in other parts. If there are few particles in some part, a gap may arise
in the domain if the smoothing length is not big enough and this will cause
the partition of unity to break down. The partition of unity will break down
if there is some point x in the domain such that = ¢ supp(¥;) for all i € M.
On the other hand if there are many particles concentrated on some part of
the domain there will also be a many interactions of the particles in this part
if the smoothing length is not small enough and this will increase the cost
of computation (two particles will interact with each other if their supports
intersect). This problem leads to the idea of changing the smoothing length
in an adaptive way such that we can avoid the gap in the domain and the
particle-interactions can be kept under a certain level. The idea of changing
the smoothing length in an adaptive way can also increase the accuracy of the
numerical solution which can be seen in Figure 20. In this Figure we have
presented the comparison of errors between adaptive smoothing length and
constant smoothing length. In adaptive case, we change the smoothing length
in such a way that there is interaction of only two particles.

— — adaptive smoothing length
constant smoothing length

Figure 20: Comparison of errors between adaptive smoothing length and con-
stant smoothing length
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6.6 Longer Smoothing Length and Shorter Smoothing
Length

Now we compare the results from shorter and longer smoothing length. Using
shorter smoothing length will reduce the time-step, since the stability condition
is related to the smoothing length here, and using the longer smoothing length
will decrease the accuracy of the solution. That is why it is advisable to
choose the smoothing length in a wise way. Now we compare the results from
the shorter and longer smoothing length. To show the change in the results
due the change in the smoothing length, we have used here 50 particles whose
positions are generated by the function y = z°/ initially and the solution at
time t = 1.186 is plotted in the Figure 21. Instead of giving the smoothing
length to determine the time-step we use the same time step for both cases.
That is, we use 0t = %. Here dr means the maximum of distances between
the two neighboring particles. We see the little steps in Figure 21 which is due
to the reconstruction of the solution from the formula
m+1

a(t, x) = Z W, (¢, x)u;(t) (27)

and the structure of the particle W;(¢, ) which can be seen in the Figure 3.
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Figure 21: Comparison between longer and shorter smoothing length

7 Numerical Convergence Analysis

In this section we want to analyze the order of our numerical scheme by taking
different initial and boundary values and different norms. We compute the
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numerical solution for a sequence of particle distributions and expect that the
numerical solution will approximate the exact solution in a better and better
way, ultimately tending to the exact solution when the number of particles
reaches to infinity. We want to see the difference among various cases, regular
and irregular particles, smooth and non-smooth data and also want to compare
the cases where both initial and boundary values are prescribed. We start with
the convergence analysis for some simple initial value problems.

Generally, we want to analyse the numerical order of convergence in the LP-
norm, which is defined for general measurable functions v(z) by

o= ([ . |v<x>|pdx)l/p

so that the norm of the spatial error at the fixed time ¢ is

e ol =( [ . |E<t,x>|pdx)l/p.

Since all the numerical methods for solving hyperbolic problems have the in-
trinsic numerical diffusion, jumps in the solution are smeared and the point-
wise error in the neighborhood of the discontinuity does not go to zero as the
grid is more and more refined. That is why we are not interested in point-wise
error and thus L” norm is appropriate for showing convergence for the conser-
vation laws. In fact, we will see later that the solution of our model problem
does not converge in L*-norm because of the discontinuity in the boundary
value we have used on the left boundary. Suppose the exact solution is denoted
by u(t,x). We get the numerical solution by using the reconstruction from the
interpolation formula,
m

a(t.x) = Wit x)uy(t)

i=1

and compute the point-wise error E(t,z) = u(t,z) — @(t,x) and then we inte-
grate the function |E(t, z)|? numerically by taking 1000 points and compute
the LP-norm by taking the pth root of the integral. Indeed, it is better to take
at least 5n points to compute the numerical integral for the solution computed
by n particles.

