# ON COMPUTING FACTORS OF CYCLOTOMIC POLYNOMIALS 

RICHARD P. BRENT

In memory of
Derrick H. Lehmer
1905-1991

Abstract
For odd square-free $n>1$ the cyclotomic polynomial $\Phi_{n}(x)$ satisfies the identity of Gauss

$$
4 \Phi_{n}(x)=A_{n}^{2}-(-1)^{(n-1) / 2} n B_{n}^{2} .
$$

A similar identity of Aurifeuille, Le Lasseur and Lucas is

$$
\Phi_{n}\left((-1)^{(n-1) / 2} x\right)=C_{n}^{2}-n x D_{n}^{2}
$$

or, in the case that $n$ is even and square-free,

$$
\pm \Phi_{n / 2}\left(-x^{2}\right)=C_{n}^{2}-n x D_{n}^{2} .
$$

Here $A_{n}(x), \ldots, D_{n}(x)$ are polynomials with integer coefficients. We show how these coefficients can be computed by simple algorithms which require $O\left(n^{2}\right)$ arithmetic operations and work over the integers. We also give explicit formulae and generating functions for $A_{n}(x), \ldots, D_{n}(x)$, and illustrate the application to integer factorization with some numerical examples.

## Comments

Only the Abstract is given here. The full paper will appear as [2]. For a preliminary report and additional numerical examples, see [1].

## References

[1] R. P. Brent, "Computing Aurifeuillian factors" Proceedings of a Conference on Computational Algebra and Number Theory, held at Sydney University, November 1992 (edited by W. Bosma and A. van der Poorten), to appear. rpb127.
[2] R. P. Brent, "On computing factors of cyclotomic polynomials", Mathematics of Computation (D. H. Lehmer memorial issue), 1993, to appear. rpb135.

Computer Sciences Laboratory, Australian National University, Canberra, ACT 0200
E-mail address: rpb@cslab.anu.edu.au

[^0]
[^0]:    1991 Mathematics Subject Classification. Primary 11-04, 05A15; Secondary 11T06, 11T22, 11T24, 11Y16, 12-04, 12E10, 12 Y 05.

    Key words and phrases. Aurifeuillian factorization, class number, cyclotomic field, cyclotomic polynomial, Dirichlet series, exact computation, Gauss's identities, generating functions, integer factorization, Lucas's identities, Newton's identities.

    Copyright © 1993, American Mathematical Society.
    Comments © 1993, R. P. Brent.

