
The Appliations of Finite VolumePartile Method for Moving BoundaryMaster Thesis
Submitted byBishnu Prasad Lamihhane
Supervisors:Prof. Dr. Helmut NeunzertDr. Mihael JunkUniversity of KaiserslauternDepartment of MathematisGermanyJuly 25, 2001

1



AknowledgementsFirst, I want to thank my supervisor Prof. Dr. Neunzert who initiated andmotivated me in applied mathematis. I would like to express my deep grat-itude to my supervisor Dr. Mihael Junk who initiated me in this interestingtopi and devoted a lot of his time for giving me guidane for this thesis to beful�lled. I am also grateful to DAAD for giving me �nanial support to studyin Germany without whih there was no hane for me to ome here to studymathematis. I would also like to thank my family who give me moral supportduring my study. Finally, I would like to thank all of the members of De-partment of Mathematis and members of ITWM who diretly and indiretlysupported me in ourse of my study.

2



Contents1 Derivation of Finite Volume Partile Shemes in Bounded Do-mains 61.1 Derivation of the Method . . . . . . . . . . . . . . . . . . . . . . 6Constrution of Partition of Unity . . . . . . . . . . . . . . . . . 72 Approximation 132.1 Redution into One Dimension . . . . . . . . . . . . . . . . . . . 183 Finite Volume Sheme as a Limit of FVPM 194 Modeling and Model Problem 264.1 Derivation of Numerial Flux . . . . . . . . . . . . . . . . . . . 295 Treatment of Boundary Conditions 315.1 Method of Charateristis . . . . . . . . . . . . . . . . . . . . . 315.2 Bakward Method . . . . . . . . . . . . . . . . . . . . . . . . . . 325.3 Boundary Partiles or Ghost Partiles . . . . . . . . . . . . . . . 336 Numerial Results 366.1 Numerial Results from Finite Di�erene Sheme . . . . . . . . 376.2 Numerial Results from FVPM . . . . . . . . . . . . . . . . . . 406.3 Comparison of Errors in Di�erent Methods . . . . . . . . . . . . 436.4 Comparison between Regular Partiles and Irregular Partiles . 446.5 Constant Smoothing Length and Variable Smoothing Length . . 456.6 Longer Smoothing Length and Shorter Smoothing Length . . . 473



7 Numerial Convergene Analysis 477.1 Convergene Analysis for an Initial Value Problem . . . . . . . . 487.2 Convergene Analysis in the Case of Smooth Boundary Values . 527.3 Numerial Convergene Analysis for our Model Problem . . . . 54A Assumptions On the Flux Funtion g 58B The Computation of �ij and Vi 58

4



OutlineIn this thesis we study the �nite volume partile method (FVPM) presentedin [3℄, [6℄ whih has the generi features of partile methods and �nite volumemethods. Sine the last deade, the partile methods for onservations laws aregaining more and more popularity in industrial appliations. These partilemethods are mesh-free and they are popular in handling the time-dependentproblems, ompliated geometries and moving domains sine the mesh dis-retization beomes expensive and ompliated for suh problems. For suhproblems the sheme based on Lagrangian partiles is a good hoie, sine theyare ompletely mesh-free.In fat, appliation of the �nite volume methods or �nite element methodsfor the problem whih are time-dependent and based on ompliated domainswhih may be hanging with respet to time is really expensive and sometimeompliated due to the neessity of handling the dynami data-strutures andadaptation of mesh-disretization. That is why in suh ases, the partilemethods are appropriate where we do not need to disretize the domain withsome mesh at all. Our aim here is to derive the FVPM for time-dependentdomains and test the sheme for some initial-boundary-value problems withmoving boundary and analyze the numerial onvergene.
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1 Derivation of Finite Volume Partile Shemesin Bounded DomainsIn the following we present the derivation of Finite Volume Partile Methods ina bounded domain with moving boundary. This method for Cauhy problemis �rst presented by Hietel, Steiner and Strukmeier in [3℄. The onsistenyanalysis in one dimension is done by Junk and Strukmeier in [6℄. We followalmost the similar derivation as given in [6℄. This method is mesh-free andbased on general partition of unity and standard numerial ux funtion. Infat, lassial �nite volume shemes are reovered if we hoose speial kind ofpartition of unity. That is why this lass of partile method an be thought asthe generalization of �nite volume shemes.1.1 Derivation of the MethodWe onsider here the system of onservation laws in 
(t) for the open, boundedand onneted set 
(t) (alled a domain) in Rd�u�t +r:F (u) = 0 in 
(t) u(0; x) = u0(x)with suitable boundary onditions, where u(t; x) is the vetor of onservativequantities, u(t; x) 2 Rp for t � 0 and x 2 Rd and F (u)(t; x) is the ux funtionof the onservation laws. We suppose that there is a ontinuously di�erentiableveloity-�eld z : R+ � Rd ! R suh that x0 2 �
(0) moves aording to_x = z(t; x), x(0) = x0. We want to give a brief explanation of the basi symbolswe have to use throughout this thesis. We assume M = f1; : : : ; mg for somem 2 N and take the set of points fxi(t) : i 2 Mg in �
(t). To eah xi(t) weassoiate a funtion 	i(t; x) � 0 de�ned in �
(t), whih will be alled partileplaed at the point xi(t). Moreover, we set 
 = f(t; x) : t 2 R+; x 2 
(t)g.Now we de�ne the partition of unity in �
De�nition 1 The set of funtions f	i : i 2Mg where 	i : �
! R+ will forma partition of unity if Pmi=1	i(t; x) = 1 for all x 2 �
(t) and for all t 2 R+.These partiles may be irregularly spaed and moving. They have overlappingsupport with one another and they are loalized around xi(t). In the nextsubsetion we will desribe how the partition of unity is formed.6



Constrution of Partition of UnityWe take a Lipshitz ontinuous funtion w : Rd ! R+ with ompat support.We de�ne 	i(t; x) = wi(t; x)�(t; x)where �(t; x) = mXi=1 wi(t; x):In general, we an set wi(t; x) = w(Ai(t)(x� xi(t)))where Ai(t) is symmetri, positive-de�nite matrix of size d by d for all t � 0. Inthe ase of onstant smoothing length in all diretions, Ai(t) = 1=hi(t)I whereI is the identity matrix of size d by d and hi(t) > 0 for all t and for all i 2M .For simpliity we take here onstant smoothing length for all spatial diretions(irular path) although hi(t) an be taken as vetor giving smoothing lengthin di�erent spatial diretions. Thuswi(t; x) = w(x� xi(t); hi(t))for all i 2M . The funtion w : Rd ! R+ is known as the kernel funtion. Forthe simpliity of notation we also de�ne the derivative of wi(t; x) with respetto hi(t) Dhwi(t; x) = ��hi(t)w(x� xi(t); hi(t)):For example, taking some speial kernel funtion w in one dimension de�nedby w(x) = 8><>:x + 1 if x 2 (�1; 0℄�x + 1 if x 2 (0; 1℄0 elseand some salar smoothing length h, we get a partiular partition of unity.The onstrution of the funtion wi(t; x) and the partile funtions 	i(t; x) forirregularly spaed 12 partiles are visualized in the Figures 1 and 2. On thex-axis are indiated partile positions xi and around eah point, the funtion7
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Figure 1: The funtion wi(t; x)
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Figure 2: The partile funtion 	i(t; x)wi(t; x) are plotted. We have used this kernel in our numerial examples, al-though other hoies are also possible. After dividing by �(t; x) =Pmi=1 wi(t; x)we get the partile funtion 	i(t; x).Remark 2 :(1) The funtions 	i in general may be non-symmetri and irregularly spaedand moving.(2) The supports of 	i overlap, but we want to avoid overlapping of manypartiles and that is why we hoose the ompatly supported kernel fun-tion w.(3) The funtion �(t; x) =Pmi=1 wi(t; x) must be �nite and non-zero for everyx 2 
(t) and for every t � 0. Thus hi(t) should be hosen in suh a waythat there is no gap in 
(t). That means every point x 2 
(t) should liewithin the support of at least one 	i(t; x) for all t � 0.(4) The kernel funtion w is to be hosen in suh a way that 	i(t; :) 2 C0(
)and 	i(t; :) is piee-wise C1 in 
, every piee being a regular domain.8