7.1 Convergence Analysis for an Initial Value Problem

In the beginning, we take a very simple initial value problem which is posed in
the full space. Here we solve the linearized isentropic Euler equation given by
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equation (21) posed in full space with smooth and non-smooth initial values
where we do not need the boundary conditions. The positions of the particles
are kept fixed. When simulating the full space problem in computer, we need
to introduce artificial boundary. Therefore, we plot the solution before the
artificial boundary affects our solution. For the case of smooth initial value,
we take the velocity to be initially zero and the initial pressure is described by
the function y(x) = 100w(x — 0.5), where,

(z+h)? for —h<z<-2
w(x) = # for -2 <z <l

(x—h)? for2<az<h

and h = 0.08. (see Figure 22) Indeed, the function y(z) is in C'(R). The nu-
merical solution together with the exact solution at time T=0.25 are visualized
in the Figure 23. The numerical solution is computed by using 400 irregularly
spaced points whose positions are generated by the function y = 2z°/4. Indeed,
unless otherwise stated, by irregular we mean the particle-positions are gener-
ated by the function y = 2°/* and by random we mean that the positions of
the particles are generated by a random number generator. The initial wave
gets separated into two waves, one of them moving forwards and other mov-
ing backwards with the same velocity. The logarithmic error-plot for different
norms is plotted in the Figure 24. The slope of the line giving logarithmic
error-plot in the case of regular and irregular particles for different norms are
tabulated in the following tables.

The slopes in the case of regular particles
types of norms | L' | L | L[* | L™
slopes [ -0.8798 | -0.8658 | -0.8726 | -0.9493
The slopes in the case of irregular particles
slopes | -0.8676 | -0.8496 | -0.8558 | -0.9133
The slopes in the case of random particles
| slopes | -0.8263 | -0.7880 | -0.7972 | -0.8663 |

This table shows that the order of convergence is almost one for different norms
although the order is less for the irregular and random particles than for the
regular particles.
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Figure 23: Exact and numerical solution for the problem with C'-initial value
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Figure 24: Logarithmic error-plot for smooth initial value
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Now, we want to implement our scheme for the linearized isentropic Euler
system posed in full space with discontinuous initial values. The initial profile
is now a shock at the the point x = 0.5 and as time proceeds, the shock gets
separated into two parts, moving in opposite direction. The exact solution and
numerical solution using 400 irregularly spaced points are visualized in Figure
25. The distribution of points are generated as before. The logarithmic error-
plot of the solution of the problem involving initial shock profile is plotted in
the Figure 26. The slopes of the lines giving logarithmic error-plot for different
norms and for different distributions of particles are tabulated in the following
tables. This table shows that the order of convergence really depends on the
regularity of the data we have prescribed.

The slopes in the case of regular particles
types of norms ‘ ! ‘ L? ‘ L? ‘ L>
slopes | -0.5019 | -0.2534 | -0.1714 | -0.0333
The slopes in the case of irregular particles
slopes | -0.5014 | -0.2515 | -0.1683 | -0.0185
The slopes in the case of random particles
| slopes  [-0.3624 [ -0.2110 | -0.1548 | -0.0134 |
1
\ exact solution
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Figure 25: Exact and numerical solution involving initial shock profile
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Figure 26: Logarithmic error-plot for the shock problem

7.2 Convergence Analysis in the Case of Smooth Bound-
ary Values

To see the effect of the boundary value in the order of convergence of the scheme
we implement our numerical scheme for the same linearized isentropic Euler
equation given in equation 21 with smooth boundary values. In fact, we change
the boundary value of our model problem only in the left boundary keeping
other boundary value and initial values the same as before and get the solution
in the case of non-moving boundary. That is, we do not move the boundary
and impose new boundary conditions v(¢,0) = 1 — cos(2nt), v(t, 1) = 0. Since
the boundary is kept fixed we do not change the positions of the particles with
respect to time. We use the increasing number of particles as 25,50,100,200 and
400 to compute the numerical solution. The numerical solution from FVPM
which is computed by using 200 irregularly spaced particles and the exact
solution at time ¢ = 1.186 are visualized in the Figure 27. The distribution of
particles is generated again by the function y = 2°/%. The logarithmic error
plot for different norms which is visualized in the Figure 28 shows that we
can achieve the convergence even in L*>-norm even for irregular particles and
the order of convergence in all types of norms is almost one. The slope of
the line giving logarithmic error-plot in the case of various norms and various
distribution of particles are tabulated in the following table.
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The slopes in the case of regular particles
types of norms | L' | L | L[* | L™
slopes | -1.0094 | -0.9715 | -0.9506 | -0.9351
The slopes in the case of irregular particles
slopes | -0.9494 | -0.9398 | -0.9288 | -0.8744

