The Fundamental Theorem of Arithmetic
A positive integer N has a unique prime power decomposition

Primality Testing
and
Integer Factorisation

Ricfiard Brent, $\mathcal{F A A}$
Computer Sciences Lab
Australian National Iniversity

Fermat's Little Theorem

If p is prime and $a \neq 0(\bmod p)$
then

$$
a^{p-1}=1 \quad(\bmod p)
$$

In modern terminology, the ring of residue classes $(\bmod p)$ is a field.

The converse of Fermat's Theorem is false as

$$
a \neq 0(\bmod p) \text { and } a^{p-1}=1(\bmod p)
$$

does not imply that p is prime.
There even exist composite n such that :

$$
a^{n-1}=1(\bmod n)
$$

for all a relatively prime to n
Such n are called Carmichael Numbers
e.g. $n=7.13 .19=1729$

$$
N=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}
$$

$$
\left(p_{1}<p_{2}<\ldots<p_{k} \text { primes, } \alpha_{j}>0\right)
$$

(Gauss 1801, but probably known to Euclid)

The Computational Problem

To compute the prime power decomposition we need :

1. An algorithm to test if an integer N is prime
2. An algorithm to find a nontrivial factor f of a composite integer N

Recursive Algorithm

If N composite, find nontrivial factor f and recursively apply the algorithm to f and N / f

Primality Testing

We can test a number n for primality by dividing by all primes up to $\sqrt{ } n$, but this is too slow.

We would like a polynomial time algorithm, i.e. one with guaranteed running time

$$
O\left((\log n)^{c}\right)
$$

for some constant c, to decide if n is prime.

Use of Fermat's Theorem

We can usually verify that a number n is composite by finding $a<n$ such that

$$
a^{n-1} \neq 1 \quad(\bmod n)
$$

We can never prove primality this way

A Rigorous Primality Test

To prove that n is prime it is sufficient to find a such that

$$
a^{n-1}=1(\bmod n)
$$

and

$$
a^{j} \neq 1(\bmod n)
$$

for $1<j<n-1$
a is called a primitive root $(\bmod n)$
To verify the second condition it is sufficient to check that

$$
a^{(n-1) / p} \neq 1 \quad(\bmod n)
$$

for all prime factor p of $n-1$

Problems

1. Need to factorise $n-1$ (may be hard)
2. Need to find primitive root a (usually easy)

Avoiding Factorisation of $n-1$
If n is prime and

$$
n-1=2^{k} q(q \text { odd })
$$

then the sequence

$$
\left(a^{q}, a^{2 q}, a^{4 q}, \ldots, a^{n-1}\right)
$$

has the form

$$
(1,1,1, \ldots, 1)
$$

or

$$
(?, ?, \ldots,-1,1,1, \ldots, 1)
$$

when considered $\bmod n$ (for any $a, 1<a<n$).
Say that n passes Test(a) if the sequence
$\left(a^{q} \bmod n, \ldots\right)$ has the form expected for prime n

At this point the ARC might ask
What use are large primes ?

Large primes can be used to construct public-key cryptosystems (also known as asymmetric cryptosystems and open encryption key cryptosystems)

Attempts to avoid large primes or their analogues (such as irreducible polynomials) have generally failed to produce secure cryptosystems or have proved to be impractical

Public Key Cryptosystems

[Figure to be drawn by hand here to illustrate sender, encryption, receiver etc.]

B publishes his public key (k, N) but keeps his secret key k' private
A encrypts a message M using (k, N) and sends the encrypted message C to B
B uses his secret key k^{\prime} (and N) to retrieve the original message M