We onsider the following initial-boundary value problem of the system ofonservation laws in 
(t) for the open, bounded and onneted set 
(t) in Rd�u�t +r:F (u) = 0 in 
(t) u(0; x) = u0(x) (1)together with the suitable boundary onditions. Here u(t; x) is the vetor ofonservative quantities, u(t; x) 2 Rp for t � 0 and x 2 Rd and F (u)(t; x) isthe ux funtion of the onservation laws.Now we get the weak formulation of above equation by multiplying both sidesby the partile 	i and integrating over the domain 
(t)Z
(t) �u�t	i(t; x)dx+ Z
(t)r:F (u)	i(t; x)dx = 0:Inluding 	i in the spae and time derivative we obtainZ
(t) �(u	i)�t dx + Z
(t)r:(F (u)	i)dx� Z
(t) �u�	i�t + F (u):r	i� dx = 0:(2)Now we de�ne the disrete partile propertyui(t) = 1Vi(t) Z
(t)	i(t; x)u(t; x)dx (3)where Vi(t) is the volume of the partile 	i(t; x), given byVi(t) = Z
(t)	i(t; x)dx:After multiplying both sides of the equation (3) by Vi(t) and di�erentiatingwith respet to t, we getddt(ui(t)Vi(t)) = ddt Z
(t)	i(t; x)u(t)dx: (4)We have veloity-�eld z(t; x) suh that z(t; x) gives the veloity-�eld of theboundary if x 2 �
(t), then we an use the transport theorem to getddt(uiVi) = Z
(t) ��(u	i)�t +r:(u
 z)	i� dx (5)
9



where u
z is the usual dyadi produt of two vetor-�elds de�ned by (a
b) =(aibj)i;j and divergene applied to matrix A is de�ned byr:A = 0BB� r:A1r:A2� � �r:Ap 1CCAwhere Ai represents the ith row of the matrix funtion A of size p by d. Nowif we use the results (2) in the equation (5) and use Gauss theorem, we getddt(uiVi) = Z�
(t)(u
 z � F (u))	i:n ds+ Z
(t) �u�	i�t + F (u):r	i� dx: (6)Sine generally we suppose that the smoothing length hi(t) an vary withrespet to time and wi(t; x) = w(x� xi(t); hi(t)) we have��twi(t; x) = � _xi(t):rxwi(t; x) +Dhwi(t; x) _hi(t):Now we want to prove the following:Proposition 3 With the notations as above�	i�t = mXj=1 ��	i _xj:rxwj� �	j _xi:rxwi� �� �	i _hjDhwj� � 	j _hiDhwi� �� :Proof: Here�	i�t = � _xi(t):rwi(t; x)�(t; x) + wi(t; x)�2(t; x) mXj=1 _xj(t):rwj(t; x)+_hiDhwi(t; x)�(t; x) � wi(t; x)�2(t; x) mXj=1 _hjDhwj(t; x):Now we use �(t; x) =Pmj=1wj(t; x) to get�	i�t = mXj=1 �	i _xj:rwj� �	j _xi:rwi� �� mXj=1 �	i _hjDhwj� � 	j _hiDhwi� � :10



Proposition 4 The term r	i(t; x) an be written asr	i(t; x) = mXj=1 �	j(t; x)rwi(t; x)�(t; x) � 	i(t; x)rwj(t; x)�(t; x) � :Proof: Note that r	i(t; x) = r�wi(t; x)�(t; x) � :Now using the produt rule, we getr	i(t; x) = rwi(t; x)�(t; x) � wi(t; x)r�(t; x)�2(t; x) :The result follows from the relations �(t; x) =Pmj=1wj(t; x) andPmj=1	j(t; x) =1.Here, let us introdue the following notations:�ij(t; x) = 	i(t; x)rwj(t; x)�(t; x)and �ij(t; x) = 	i(t; x)Dhwj(t; x)�(t; x) :Using these symbols and the results from the propositions 3 and 4 in theequation (6) and suppressing the arguments t and x we have the equations ofmotion asddt(uiVi) = Z�
(t)(u
 z � F (u))	i:n ds+mXj=1 Z
(t) hu ( _xj:�ij � _xi:�ji) + F (u) (�ji � �ij)� u� _hj�ij � _hi�ji�i dx; (7)ddtxi(t) = z(t; xi)11



for i = 1; : : : ; m where Vi(t) = Z
(t)	i(t; x)dx: (8)Here we are interested in the partiles whih are moving with the veloity-�eldz(t; x). These moving partiles are alled the Lagrangian partiles. If we allowthe partiles to move, even the volume of the partiles may hange with respetto time and it is neessary to ompute Vi(t) for every partile at eah time t.We an ompute the volume Vi(t) by using the formula (8). We have exatlyused this formula for our numerial omputation. However, we an get theadditional equation for Vi(t) by di�erentiating the equation (8) with respetto t, whih yieldsdVi(t)dt = mXj=1 Z
(t) �wirwj�2 _xj � wjrwi�2 _xi � ( _hj�ij � _hi�ji)� dx+Z�
(t)	iz:n dsand this equation an also be used to ompute the volume of every partileat eah time t. Rearranging the terms of the equation (7), we obtain theequations of motion asddt(uiVi) = Z�
(t)(u
 z � F (u))	i:nds+mXj=1 Z
(t) [(F (u)� u
 _xi)�ji � (F (u)� u
 _xj)�ij℄ dx�Z
(t) u( _hj�ij � _hi�ji)dx; (9)ddtxi(t) = z(t; xi)with the initial value u0i = 1Vi(0) Z
(t)	i(0; x)u0(x)dxand the presribed boundary onditions whih we would disuss later. Toobtain the solution we use the interpolation formula~u(t; x) = mXi=1 	i(t; x)ui(t):12



From now on we will allB(t; i) = Z�
(t)(u
 z � F (u))	i:ndsthe boundary term and use the abbreviation FVPM for the Finite VolumePartile Method.2 ApproximationLet us onsider the Lagrangian ux funtion G(t; x; u) = F (u) � u 
 z andset Gi = G(t; xi; ui) and ij(t) = R
(t) �ij(t; x)dx then, the equation (9) anapproximately be written asddt(uiVi) � mXj=1 �(Giji �Gjij)� Z
(t) u( _hj�ij � _hi�ji)dx�+Z�
(t)(u
 z � F (u))	i:n ds:Now we use the splitting a � bd = (a�b)(+d)2 + (a+b)(�d)2 whih is valid evenwhen a and b are matries and  and d are vetors, we getmXj=1(Giji �Gjij) = mXj=1 12[(Gi �Gj)(ij + ji)� (Gi +Gj)(ij � ji)℄:Suppose that supp(	i) � Bd(xi(t); hi(t)) where Bd(x; h) is the d-dimensionalball with radius h and enter at x. Then if we take the smoothing length hi(t)and hj(t) suÆiently small we an assume that Gi � Gj for ij + ji 6= 0 sineij + ji 6= 0 implies that xi and xj are nearby partiles (preisely kxi� xjk �hi + hj, when ij 6= 0), we an onlude thatmXj=1(Giji �Gjij) � mXj=1 12(Gi +Gj)(ji � ij)= � mXj=1 k�ijk(Gi +Gj)2 nijwhere �ij = ij � ji and nij = �ij=k�ijk. Sine �ij arry geometrial infor-mation of the relative positions of the partiles we will all them geometrioeÆients. Here Gi+Gj2 is the numerial ux funtion of entral di�erening.13



A more general approah is obtained if we replae this partiular expressionby a general numerial ux funtion, gij = g(t; xi; ui; xj; uj; nij) for G(t; x; u)whih should be onsistent with the Lagrangian ux funtion F (u) � u 
 z.The general assumptions on the numerial ux funtion gij are presented inthe appendix A. Let us introdue one more symbol�ij(t) = Z
(t) �ij(t; x)dx = Z
(t) 	iDhwj� dx:Sine ui represents the solution averaged with respet to the funtion 	i, whihis given by the equation (3), we an writeZ
(t) u(t; x)�ij(t; x)dx � ui(t) Z
(t) �ij(t; x)dx:Then Z
(t) u( _hj�ij � _hi�ji)dx = ui _hj Z
(t) �ijdx� uj _hi Z
(t) �jidxand this an be written asZ
(t) u( _hj�ij � _hi�ji)dx = ui _hj�ij � uj _hi�ij:Now suppose that Bi(t) be some disretization of the boundary termB(t; i) = Z�
(t)(u
 z � F (u))	i:n dswhih will now depend on fui : i 2 Mg and the presribed boundary on-ditions. Thus we end up with a system of ordinary di�erential equations invetor formddt(uiVi) = � mXj=1 hk�ijkgij + (ui _hj�ij � uj _hi�ji)i+Bi; (10)ddtxi(t) = z(t; xi) (11)with initial ondition u0i = 1Vi(0) Z
(0)	i(0; x)dx14



along with the presribed boundary onditions whih should be omputed bytaking into aount the interpolation formula,~u(t; x) = mXi=1 	i(t; x)ui(t)and the given boundary onditions. The details about the boundary onditionswill be treated later in setion 5.Proposition 5 The FVPM de�ned by the equation (10) ful�lls the disretebalane property ddt mXi=1 (uiVi) = mXi=1 Biif the numerial ux funtion g ful�lls the ondition, g(t; xi; ui; xj; uj; nij) =�g(t; xj; uj; xi; ui; nji) where Bi(t) is a disretization of the boundary termB(t; i) = R�
(t)(u
 z � F (u))	i:n ds.Proof: We haveddt(uiVi) = � mXj=1 hk�ijkgij + (ui _hj�ij � uj _hi�ji)i+Bi:Summing over i we �ndddt mXi=1 (uiVi) = � mXi=1 " mXj=1 �k�ijkgij + ui _hj�ij � uj _hi�ji��Bi# :Now using the property k�ijkgij = �k�jikgji we obtainmXi=1 mXj=1 k�ijkgij = 0;and it is simple to observe thatmXi=1 mXj=1(ui _hj�ij � uj _hi�ji) = 0whih onludes the proof. 15



Lemma 6 The geometri oeÆients an be given by the following formula�ij = Z
(t)(	ir	j �	jr	i)dx:or equivalently �ij = 2 Z
(t)	ir	jdx� Z�
(t) 	i	jn ds:Proof: We have de�ned�ij = Z
(t) �	irwj(t; x)�(t; x) �	jrwj(t; x)�(t; x) � dx:Now if we use rwj = r(�	j) = 	jr� + �r	j in the above equation we get�ij = Z
(t)(	ir	j �	jr	i)dx:We an write this formula for �ij as�ij = Z
(t)(�r(	i	j) + 2	jr	i)dx:The seond result follows by using the Gauss divergene theorem.Proposition 7 The oeÆients �ij satisfy�ij = ��ji 8i; j 2M: (12)mXj=1 �ij = � Z
(t)r	idx 8i 2M: (13)�ij = 0 if supp(	i) \ supp(	j) = ;: (14)Proof: Properties (12) and (14) are obvious from the de�nition of �ij andwe prove only (13). In Lemma (6) we have proved�ij = Z
(t)(	ir	j �	jr	i)dx:16