—— exact solution

— — numerical solution

3 | =

Figure 27: Exact and numerical solution of the problem with smooth initial
and boundary data
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Figure 28: Logarithmic error plot for smooth boundary and initial data
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7.3 Numerical Convergence Analysis for our Model Prob-
lem

In this subsection we want to give the numerical convergence analysis of FVPM
applied to our model problem. As before, we use the increasing number of par-
ticles as 25,50,100,200 and 400 to compute the numerical solution and expect
that the numerical solution will approximate the exact solution in a better
and better way. The Figure 29 shows that the numerical solution converges to
the exact solution when the number of particles reaches to infinity. In fact, in
the Figure 29 we have plotted the solution computed with various numbers of
irregularly spaced particles. Their initial positions are generated by the func-
tion y = 2°/* as before. In the Figure 30 we have plotted the L'-error in the
logarithmic scale. This shows that although the numerical solution converges
to the exact solution when the number of particles reaches to infinity, for the
model problem, we can not achieve the convergence of the first order from this
scheme. The slopes of the line giving the logarithmic error-plot in L'-norm are
—0.575 and —0.545 for regular and irregular particles respectively. However,
this is not the defect of the FVPM. We can see that even the finite volume
method, which gives the best numerical solution as we showed above, does
not have the convergence of the first order for our model problem, which is
due to the discontinuity in the boundary data. The logarithmic error-plot in
L'-norm from finite volume method is presented in Figure 31. The slope of
the line in the case of finite volume method is —0.588. We have already seen
that in the case of smooth boundary data we can achieve the convergence of
the first order. By comparing the different cases we have presented so far, we
can conclude that the order of convergence depends mainly on the regularity
of the boundary and initial values while there is almost no difference between
the regular and irregular particles.
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Figure 29: Numerical solution approaching the exact solutions
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Figure 30: L'-error in logarithmic scale for FVPM
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Figure 31: L'-error in logarithmic scale for finite volume method

Finally, we want to compare the convergence of the numerical solution among
different norms. As we told earlier, the L'-norm is appropriate to analyze the
convergence of any numerical scheme for conservation laws. Since even for our
model problem, the boundary value which we have prescribed is discontinuous,
the numerical solution does not converge to the exact solution in point-wise
sense. Even the order of convergence depends upon the choice of the norms.
We have presented the logarithmic error-plot for various norms in the Figures
32 and 33 for regularly spaced particles and irregularly spaced particles respec-
tively. The slopes of the lines giving logarithmic error-plot in different norms
are tabulated in the following tables. The figures in the table show that the
convergence is almost of zeroth order for L°°-norm and the order is gradually
decreasing when we increase p in LP-norm.

The slopes in the case of regular particles
types of norms | L' | L | L* | L™
slopes [ -0.5751 | -0.3175 | -0.2250 | -0.0580

The slopes in the case of irregular particles

slopes | -0.5449 | -0.3011 | -0.2137 | -0.0510
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Figure 32: Logarithmic error plot in different norms for regular particles
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Figure 33: Logarithmic error plot in different norms for irregular particles
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A Assumptions On the Flux Function g

We assume that g(t, 1, u1, To, 4, n) with ¢t > 0, 21, 12,0 € R% and uy, uy € RP
is a numerical flux function for G which satisfies
consistency

e g(t,z,u,z,u,n) = G(t, z,u)n
conservativity
e g(t,z,u,y,v,—n)=g(t,y,v,z,u,n)
continuity
o lg(t,z,u,y,v,n)—g(t,2,u,9,0,n)| < L[|z —2||+[ly—yl[+ lu—u| +[lv-

?||), where L depends monotonically on ¢ and max{||u/||, | @l ||v]|, ||7] }-
Also, ¢ is assumed to be continuous in t € R™.

