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Abstract

For odd square-free n > 1 the cyclotomic polynomial Φn(x) satisfies the identity of Gauss

4Φn(x) = A2
n − (−1)(n−1)/2nB2

n.

A similar identity of Aurifeuille, Le Lasseur and Lucas is

Φn((−1)(n−1)/2x) = C2
n − nxD2

n

or, in the case that n is even and square-free,

±Φn/2(−x2) = C2
n − nxD2

n.

Here An(x), . . . , Dn(x) are polynomials with integer coefficients. We show how these coefficients
can be computed by simple algorithms which require O(n2) arithmetic operations and work over
the integers. We also give explicit formulae and generating functions for An(x), . . . , Dn(x), and
illustrate the application to integer factorization with some numerical examples.

Comments

Only the Abstract is given here. The full paper will appear as [2]. For a preliminary report
and additional numerical examples, see [1].
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