Summing over all j, we getmXj=1 �ij = mXj=1 Z
(t)(	ir	j �	jr	i)dxNow we use mXj=1 	j = 1 and mXj=1 r	j = 0to get mXj=1 �ij = � Z
(t)r	idx:
Now we have the following orollaryCorollary 8 If the veloity �eld z(t; x) = 0 in 
(t) for all t � 0 and thesmoothing length hi does not vary with respet to time the property (13) inabove proposition ensures the preservation of onstant state if the disretizationof the boundary term ful�lls the onsisteny onditionBi = F (u): Z�
(t)	i(t; x)n dsfor the onstant solution u of the initial-boundary-value problem given by (1).Proof: Assume that the onstant u solves the given initial-boundary-valueproblem given by (1). Here we want to show that ui = u; i = 1; : : : ; m, is astationary solution ofddt(uiVi) = �" mXj=1 k�ijkgij + (ui _hj�ij � uj _hi�ji)� Bi# :SupposeR(u1; : : : ; um) = �" mXj=1 k�ijkgij + (ui _hj�ij � uj _hi�ji)�Bi# :To show that u is the stationary solution we have to prove R(u; : : : ; u) = 0.Sine the partiles are not moving and the smoothing length hi is independent17



of time �ij = 0 for all i; j 2M and due to the onsisteny of the numerial uxfuntion gij with the Lagrangian ux funtion whih we have already assumedwe get gij = F (u):nij. Now we use the result (13) of the Proposition (7)mXj=1 �ij = � Z
(t)r	idxand the onsisteny ondition for the disretization Bi(t) of the boundary termto getR(u; : : : ; u) = ��Z
(t) F (u)r	idx� Z�
(t) F (u)	i:n ds� :Realling the use of Gauss theorem, we an write the above equation asR(u; : : : ; u) = ��Z
(t) F (u)r	idx� Z
(t)r:(F (u)	i)dx� :We rearrange the terms of this equation to obtainR(u; : : : ; u) = ��Z
(t) F (u)r	i �r:(F (u)	i)dx� :Now using the produt rule of di�erentiation, we getR(u; : : : ; u) = � Z
(t)(�1)(r:F (u))	idx (15)whih leads to R(u; : : : ; u) = 0: (16)
2.1 Redution into One DimensionSine we take model problem in one dimension whih we will disuss later, wewant to redue the equation of motion, we have derived, into one dimension.Suppose the domain in one dimension be 
(t) = (a(t); b(t)): The equations ofmotion in one dimension areddt(uiVi) = � mXj=1 hj�ijjgij + (ui _hj�ij � uj _hi�ji)i +Bi; (17)18



ddtxi(t) = z(t; xi)with initial onditions u0i = 1Vi(0) Z
(0)	i(0; x)dxfor i = 1; : : : ; m along with the presribed boundary onditions whih we willlater disuss in details. Here Bi(t) is the disretization of the boundary termB(t; i) = R�
(t)(uz � F (u))	i:n ds.Sine ds is the element of the boundary of a one dimensional domain, we haveds = dÆa(t) + dÆb(t) where dÆ is the point measure in one dimension. Then theGauss theorem in one dimension gives B(t; i) = � [(F (u)� uz)	i℄b(t)a(t), where[(F (u)� uz)	i℄b(t)a(t) = (F (u)� uz)	ijb(t) � (F (u)� uz)	ija(t). Hene in onedimension Bi(t) is just the disretization of � [(F (u)� uz)	i℄b(t)a(t). In the aseof onstant smoothing length whih simply means _hi = 0; 8i 2 M; theequation of motion is ddt(uiVi) = � mXj=1 j�ijjgij +Biwith the similar initial and boundary ondition as in the general ase. If weuse the expliit Euler disretization for equation (17) for the time derivative,we get(uiVi)n+1 = (uiVi)n � Æt" mXj=1 �j�nijjgnij + uni _hnj �nij � unj _hni �nij��Bni # :Remark 9 In one dimension we onstrut gij from a numerial ux funtion~g(t; x; u; y; v) whih is onsistent with Lagrangian ux funtion G(t; x; u) forall t � 0 and x; y 2 R and u; v 2 Rp. Then we de�ne gij byg(t; xi; ui; xj; uj; nij) = (~g(t; xi; ui; xj; uj) if nij = 1�~g(t; xj; uj; xi; ui) if nij = �1:3 Finite Volume Sheme as a Limit of FVPMIn this setion we want to show how the speial hoie of a partition of unityleads to a �nite volume sheme. Suppose the domain 
(t) = (a(t); b(t))19



be subdivided into equal ells (intervals) (x0; x1℄; (x1; x2℄; : : : (xm; xm+1) wherex0 = a(t) and xm+1 = b(t). We will take Æx as the length of every subinterval.We hoose the regular distribution of the partiles, eah partile plaed in themiddle of the ell and the partition of unity is indued by the family of theindiator funtions fIi : i 2 Mg where Ii is the indiator funtion of the ithell and M = f0; 1; : : : ; m+ 1g. Here by family we mean the set of funtions.Thus Ii(t; x) = (1 if x 2 (xi�1 + Æx2 ; xi+1 � Æx2 ℄;0 elsefor i = 1; : : : ; m and for i = 0 and m+ 1, we have,I0(t; x) = (1 if x 2 (x0; x1 � Æx2 ℄;0 elseand Im+1(t; x) = (1 if x 2 (xm+1 � Æx2 ; xm+1);0 elseOur aim here is to ompute the geometri oeÆients �ij and �ij for the par-tition of unity formed by the family of indiator funtions with the help ofpartition of unity formed by the family of hat funtions. We will prove someLemmas onerning the omputation of oeÆients �ij and �ij for the partitionof unity formed by hat funtions and we will show that the partition of unityformed by the family of regular indiator funtions is the limiting ase of thepartition of unity formed by the family of regularly spaed hat funtions whenh ! Æx=2. Here, by regular partiles, we mean that the partiles are plaedregularly in 
(t). To form the partition of unity from the hat funtions wewill take the kernel funtion w as in the �rst setion, de�ned byw(x) = 8><>:x+ 1 if x 2 (�1; 0℄;�x + 1 if x 2 [0; 1℄;0 elsethen, set wi(t; x) = w�x(t)� xi(t)h(t) � :The partiles are then de�ned by	i(t; x) = wi(t; x)�(t; x)20



where �(t; x) = mXi=1 wi(t; x):Here we de�ne the k-interation of the partilesDe�nition 10 If the k pairwise distint partiles 	i1(t; x); : : : ;	ik(t; x) hasthe property that �(supp(	i1) \ � � � \ supp(	ik)) > 0 then we will speak ofk-interation where � is the Lebesgue measure in R1.Sine in one dimension it is neessary that at least two neighboring partilesshould interat to form the partition of unity we de�neDe�nition 11 The family of partition of unity f	i(t; x) : i 2Mg will be alledminimal overlapping family of partition of unity if there is no 3-interationamong the partiles and 	i(t; x)	j(t; x) = 0 for all x 2 �
(t) and for alli; j 2M; i 6= j and for all t � 0.The immediate onsequene of Lemma 6 in one dimension is thatLemma 12 If the family of partition of unity is minimal overlapping then,for i 6= j, �ij an be given by the formula,�ij = 2 Z
(t)	i�	j�x dx: (18)Proof: Sine the family of partition of unity is minimal overlapping, we getZ�
(t)	i	jn ds = 0:Now the result follows by using the formula of �ij given in Lemma 6De�nition 13 A minimal overlapping family of partition of unity with parti-le independent smoothing length h(t) formed by regularly spaed hat funtionsordered aording to their positions on the x-axis will be alled a regular par-tition of unity. 21



Sine for the regular partition of unity the partiles are ordered aordingto their positions in the x-axis, intersetion of supports of two neighboringpartiles an be taken as an interval, if it is not empty. We prove the followingassertions for the regular partition of unity we have just de�ned.Lemma 14 In the ase of regular partition of unity the geometri oeÆ-ients �ij are simply given by�ij = 8><>:1 if j = i + 1;�1 if j = i� 1;0 else:Proof: Assume that two partiles 	i and 	j interat whih means �(supp(	i)\supp(	j)) > 0. If i = j, �ii = 0 for all i by the de�nition of �ij. If i 6= j then	i+	j = 1 if x 2 supp(	i)\ supp(	j). When the family of partition of unityis minimal, we an use the formula (18)�ij = 2 Z
(t)	i�	j�x dxHene �ij = 2 Z
(t)(1� 	j)�	j�x dxSine the partiles are ordered we an assume [s1; s2℄ = supp(	i) \ supp(	j),then �ij = 2[	j � 12	2j ℄s2s1 = 8><>:1 if j = i + 1�1 if j = i� 10 else:First we take the smoothing length h = Æx and then the partition of unityformed by the family of regular hat funtions will tend to the partition of unityformed by the family of regular indiator funtions when h! Æx2 ; h � dx. Forthe following Lemma we will write 	i(t; x; h), �ij(t; h); wi(t; x; h) and �ij(t; h)to represent the expliit dependene of 	i; �ij; wi and �ij on h.Lemma 15 For the regular partition of unity	i(t; x; h) = 8>>><>>>:x�xi+h2h�Æx if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;�x+xi+h2h�Æx if x 2 (xi+1 � h; xi + h℄;0 else:22