B The Computation of ;; and V]

Here we want to present the computation of 3;; and V; for the case of partition
of unity induced by the family of hat functions in one dimensional domain.
For this purpose we suppose that the particles are placed in the set Q(t) at the
points {z; : i € M} where Q(t) = (a(t).b(t)) and M = {1,...,m}. Now let us
take one particle ¥;, which is placed at the point x;. Since all calculations are
performed for a fixed ¢ > 0, we drop the t-dependance for all functions. Then

() = w; ()
0= o)
and
o(x) = Zw,(m)

The partition of unity in this case is generated by the kernel function which is

defined by

r+1 ifze(-1,0]
w(z)=< —z+1 ifze (0,1]
0 else
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and thus

where h is the so-called smoothing length. Suppose 1; and 1; be the indicator
functions for the left- and right-half of the interval (z; — h, x; + h]. Now,

r—x;+h_ _ —r+x;+h
w;(z) = Tli (z) + le’(?")

and hence

w;i(z) =x

(1 () — 17 (=) <-ri(1i+(ﬂ?) — 1 (=)

where

Now defining,

we can write

Thus

) = e T Bl

Here, /Nl,-, B,-, A and B are piece-wise constant functions defined on the domain
Q(t). The idea of getting the exact integral of function ¥;(z) over the domain
€(t) is to partition the domain §2(¢) into small sub-intervals such that the func-
tion is a rational polynomial in each sub-interval and the functions 4;, B;, A
and B are constant in these sub-intervals. In fact, if we take the collection
of points {z;,z; + h,x; —h : i € M} and sort them out in ascending order,
the particle function W¥; is rational polynomial in each piece of interval and
A;, B;, A and B are constants in each piece. Hence, we integrate the particle
function ¥; in every piece and sum the results to get the integral of W; in
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Q(t). For this purpose let us take a typical interval (a,b) in which the func-
tions A;, B;, A and B are constant and get the integral of U; in this interval.
Suppose that A;, B;, A and B be the values of the functions A;, B;, A and B
in (a, b) respectively. Indeed

b b
V;(r)dr = ——dxr.
/,,, () / A+ B

By following the elementary calculations, if A # 0 in this piece, we get

b (b—a)A; AB; — BA; Ab+ B
/ U, (z)dr = " + Ve log P B‘ :

The case A = 0, can be treated easily, which yields

/ Wi(a)dr = (b —a) "0

Since fBi; = 7vij — Vji, we can compute 7;; in similar way as we compute V;. The

7i; can be written as
w; Ow;
Vij = / — o dx
Q(t) 0'2 a.’E

ow; 1, 4
57 7 (15 (@) — 17 (x))

and

and hence

dr.

L (1; (z) = 1] (2)) (zA; + By)
e /Q(f) h (A + B)?

In a similar fashion as we did for computing V; we can partition the domain
)(t) into similar pieces also here and get 7;; by summing the integral of each
piece. Finally f3;; is be obtained by using the relation, 3;; = 7;; — v;;. Indeed
from the elementary calculation, if A # 0 in the piece (a,b), we get

/ w; () Ow;(z )d A A;  log Ab+ B| A;(b—a)(AB; — BA;)
L o2 ox 7 A2 8|Aa+B|" A(Aa+ B)(Ab+ B)

and if A =0 in the piece (a,b), we have simply

wi(z) Ow;(z) (b+a)A; +2B;
/a o) O de = A;(b—a) 557 .
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Conclusions

In this thesis, we have studied the finite volume particle method (FVPM)
presented in [3], [6] which combines the generic features of finite volume meth-
ods and particle methods. In fact, the scheme is the generalization of classical
finite volume method and from the choice of the particular partition of unity
the classical finite volume method can be recovered.

Here, we have derived the FVPM for time-dependent and bounded domains
based on the Lagrangian particles following the similar techniques as in [6]
in quite general settings. We have tested the scheme we have derived for
the isentropic Euler system in one dimension in the case of moving boundary
and fixed boundary for different initial and boundary data. We have shown
that the scheme reasonably approximates the exact solution even for arbitrary
particle distribution and even for discontinuous data, however the numerical
convergence analysis shows that the order of the convergence depends on the
regularity of the boundary and initial data we prescribe. We have also derived
the finite volume method for moving boundary in one dimension by choos-
ing the particular partition of unity. The next step would be to extend the
scheme to higher orders and to higher dimensions. In these cases, an exact
computation of the geometric coefficients and volumes is no longer possible.
In fact, the efficient and accurate computation of the geometric coefficients
and volumes for the general family of partition of unity in higher dimension is
quite challenging task in this method.
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