for Æx2 � h � Æx and 	i(t; x; h)! Ii(t; x)almost everywhere when h! Æx2 , h � Æx.Proof: First we take the partile 	i(t; x; h) for 1 � i � m and h � Æx	i(t; x; h) = 8>>>><>>>>: wi(t;x;h)wi�1(t;x;h)+wi(t;x;h) if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;wi(t;x;h)wi+1(t;x;h)+wi(t;x;h) if x 2 (xi+1 � h; xi + h℄;0 else:Now wi�1(t; x; h) + wi(t; x; h) = 2h� Æxh if x 2 (xi � h; xi�1 + h℄and wi+1(t; x; h) + wi(t; x; h) = 2h� Æxh if x 2 (xi+1 � h; xi + h℄:Thus, the partile funtion 	i is given by	i(t; x; h) = 8>>><>>>:x�xi+h2h�Æx if x 2 (xi � h; xi�1 + h℄;1 if x 2 (xi�1 + h; xi+1 � h℄;�x+xi+h2h�Æx if x 2 (xi+1 � h; xi + h℄;0 else:If h ! Æx2 , the intervals, (xi � h; xi�1 + h℄ and (xi+1 � h; xi + h℄ are empty.Hene 	i(t; x; h)! Ii(t; x)almost everywhere when h ! Æx2 . The similar reasoning holds for i = 0 andi = m + 1.When we derease the smoothing length, how the partition of unity formed bythe family of regularly spaed hat funtions with Æx2 � h � Æx, approximatethe partition of unity formed by the family of indiator funtions of eah ellan be seen in the Figures (3). 23
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Suppose j = i� 1. Using the �rst result of Lemma 15�ij(t; h) = Z xi�1+hxi�h (x� xi + h)(2h� Æx)2 (x� xi�1)h dx:A simple omputation shows that�ij(t; h) = h+ Æx6h :We an use similar omputation for j = i+ 1 and the other ases are obvious.Hene, using h! Æx=2 we get, �ij = 12 , for the partition of unity formed by thefamily of indiator funtions. We are interested here to hange the smoothinglength hi(t) aording to the ompression and the expansion of the domain dueto the movement of the boundary but independent of all partiles. Therefore,we an write h(t) for hi(t) and thus h(t) = (b(t)� a(t))=m; where m+1 is thenumber of partiles we use for omputation. Then _h(t) = (vb(t) � va(t))=m.Here b(t) and a(t) are the positions and vb(t) and va(t) are the veloities ofthe right and left boundary respetively. The partile veloity-�eld z(t; x) ishosen in suh a way that the partiles are always equidistant and the funtionz(t; x) satis�es z(t; x) = (va(t) for x = a(t) andvb(t) for x = b(t):The equation of motion for variable smoothing length is given byddt(uiVi) = �m+1Xj=0 hj�ijjgij + (ui _hj�ij � uj _hi�ij)�Bii (19)where Bi(t) is the disretization ofBfv(t; i) = limh! Æx2 Z�
(t)(uz � F (u))	i(t; x; h):n ds= limh! Æx2 [(uz � F (u))	i(t; x; h)℄b(t)a(t):Here we an set Bi(t) = 0 for i = 1; : : : ; m beause we havelimh! Æx2 [(F (u)� uz)	i(t; x; h)℄b(t)a(t) = 025



for i = 1; : : : ; m. Now using the values of �ij and �ij in the equation of motion(19) and using the onstrution of the numerial ux funtion as desribed inremark 9 the equation of motion for regular partition of unity is redued toddt(uiVi) = �[~gi;i+1 � ~gi�1;i + _h(t)2 (2ui � ui�1 � ui+1)℄ +Biddt(xi) = z(t; xi)Vi(t) = h(t)for i = 0; : : : ; m+1, with initial ondition u0i = u0(xi) and boundary onditionsv(t; x0) = va(t) and v(t; xm+1) = vb(t). Here, the term _h(t)2 (2ui � ui�1 � ui+1)in the sheme an work as the anti-di�usive or di�usive agent aording as thesign of _h. However, this probably does not a�et the stability of the shemeas long as the integral limt!1 Z t0 _h(s)dsstays lose to zero whih is ertainly true for small h and slow periodi hangeof h.4 Modeling and Model ProblemWe have a ylindrial tube of length L �lled with gas and a piston is movingbakward and forward in the left side of the tube whereas the right side is kept�xed on the wall. (see Figure 4)
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Figure 4: Model problem for the linear equations of aoustisIn the Figure 4, p, v and n represents pressure, veloity and outer normalrespetively. When the piston will start moving forth the waves of pressure26



will be propagated sine the gas inside the tube will be ompressed. Indeed,when the piston is moving bak and forth the gas will be somewhere ompressedand somewhere rare�ed inside the tube giving the variation of pressure insideit. Beause of axial symmetry, we just treat this problem as one-dimensionalproblem. To failitate the exat solution, we have hosen that the piston ismoving bakward and forward with onstant veloity. More natural hoiewould be a smooth motion. Then we will see the wave of veloity and pressurerunning to the right boundary and reeting bak after they hit the rightboundary. The position and veloity of the piston with respet to time isvisualized in the Figure 5.
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Figure 5: The position and veloity of the pistonThis type of physial problem an be modeled by the linearized isentropi Eulersystems in one dimension if the veloity of the piston is muh less than the ve-loity of the sound. Our aim is to apply the numerial sheme we have derived(i.e. FVPM) for the isentropi Euler equations in one dimension linearizedaround some onstant solution in the ase of moving boundary to ompute theveloity and pressure inside the ylinder at any time t and ompare the resultwith �nite volume ase and �nite di�erene ase. The isentropi Euler systemin one dimension is given by� ��v �t + � �v�v2 + p �x = 0: (20)
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Where � is the density, v is the veloity and p is the pressure. Now we use theonstitutive relation p = �k to write down the above equation in the form�p�t + v �p�x + kp�v�x = 0; �v�t + v �v�x + (p )�1=� �p�x = 0:We wish to onsider the equations satis�ed by a small perturbation of theonstant solution p(t; x) = p0 and u(t; x) = 0. Thus we look for the perturbedpressure and the veloity of the form p(t; x) = p0+ ~p and u(t; x) = ~v+0. Sim-ilarly the veloity of the piston is also muh less than the veloity of sound.That is, jz(t; x)j is muh less than the veloity of the sound. We also introdue0 =pp0(�0) the sound speed in the gas. We have the relation p0(�) = ����1:Now if we linearize the isentropi Euler equation around p(t; x) = p0 andv(t; x) = 0 we get the linear system�~p�t + kp0 �~v�x = 0; �~v�t + (p0 )�1=� �~p�x = 0:If we remove the tilde and write the above equation as a system we get�u�t + A�u�x = 0where A = � 0 kp0(p0 )�1=� 0 � and u = � pv � :We have the following initial and boundary onditionsv(t; a(t)) = va(t)v(t; 1) = 0v(0; x) = 0p(0; x) = 1where a(t) and va(t) are the position and veloity of the piston respetively withrespet to time. We want to make the equation dimensionless, and therefore,introdue the following dimensionless variables �t = tT ; �x = xL ; �p = p�p0 ; �v = TvL .Then the above system beomes ��p��t + ��v��x = 0��v��t + (p0 )�1=��p0T 2L2 ��p��x = 0:28



But the sound speed is given by 20 = �p0(p0 )�1=�: Therefore, using 20 =�p0(p0 )�1=� we get ��p��t + ��v��x = 0��v��t + 0T 2L2 ��p��x = 0:If we hoose T and L suh that 20T 2L2 = 1, that is , we sale the harateristispeed to one and remove the bar and use the same symbol p, v, x and t again,our system beomes �u�t + A�u�x = 0where A = � 0 11 0 � and u = � pv � : (21)We want to solve this equation in the ase of moving boundary as desribedabove with the given initial value and boundary values. The speed of thepiston is taken to be muh less than one.4.1 Derivation of Numerial FluxIn this subsetion, we want to derive the numerial ux funtion for FVPMand upwind sheme. In the ase of FVPM, our numerial ux funtion whihis given by gij = g(t; xi; ui; xj; uj; nij) should be onsistent with the Lagrangianux-funtion G(t; x; u) = F (u)� uz(t; x) where F (u) = Au and z(t; x) is theveloity-�eld of the partiles. For FVPM and �nite di�erene sheme, we wantto take the upwind numerial ux funtion onsistent with G(t; x; u) and F (u)respetively. To derive the numerial ux funtion we need to analyze theeigenvalues of the matrix (A� zI), whereA = � 0 11 0 �and I is the 2 by 2 identity matrix. The veloity-�eld of the partiles is hosenas follows: z(t; x) = (va(t) for x = a(t) and0 for x = 129



and we hoose the veloity-�eld of partiles inside the domain by using someinterpolation between these values. This is natural sine one of our boundaryis moving and we an imagine the partiles to be ompressed and expandeddue to the movement of the boundary as the ompression and expansion of aspring from one side. Now let us set ~A = (A� zI) and hene the eigenvaluesof ~A are �1 = 1� z and �2 = �1� z. Sine we have saled the harateristispeed to one, the veloity of the partiles should be muh less than one andthus the eigenvalues satisfy 1� z > 0 and �1� z < 0. In the upwind methodone-sided stenil points in the 'upwind' diretion from whih the harateristiinformation propagates. Thus when applying upwind sheme to the linearsystem with eigenvalues of mixed signs, we should take into aount the orretdiretion of propagation and the stenil should also point to this diretion. Thisis exatly the Godunov method applied to linear system whih is disussed in[8℄. Sine the harateristi speed of the system is both negative and positive,we have to deompose the matrix ~A into two matries ~A+ and ~A�, so that~A+ has only positive eigenvalues and ~A� has only negative eigenvalues and~A = ~A+ + ~A�. Here the harateristi lines go into both diretions and henethe information is propagated towards both diretions. That is why we annot presribe both pressure and veloity on the same boundary. Only one anbe presribed on one boundary. Indeed, if we presribe both variables on theboundary x = 0, the solution does not exist in the ase of negative eigenvaluesof the matrix ~A. We take the matrix R onsisting of right eigenvetors of ~Aordered in the same way as the eigenvalues. ThenR = � 1 11 �1 � and R�1 = � 1 11 �1 � :Now we get R�1 ~AR = � = diag(1� z;�1 � z). Multiplying the right side ofthis equation by R�1 and the left side by R, we get, ~A = R�R�1. Assumethat for the eigenvalues �1 and �2 of the matrix ~A, �+i = max(�i; 0) and��i = min(�i; 0). We de�ne ~A+ = R�+R�1 and ~A� = R��R�1 where �+ =diag(�+1 ; �+2 ) and �� = diag(��1 ; ��2 ). Then�+ = � 1� z 00 0 � and �� = � 0 00 �1� z � :Hene we get,~A+ = (1� z(t; x))2 � 1 11 1 � and ~A� = (1 + z(t; x))2 � �1 11 �1 � :30



The matries ~A+ and ~A� has the required properties as asserted above. Nowwe de�ne ~g(t; xi; ui; xj; uj) = ~A+ui + ~A�uj. Hene the numerial ux funtionfor FVPM is de�ned byg(t; xi; ui; xj; uj; nij) = (~g(t; xi; ui; xj; uj) if nij = 1�~g(t; xj; uj; xi; ui) if nij = �1:This numerial ux funtion is onsistent with Lagrangian ux funtion F (u)�uz. The onsisteny is lear sine g(t; x; u; x; u; n) = (F (u) � uz)n: Thenumerial-ux for the upwind di�erene sheme an be obtained by simplysetting z(t; x) = 0. Thus the numerial ux funtion for upwind di�erenesheme is given by g(ui; ui+1) = (A+ui + A�ui+1)where ~A+ = 12 � 1 11 1 � and ~A� = 12 � �1 11 �1 � :5 Treatment of Boundary Conditions5.1 Method of CharateristisThe term Bi(t) is an approximation of boundary term B(t; i) = R�
(t)(u 
z � F (u))	i:n ds, i.e., the boundary term should be omputed by using thevalue of the solution on the boundary at every time-step. For our modelproblem only the veloity is presribed on the boundary and the pressure is notknown. Therefore we have to use some tehniques to extrat the pressure on theboundary. We an use the information from harateristis to get the pressureon the boundary, whih an be obtained by following the harateristi lineone time-step bakward. Sine we know the solution on 
(t) at time t = T�Ætwe an trae bak following the harateristi line and get the pressure on theboundary at time t = T . However, the numerial experiments shows that thismethod is quite sensitive to the approximation of the boundary values andfor our model problem as soon as the partile distribution is quite irregularwe see the strange behavior around the boundary whih is due to the poorapproximation of the pressure on the boundary by this method. The probleman be seen in Figure 6. In the Figure 6 the upper wave is the pressure waveand the lower wave is the veloity wave. The numerial experiment also shows31



that this method is more sensitive with respet to time-step in omparisonto other methods whih we will disuss later. The value of pressure whih isapproximated by the method of harateristi on the boundary along with thepresribed veloity is given by the formula� p(t; 1)v(t; 1) � = � p(t� dt; 1� dt) + v(t� dt; 1� dt)0 � (22)for the boundary x = 1 and� p(t; a(t))v(t; a(t)) � = � p(t� dt; a(t) + dt)� v(t� dt; a(t) + dt) + va(t)va(t) � (23)for the boundary x = a(t). Now the value of Bi(t) is omputed by using thesevalues in the expressionZ�
(t)(u
 z � F (u))	i:nds:
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Figure 6: Problem on the boundary in the harateristi methods5.2 Bakward MethodSine in some ases the method of harateristi will not give the result withdesired auray and may be diÆult to apply, the boundary values of thevariable whih are not presribed on the boundary an also approximatedby the bakward method. In this method , the boundary term is omputedby using the values of the variables from one time-step bak. In this ase wepropose to approximate the boundary term B(t; i) = R�
(t)(u
z�F (u))	i:n ds(i.e. ompute Bi(t)) in the following way:32



� If the variable is not presribed on the boundary, use the omputed valueof this variable on the boundary from one time-step bak.� If the variable is presribed on the boundary, use the boundary valueevaluating at time t = T � Æt.However, we get the same defet also in the bakward method as in the har-ateristi method.5.3 Boundary Partiles or Ghost PartilesThere is also another approah to treat the boundary value problem in hy-perboli partial di�erential equations whih is more general than the methodof harateristis and bakward methods. We an introdue extra partilesnear the boundary to maintain the boundary ux and then the boundary terman be ompletely dropped. The partiles whih are plaed nearest to theboundary are more important than the other partiles for the treatment ofthe boundary onditions, sine they arry the boundary information in thenumerial shemes. We will all them either boundary partiles if they are in-side the domain or on the boundary, or the ghost partiles if they are outsidethe domain. In FVPM, we an use either the ghost partiles or the boundarypartiles to approximate the boundary term. We partition the olletion ofindies M of all partiles into two disjoint sets N and D, M = N [ D, suhthat i 2 D means the partile 	i is the ghost partile or the boundary partileand i 2 N means that 	i is inner partile (i.e. not ghost partile or boundarypartile). One an presribe the partile properties for the ghost partile orthe boundary partiles in suh a way that the given boundary onditions areful�lled. We have implemented this idea and this an easily be generalized tohigher dimensional problems and even non-linear ases. We hoose the partileproperties for the ghost partiles or the boundary partiles in suh a way thatthe reonstruted solution~u(t; x) =Xi2M 	i(t; x)ui(t)satis�es the boundary onditions. Thus after the introdution of the boundarypartiles or the ghost partiles our numerial FVPM sheme in one dimensionbeomes ddt(uiVi) = �m+1Xj=0 hj�ijjgij + ui _hj�ij � uj _hi�jii33



for i = 1; : : : ; m where we introdue the new partiles at x0 and xm+1. HereM = f0; : : : ; m+1g, N = f1; : : : ; mg and D = f0; m+1g. In the ase of ghostpartiles x0 and xm+1 will lie outside the domain but near the boundary andin the ase of boundary partiles x0 and xm+1 will lie exatly on the boundary,or inside the domain. We update the partile properties inside the domain forall partiles exept boundary partiles or the ghost partiles by the numerialsheme and we use the boundary onditions to get the partile properties forthe ghost partiles or for the boundary partiles. In one dimension it is quitesimple, however the same idea works also for higher dimensional ases. For theboundary partiles or the ghost-partiles we follow the following proedures:� We get the values u1; : : : ; um by the numerial shemes.� We have the interpolation formula for the solution~u(t; x) = m+1Xi=0 	i(t; x)ui(t): (24)� For all boundary partiles or the ghost partiles we hoose the partileproperties by solving the linear system whih omes from imposing theboundary onditions on (24).In this modi�ation of the sheme, if we introdue the ghost partiles it isneessary to extend the partition of unity in the outer neighborhood of theboundary �
(t). Indeed, the partition of unity should over also the ghostpartiles. However, in ase of boundary partiles it is not neessary to extendthe partition of unity, sine all the partiles stay inside �
(t) in this ase. Thuswe get the linear system whih should give partile properties for all boundarypartiles or for all ghost partiles. Sine generally in hyperboli problems theboundary onditions for all variables an not be presribed, we do not get thevalue of all variables on the boundary and the linear system may be under-determined. This problem an be overome in some ases where the boundaryonditions for the variables whih are not presribed on the boundary anbe found by using the equation itself or where the boundary values of thesevariables an be approximated by the methods of harateristis whih we havealready disussed. However, in general ase one has to reourse to the idea ofextrapolation. We get the values of the variables whih are not presribed onthe boundary by using the values of the variables we have inside the domainby using some extrapolation tehniques. Also for our model problem we haveto �nd the right boundary value for the pressure, sine only the veloity is34



presribed on the both boundaries. However, we �nd the boundary onditionsfor the pressure by using the equation itself. Using the equation (21) we get,�v�t = ��p�xand thus �v�t jx=a(t) = ��p�x jx=a(t) and �v�t jx=1 = ��p�x jx=1:Then after getting the values of all variables on the boundary, the linear systemshould be uniquely solvable. Now we have the following sheme:ddt(uiVi) = �m+1Xj=0 hj�ijjgij + ui _hj�ij � uj _hi�jii (25)for i = 1; : : : ; m with the initial values u0i = R
(0)	i(0; x)dx=Vi(0) along withthe following boundary onditionsu0 = fl(u1; : : : ; um)um+1 = fr(u1; : : : ; um)where fl and fr depends on the boundary onditions presribed for the vari-ables. The values u0 and um+1 are obtained by solving the linear system. Towrite the linear system expliitly, let us suppose ui = (pi; vi)T , where pi andvi are the partile properties for the pressure and the veloity respetively.Thus we want to ompute pb = (p0; pm+1)T and vb = (v0; vm+1)T . Let us writeai = 	i(t; x1) � 	i(t; x0), bi = 	i(t; xm+1) � 	i(t; xm), A0 = �Pmi=1 piai andB0 = �Pmi=1 pibi. Using the numerial di�erentiation of the pressure at theboundary we get the onditions p(t; x0) = p(t; x1) and p(t; xm) = p(t; xm+1)whih gives Appb = (A0; B0)Twhere Ap = � a0 am+1b0 bm+1 � :To get the partile properties for the veloity at the boundary we use thesymbols A1 = va(t) �Pmi=1 vi	i(t; a(t)) and B1 = �Pmi=1 vi	i(t; 1), we havethe linear system, Avvb = (A1; B1)T35



where Av = � 	0(t; a(t)) 	m+1(t; a(t))	0(t; 1) 	m+1(t; 1) � :The numerial experiment shows that this method is highly robust against thevariation of time-step and the partile distribution. Indeed, we have alwaysused Æt = h=2, where h is the smoothing length. If we use the same time-stepand same smoothing length with same distribution of the partiles we see theosillation in the harateristi method and bakward method whereas we donot see any osillation in the boundary partile or ghost partile ase whihan be seen in the Figure 7. The solution osillates when the piston was re-turning bak. The idea of putting the boundary partiles or the ghost partilesis a natural generalization of the similar idea in �nite volume method to ap-proximate the boundary term. However, putting the ghost partiles may beproblemati if the omputational domain is ompliated. If the two boundariesof the domain are very near and we have to put the ghost partiles for both ofthem, we have to be very areful about the interation of the ghost partilesof the two boundaries.
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Figure 7: Osillation in harateristi method6 Numerial ResultsIn this setion we will present all the numerial solutions we have omputedby using di�erent shemes. Indeed, we have ompared the numerial resultsfrom �nite di�erene sheme, �nite volume shemes and FVPM. We have alsoompared various results from FVPM exploiting its exibilities. In all of the36



�gures below the wave up is the pressure-wave and the wave down is theveloity-wave. Sine �nite di�erene sheme is the simplest of all the shemes,�rst of all, we implement the �nite di�erene methods for our model problem.6.1 Numerial Results from Finite Di�erene ShemeWe use the upwind numerial ux funtion that we derived in setion 4.1.When applying the �nite di�erene method in moving boundary one has tohange the mesh at every time step. Here, instead of re-meshing whole domainat every time, we only hange the mesh in the neighborhood of the movingboundary. When the boundary is moving forward or bakward, we delete themesh-point nearest to the boundary, if the distane of this point from theboundary is less than the half of the grid-size and otherwise, keep it. Sinewe �x the grid, we may need the information from some points behind theboundary. This we have obtained by some extrapolation. We also implementthe other sheme, whih is similar to the above method in all respets, exeptthat it always uses one point exatly on the boundary and hene it is notneessary to use the extrapolation in this method. This method will deform thestenil around the moving boundary. Both of the shemes seem to be equallye�etive and we have presented the numerial results from these shemes in thefollowing �gures. In fat, we implemented also some other tehniques, amongwhih, re-meshing around the moving boundary seems to be the best hoie.The pressure and the veloity waves run from the left moving boundary untilthey reah the right boundary and they reet bak. The Figure 8 shows howthe stenil looks like around the boundary in both shemes. It is lear from the�gure that we need to extrapolate the value in the �rst sheme at one point,sine the stenil demands the value at that point.
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Figure 8: The stenil for both shemes
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Figure 9: When we do not use the point exatly on the boundary
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Figure 10: When we use the point exatly on the boundaryIn the Figure 9, we have plotted the result of the sheme whih does notuse the point exatly on the boundary, but use the boundary-information byextrapolation. In the Figure 10, we have plotted the results of the shemewhih always uses the point from the boundary and so we do not need to doextrapolation. The numerial results are derived using 200 points in spaeand CFL 0:5. The plotted solution is at the time t = 1:186: Although we donot see any di�erene in the results from these two di�erent tehniques here,if we plot the results at the time when the wave is just moving ahead of thepiston or just returning bak we an see that the extrapolation an ause smallosillation around the jump whih an be seen from the Figures 11 and 12.That is why it is advisable to use the points on the boundary rather than �xthe grid and use extrapolation. To show the di�erene more learly we haveused only 100 grid points here and we plot the solution at time t = :6 whenthe piston was just returning bak. If we ompare the Figure 11 with Figure12 we see a small osillation of the solution near the left jump in the Figure11, whih is due to the extrapolation. However, the osillation will die downafter some time.
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Figure 11: When we do not use the point exatly on the boundary
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Figure 12: When we use the point exatly on the boundary
6.2 Numerial Results from FVPMIn this setion we want to present the numerial results from FVPM. Sinethere are a lot of exibilities one an implement in FVPM, we have also usedseveral methods whih we want to disuss here. Flexibilities in FVPM are dueto the followings:� Treatment of the boundary onditions40



� Smoothing length� Partile-distribution� Veloity-�eld of the partilesHere we want to onentrate on the �rst three items. In fat, in our opinion theveloity-�eld of the partiles does not inuene the solution too muh if onehooses a reasonable veloity-�eld. In setion 4.1, we have already disussedhow we hoose our veloity-�eld. For all numerial results we have presentedhere we have used the expliit Euler disretization for the time derivative.Thus the numerial sheme we have derived in setion 2 looks like(uiVi)n+1 = (uiVi)n � Æt" mXj=1 �j�nijjgnij + uni _hnj �ij � unj _hni �nij��Bni #ddtxi(t) = z(t; xi); and Vi(t) = Z
(t)	i(t; x)dx: (26)All the numerial simulations are performed by using the partition of unityformed by the hat funtion with the partile independent smoothing length.Even we have used onstant smoothing for almost all simulations unless westate explitly that we have used adaptive smoothing length, whih is alsodepending only on time (not on partiles). We have already disussed thispartition of unity in the �rst setion. In this ase, we ompute �ij, Vi, �ijand xi exatly. Therefore, it is not neessary to disretize these equationshere. However, one an do similar disretization for them also. All numerialresults presented in this setion are obtained by using 200 regularly spaedpartiles in the domain 
(t) and the result at time t = 1:186 is plotted in the�gures. We have used the time-step Æt = h=2 where h is the smoothing length.The smoothing length in the ase of regularly distributed partiles is takento be the distane between two neighboring partiles whereas in the ase ofirregularly distributed partiles we hoose dm=2 < h < dm where dm is themaximal distane between two neighboring partiles. In the Figure 14, we haveplotted the di�erene in the solution between the harateristi method andthe boundary partile method. Although we do not see the di�erene betweenthese methods if we plot the solution as in the Figure 13, their di�erene isquite high in the neighborhood of the shok whih we an see in the Figure14. We will see whih method is better when we present the plot of the errorsin various methods in later subsetion.
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Figure 13: Exat and numerial solution from the method of boundary parti-les
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Figure 14: Di�erene in the solution between harateristi method and bound-ary partiles methodWe have presented the numerial result from the �nite volume sheme we havederived in setion 3 in the Figure 15. This is just the partiular ase of theFVPM when we hange the smoothing length adaptively and use the partitionof unity formed by regularly spaed indiator funtions. The numerial simu-lation is performed using 200 spatial points and we plot the solution at timet = 1:186. All of the results we have presented here seem to be quite ompara-ble with �nite volume method. Although we do not see any di�erene in thesemethods we will see some di�erene when we analyze the errors between exatsolution and the numerial solution in di�erent ases.42
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Figure 15: The exat solution and numerial solution from �nite volumemethod6.3 Comparison of Errors in Di�erent MethodsNow we want to present some plot of the errors in various methods we haveimplemented so far. In fat, we plot E = juexat�unumerialj against the pointswhere we ompute them. For all numerial results we get the solution using200 degrees of freedom. In the Figure 16, we have ompared the errors betweenthe �nite volume method and �nite di�erene method. The error plot showsthat the �nite volume sheme gives better resolution than the �nite di�erenesheme. Therefore, from now on we will ompare the FVPM only with �nitevolume methods.
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Figure 16: Error plots from �nite volume method and �nite di�erene method43



We an see in the Figure 17 that the errors are large where there is jump in thesolution and the error is almost zero in the onstant part for di�erent shemes.
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Figure 17: Error plots of di�erent shemesThis error plot shows that the �nite volume method gives the best shokresolution whereas the harateristi method and boundary partile ases arealso quite omparable to �nite volume method.6.4 Comparison between Regular Partiles and Irregu-lar PartilesWe do not get muh di�erene in the ase when the partiles are regularly dis-tributed between the �nite volume methods and FVPM. The power of FVPMis that we an easily use irregularly spaed partiles. Therefore, we want toompare the numerial results between the irregularly distributed partilesand regularly distributed partiles. The irregularly distributed partiles aregenerated by the funtion y = x5=4 initially, and thus the partiles are densenear the moving boundary and sparse near the �xed boundary. The partiledistribution in the irregular ase for 20 partiles is visualized in Figure 18.
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Figure 18: Partile distribution in irregular aseThe irregularly distributed partiles give a little bit better shok resolution nearthe moving boundary (i.e. where the partiles are dense) and not better shokresolution near the �xed boundary (i.e. where the partiles are sparse) whihis quite interesting. This shows that we an probably inrease the aurayof the result loally by inreasing the number of partiles in this region. Thisan be seen from the Figure 19.
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Figure 19: Comparison between regular and irregular partiles6.5 Constant Smoothing Length and Variable Smooth-ing LengthThe hoie of partile veloity is exible in FVPM. If we take the partilesto be spatially �xed, we get _xi = 0 for i = 1; : : : ; m and for all t � 0. Theneven _Vi = 0 for eah partile if the smoothing length is also taken to be45



onstant. However, we are interested in moving partiles, that is, in the asewhen the partile-positions are hanging with respet to time. When we movethe partiles either with the veloity-�eld of the uid or any other way andif we adhere to the �xed smoothing length, the diÆulty may arise if thereare more partiles onentrated on some parts of the domain or there are fewpartiles in other parts. If there are few partiles in some part, a gap may arisein the domain if the smoothing length is not big enough and this will ausethe partition of unity to break down. The partition of unity will break downif there is some point x in the domain suh that x =2 supp(	i) for all i 2 M .On the other hand if there are many partiles onentrated on some part ofthe domain there will also be a many interations of the partiles in this partif the smoothing length is not small enough and this will inrease the ostof omputation (two partiles will interat with eah other if their supportsinterset). This problem leads to the idea of hanging the smoothing lengthin an adaptive way suh that we an avoid the gap in the domain and thepartile-interations an be kept under a ertain level. The idea of hangingthe smoothing length in an adaptive way an also inrease the auray of thenumerial solution whih an be seen in Figure 20. In this Figure we havepresented the omparison of errors between adaptive smoothing length andonstant smoothing length. In adaptive ase, we hange the smoothing lengthin suh a way that there is interation of only two partiles.
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Figure 20: Comparison of errors between adaptive smoothing length and on-stant smoothing length
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6.6 Longer Smoothing Length and Shorter SmoothingLengthNow we ompare the results from shorter and longer smoothing length. Usingshorter smoothing length will redue the time-step, sine the stability onditionis related to the smoothing length here, and using the longer smoothing lengthwill derease the auray of the solution. That is why it is advisable tohoose the smoothing length in a wise way. Now we ompare the results fromthe shorter and longer smoothing length. To show the hange in the resultsdue the hange in the smoothing length, we have used here 50 partiles whosepositions are generated by the funtion y = x5=4 initially and the solution attime t = 1:186 is plotted in the Figure 21. Instead of giving the smoothinglength to determine the time-step we use the same time step for both ases.That is, we use Æt = 0:8dx2 . Here dx means the maximum of distanes betweenthe two neighboring partiles. We see the little steps in Figure 21 whih is dueto the reonstrution of the solution from the formula~u(t; x) = m+1Xi=0 	i(t; x)ui(t) (27)and the struture of the partile 	i(t; x) whih an be seen in the Figure 3.
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Figure 21: Comparison between longer and shorter smoothing length7 Numerial Convergene AnalysisIn this setion we want to analyze the order of our numerial sheme by takingdi�erent initial and boundary values and di�erent norms. We ompute the47



numerial solution for a sequene of partile distributions and expet that thenumerial solution will approximate the exat solution in a better and betterway, ultimately tending to the exat solution when the number of partilesreahes to in�nity. We want to see the di�erene among various ases, regularand irregular partiles, smooth and non-smooth data and also want to omparethe ases where both initial and boundary values are presribed. We start withthe onvergene analysis for some simple initial value problems.Generally, we want to analyse the numerial order of onvergene in the Lp-norm, whih is de�ned for general measurable funtions v(x) bykvkp = �Z
(t) jv(x)jpdx�1=pso that the norm of the spatial error at the �xed time t iskE(:; t)kp = �Z
(t) jE(t; x)jpdx�1=p :Sine all the numerial methods for solving hyperboli problems have the in-trinsi numerial di�usion, jumps in the solution are smeared and the point-wise error in the neighborhood of the disontinuity does not go to zero as thegrid is more and more re�ned. That is why we are not interested in point-wiseerror and thus Lp norm is appropriate for showing onvergene for the onser-vation laws. In fat, we will see later that the solution of our model problemdoes not onverge in L1-norm beause of the disontinuity in the boundaryvalue we have used on the left boundary. Suppose the exat solution is denotedby u(t; x). We get the numerial solution by using the reonstrution from theinterpolation formula, ~u(t; x) = mXi=1 	i(t; x)ui(t)and ompute the point-wise error E(t; x) = u(t; x)� ~u(t; x) and then we inte-grate the funtion jE(t; x)jp numerially by taking 1000 points and omputethe Lp-norm by taking the pth root of the integral. Indeed, it is better to takeat least 5n points to ompute the numerial integral for the solution omputedby n partiles.7.1 Convergene Analysis for an Initial Value ProblemIn the beginning, we take a very simple initial value problem whih is posed inthe full spae. Here we solve the linearized isentropi Euler equation given by48



equation (21) posed in full spae with smooth and non-smooth initial valueswhere we do not need the boundary onditions. The positions of the partilesare kept �xed. When simulating the full spae problem in omputer, we needto introdue arti�ial boundary. Therefore, we plot the solution before thearti�ial boundary a�ets our solution. For the ase of smooth initial value,we take the veloity to be initially zero and the initial pressure is desribed bythe funtion y(x) = 100w(x� 0:5), where,w(x) = 8><>:(x+ h)2 for �h � x < �h2�2x2+h22 for �h2 � x < h2(x� h)2 for h2 � x < hand h = 0:08. (see Figure 22) Indeed, the funtion y(x) is in C1(R). The nu-merial solution together with the exat solution at time T=0.25 are visualizedin the Figure 23. The numerial solution is omputed by using 400 irregularlyspaed points whose positions are generated by the funtion y = x5=4. Indeed,unless otherwise stated, by irregular we mean the partile-positions are gener-ated by the funtion y = x5=4 and by random we mean that the positions ofthe partiles are generated by a random number generator. The initial wavegets separated into two waves, one of them moving forwards and other mov-ing bakwards with the same veloity. The logarithmi error-plot for di�erentnorms is plotted in the Figure 24. The slope of the line giving logarithmierror-plot in the ase of regular and irregular partiles for di�erent norms aretabulated in the following tables.The slopes in the ase of regular partilestypes of norms L1 L2 L3 L1slopes -0.8798 -0.8658 -0.8726 -0.9493The slopes in the ase of irregular partilesslopes -0.8676 -0.8496 -0.8558 -0.9133The slopes in the ase of random partilesslopes -0.8263 -0.7880 -0.7972 -0.8663This table shows that the order of onvergene is almost one for di�erent normsalthough the order is less for the irregular and random partiles than for theregular partiles. 49
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Figure 22: The initial wave
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Figure 23: Exat and numerial solution for the problem with C1-initial value

3 4 5 6 7
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

error in L1−norm       
error in L2−norm       
error in L3−norm       

error in L∞−norm

Figure 24: Logarithmi error-plot for smooth initial value50



Now, we want to implement our sheme for the linearized isentropi Eulersystem posed in full spae with disontinuous initial values. The initial pro�leis now a shok at the the point x = 0:5 and as time proeeds, the shok getsseparated into two parts, moving in opposite diretion. The exat solution andnumerial solution using 400 irregularly spaed points are visualized in Figure25. The distribution of points are generated as before. The logarithmi error-plot of the solution of the problem involving initial shok pro�le is plotted inthe Figure 26. The slopes of the lines giving logarithmi error-plot for di�erentnorms and for di�erent distributions of partiles are tabulated in the followingtables. This table shows that the order of onvergene really depends on theregularity of the data we have presribed.The slopes in the ase of regular partilestypes of norms L1 L2 L3 L1slopes -0.5019 -0.2534 -0.1714 -0.0333The slopes in the ase of irregular partilesslopes -0.5014 -0.2515 -0.1683 -0.0185The slopes in the ase of random partilesslopes -0.3624 -0.2110 -0.1548 -0.0134
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Figure 25: Exat and numerial solution involving initial shok pro�le
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error in L∞−normFigure 26: Logarithmi error-plot for the shok problem7.2 Convergene Analysis in the Case of Smooth Bound-ary ValuesTo see the e�et of the boundary value in the order of onvergene of the shemewe implement our numerial sheme for the same linearized isentropi Eulerequation given in equation 21 with smooth boundary values. In fat, we hangethe boundary value of our model problem only in the left boundary keepingother boundary value and initial values the same as before and get the solutionin the ase of non-moving boundary. That is, we do not move the boundaryand impose new boundary onditions v(t; 0) = 1� os(2�t); v(t; 1) = 0. Sinethe boundary is kept �xed we do not hange the positions of the partiles withrespet to time. We use the inreasing number of partiles as 25,50,100,200 and400 to ompute the numerial solution. The numerial solution from FVPMwhih is omputed by using 200 irregularly spaed partiles and the exatsolution at time t = 1:186 are visualized in the Figure 27. The distribution ofpartiles is generated again by the funtion y = x5=4. The logarithmi errorplot for di�erent norms whih is visualized in the Figure 28 shows that wean ahieve the onvergene even in L1-norm even for irregular partiles andthe order of onvergene in all types of norms is almost one. The slope ofthe line giving logarithmi error-plot in the ase of various norms and variousdistribution of partiles are tabulated in the following table.
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The slopes in the ase of regular partilestypes of norms L1 L2 L3 L1slopes -1.0094 -0.9715 -0.9506 -0.9351The slopes in the ase of irregular partilesslopes -0.9494 -0.9398 -0.9288 -0.8744
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Figure 27: Exat and numerial solution of the problem with smooth initialand boundary data
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Figure 28: Logarithmi error plot for smooth boundary and initial data
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7.3 Numerial Convergene Analysis for our Model Prob-lemIn this subsetion we want to give the numerial onvergene analysis of FVPMapplied to our model problem. As before, we use the inreasing number of par-tiles as 25,50,100,200 and 400 to ompute the numerial solution and expetthat the numerial solution will approximate the exat solution in a betterand better way. The Figure 29 shows that the numerial solution onverges tothe exat solution when the number of partiles reahes to in�nity. In fat, inthe Figure 29 we have plotted the solution omputed with various numbers ofirregularly spaed partiles. Their initial positions are generated by the fun-tion y = x5=4 as before. In the Figure 30 we have plotted the L1-error in thelogarithmi sale. This shows that although the numerial solution onvergesto the exat solution when the number of partiles reahes to in�nity, for themodel problem, we an not ahieve the onvergene of the �rst order from thissheme. The slopes of the line giving the logarithmi error-plot in L1-norm are�0:575 and �0:545 for regular and irregular partiles respetively. However,this is not the defet of the FVPM. We an see that even the �nite volumemethod, whih gives the best numerial solution as we showed above, doesnot have the onvergene of the �rst order for our model problem, whih isdue to the disontinuity in the boundary data. The logarithmi error-plot inL1-norm from �nite volume method is presented in Figure 31. The slope ofthe line in the ase of �nite volume method is �0:588. We have already seenthat in the ase of smooth boundary data we an ahieve the onvergene ofthe �rst order. By omparing the di�erent ases we have presented so far, wean onlude that the order of onvergene depends mainly on the regularityof the boundary and initial values while there is almost no di�erene betweenthe regular and irregular partiles.
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Figure 29: Numerial solution approahing the exat solutions
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Figure 30: L1-error in logarithmi sale for FVPM
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Figure 31: L1-error in logarithmi sale for �nite volume methodFinally, we want to ompare the onvergene of the numerial solution amongdi�erent norms. As we told earlier, the L1-norm is appropriate to analyze theonvergene of any numerial sheme for onservation laws. Sine even for ourmodel problem, the boundary value whih we have presribed is disontinuous,the numerial solution does not onverge to the exat solution in point-wisesense. Even the order of onvergene depends upon the hoie of the norms.We have presented the logarithmi error-plot for various norms in the Figures32 and 33 for regularly spaed partiles and irregularly spaed partiles respe-tively. The slopes of the lines giving logarithmi error-plot in di�erent normsare tabulated in the following tables. The �gures in the table show that theonvergene is almost of zeroth order for L1-norm and the order is graduallydereasing when we inrease p in Lp-norm.The slopes in the ase of regular partilestypes of norms L1 L2 L3 L1slopes -0.5751 -0.3175 -0.2250 -0.0580The slopes in the ase of irregular partilesslopes -0.5449 -0.3011 -0.2137 -0.0510
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A Assumptions On the Flux Funtion gWe assume that g(t; x1; u1; x2; u2; n) with t � 0, x1; x2,n 2 Rd and u1; u2 2 Rpis a numerial ux funtion for G whih satis�esonsisteny� g(t; x; u; x; u; n) = G(t; x; u)nonservativity� g(t; x; u; y; v;�n) = g(t; y; v; x; u; n)ontinuity� kg(t; x; u; y; v; n)�g(t; �x; �u; �y; �v; n)k � L(kx��xk+ky��yk+ku��uk+kv��vk), where L depends monotonially on t and maxfkuk; k�uk; kvk; k�vkg.Also, g is assumed to be ontinuous in t 2 R+.B The Computation of �ij and ViHere we want to present the omputation of �ij and Vi for the ase of partitionof unity indued by the family of hat funtions in one dimensional domain.For this purpose we suppose that the partiles are plaed in the set �
(t) at thepoints fxi : i 2 Mg where 
(t) = (~a(t);~b(t)) and M = f1; : : : ; mg. Now let ustake one partile 	i, whih is plaed at the point xi. Sine all alulations areperformed for a �xed t � 0, we drop the t-dependane for all funtions. Then	i(x) = wi(x)�(x)and �(x) = mXi=1 wi(x):The partition of unity in this ase is generated by the kernel funtion whih isde�ned by w(x) = 8><>:x + 1 if x 2 (�1; 0℄�x + 1 if x 2 (0; 1℄0 else58



and thus wi(x) = w�x� xih �where h is the so-alled smoothing length. Suppose 1+i and 1�i be the indiatorfuntions for the left- and right-half of the interval (xi � h; xi + h℄. Now,wi(x) = x� xi + hh 1�i (x) + �x + xi + hh 1+i (x)and henewi(x) = x(1�i (x)� 1+i (x))h + �xi(1+i (x)� 1�i (x))h + (1+i (x) + 1�i (x))�= x ~Ai(x) + ~Bi(x)where ~Ai = (1�i � 1+i )h and ~Bi = �xi(1+i � 1�i )h + (1+i + 1�i )�Now de�ning, mXi=1 ~Ai = ~A and mXi=1 ~Bi = ~Bwe an write �(x) = x ~A(x) + ~B(x)Thus 	i(x) = x ~Ai(x) + ~Bi(x)x ~A(x) + ~B(x)Here, ~Ai; ~Bi; ~A and ~B are piee-wise onstant funtions de�ned on the domain
(t). The idea of getting the exat integral of funtion 	i(x) over the domain
(t) is to partition the domain 
(t) into small sub-intervals suh that the fun-tion is a rational polynomial in eah sub-interval and the funtions ~Ai; ~Bi; ~Aand ~B are onstant in these sub-intervals. In fat, if we take the olletionof points fxi; xi + h; xi � h : i 2 Mg and sort them out in asending order,the partile funtion 	i is rational polynomial in eah piee of interval and~Ai; ~Bi; ~A and ~B are onstants in eah piee. Hene, we integrate the partilefuntion 	i in every piee and sum the results to get the integral of 	i in59




(t). For this purpose let us take a typial interval (a; b) in whih the fun-tions ~Ai; ~Bi; ~A and ~B are onstant and get the integral of 	i in this interval.Suppose that Ai; Bi; A and B be the values of the funtions ~Ai; ~Bi; ~A and ~Bin (a; b) respetively. IndeedZ ba 	i(x)dx = Z ba xAi +BixA+B dx:By following the elementary alulations, if A 6= 0 in this piee, we getZ ba 	i(x)dx = (b� a)AiA + ABi � BAiA2 log ����Ab +BAa+B ���� :The ase A = 0, an be treated easily, whih yieldsZ ba 	i(x)dx = (b� a)(b+ a)Ai + 2Bi2B :Sine �ij = ij�ji, we an ompute ij in similar way as we ompute Vi. Theij an be written as ij = Z
(t) wi�2 �wj�x dxand �wj�x = 1h(1�j (x)� 1+j (x))and hene ij = Z
(t) (1�j (x)� 1+j (x))h (xAi +Bi)(xA +B)2 dx:In a similar fashion as we did for omputing Vi we an partition the domain
(t) into similar piees also here and get ij by summing the integral of eahpiee. Finally �ij is be obtained by using the relation, �ij = ij � ji. Indeedfrom the elementary alulation, if A 6= 0 in the piee (a; b), we getZ ba wi(x)�(x)2 �wj(x)�x dx = AiAjA2 log ����Ab+BAa+B ���� + Aj(b� a)(ABi � BAi)A(Aa +B)(Ab +B)and if A = 0 in the piee (a; b), we have simplyZ ba wi(x)�(x)2 �wj(x)�x dx = Aj(b� a)(b + a)Ai + 2Bi2B2 :60



ConlusionsIn this thesis, we have studied the �nite volume partile method (FVPM)presented in [3℄, [6℄ whih ombines the generi features of �nite volume meth-ods and partile methods. In fat, the sheme is the generalization of lassial�nite volume method and from the hoie of the partiular partition of unitythe lassial �nite volume method an be reovered.Here, we have derived the FVPM for time-dependent and bounded domainsbased on the Lagrangian partiles following the similar tehniques as in [6℄in quite general settings. We have tested the sheme we have derived forthe isentropi Euler system in one dimension in the ase of moving boundaryand �xed boundary for di�erent initial and boundary data. We have shownthat the sheme reasonably approximates the exat solution even for arbitrarypartile distribution and even for disontinuous data, however the numerialonvergene analysis shows that the order of the onvergene depends on theregularity of the boundary and initial data we presribe. We have also derivedthe �nite volume method for moving boundary in one dimension by hoos-ing the partiular partition of unity. The next step would be to extend thesheme to higher orders and to higher dimensions. In these ases, an exatomputation of the geometri oeÆients and volumes is no longer possible.In fat, the eÆient and aurate omputation of the geometri oeÆientsand volumes for the general family of partition of unity in higher dimension isquite hallenging task in this method.Referenes[1℄ B. Ben Moussa, J.P. Vila, Convergene of SPH Method for SalarNonlinear Conservation Laws, SIAM J. Numer. Anal., 37, (2000) 863-887[2℄ M. Griebel, M.A. Shweitzer, A Partile-Partition of Unity Methodfor the Solution of Ellipti, Paraboli and Hyperboli PDEs, SIAM Journalon Sienti� Computing, to appear[3℄ D. Hietel, K. Steiner, J. Strukmeier, A Finite-Volume PartileMethod for Compressible Flows, Math. Models Methods Appl. Si[4℄ D. Kr�oner, Numerial Shemes for Conservation Laws, Wiley & Teub-ner, Chihester/Stuttgart,1997 61
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