Trapdoor or One-Way Functions

Let S be a (large) finite set. A trapdoor function is an invertible function

$$
f: S \rightarrow S
$$

such that $f(x)$ is easy, but $f^{-1}(y)$ is hard to compute

Example

$$
\begin{aligned}
& N=p . q(\text { a product of two large primes }) \\
& S=\{s \mid 0<s<N, \operatorname{GCD}(s, N)=1\} \\
& \lambda=L C M(p-1, q-1) \\
& k>1, \quad \operatorname{GCD}(k, \lambda)=1 \\
& f(x)=x^{k} \quad(\bmod N) \\
& f^{-1}(y)=y^{k^{\prime}} \quad(\bmod N)
\end{aligned}
$$

where

$$
k k^{\prime}=1 \quad(\bmod \lambda)
$$

Assumption

Hard to compute k^{\prime} unless p (or q) is known

Construction of a Trapdoor Function

1. Test sufficiently large random integers using a probabilistic primality test to find primes p^{\prime}, q such that $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$ are prime
2. Check that $p+1$ and $q+1$ each have at least one large prime factor (else go back to step 1)
3. Compute $N=p . q$ and $\lambda=2 p^{\prime} q^{\prime}$
4. Choose random k relatively prime to λ (or just choose $k=3$)
5. Apply the Extended Euclidean algorithm to k and λ to find $k^{\prime}, \lambda^{\prime}$ such that $0<k^{\prime}<\lambda$ and

$$
k k^{\prime}+\lambda \lambda^{\prime}=1
$$

6. Destroy all evidence of $p, q, \lambda, \lambda^{\prime}$
7. Make (k, N) public but keep k secret

Encryption

The sender splits the message M into blocks of L $\log _{2} N J$ bits (left-justified), treats each block as integer x in $\{0, \ldots, N-1\}$, and raises it to the power $k(\bmod N)$

$$
y=x^{k}(\bmod N)
$$

The receiver computes

$$
x=y^{k^{\prime}}(\bmod N)
$$

There is an extremely small chance that this fails because GCD $(y, N)>1$, i.e. y is divisible by p or q (easy to ensure that this never happens)

Security
There is no known way of cracking the system without essentially factorising N. (A Theorem if $k=2$)

Note that a knowlege of λ easily gives a
factorisation of N, and vice versa

Conclusion

Primality testing, integer factorisation,
elementary number theory, elliptic curves and algebraic numbers turn out to be useful in practical applications
as well as interesting in their own right

Integer Factorisation Algorithms
There are many algorithms for finding a nontrivial factor f of a composite integer N

Class A
Runtime depends on the size of N but is more or less independent of f

Examples

Lehman's Algorithm
Shanks's SQUFOF
Shanks's Class Group Algorithm $\mathrm{O}\left(N^{1 / 5+\varepsilon}\right)$
Continued Fraction
or MPQS
$\mathrm{O}\left(\exp \left(\mathrm{c}(\log (N) \log \log (N))^{1 / 2}\right)\right)$
Class B
Runtime depends mainly on the size of f
Examples
Runtime
Trial division Pollard Rho ECM
$\mathrm{O}\left(f .\left(\log M^{2}\right)\right.$
$O\left(f^{1 / 2}(\log N)^{2}\right)$
$\mathrm{O}\left(\exp \left(\mathrm{c}(\log (f) \log \log (f))^{1 / 2}\right) \cdot(\log N)^{2}\right)$

Pollard's Rho Algorithm

f is a pseudo-random polynomial. In practice we usually take

$$
f(x)=x^{2}+c \quad(c \neq 0,-2)
$$

x_{0} is a random starting value.
Compute the sequence $\left(x_{0}, x_{1}, \ldots\right)$ where

$$
x_{i+1}=f\left(x_{i}\right)(\bmod N)
$$

until

$$
\operatorname{GCD}\left(x_{2 i}-x_{i}, N\right)>1
$$

If p is the smallest prime factor of N, then probably

$$
\operatorname{GCD}\left(x_{2 i}-x_{i}, N\right)=p
$$

Heuristic Analysis of Expected Runtime

The probability that $x_{0}, x_{1}, \ldots, x_{k}$ are all distinct $(\bmod p)$ is roughly

$$
P=(1-1 / p)(1-2 / p) \ldots(1-k / p)
$$

(compare birthday paradox with $p=365$)
so

$$
\ln P \sim-k^{2} /(2 p)
$$

and the expected number of f evaluations is $\mathrm{O}\left(p^{1 / 2}\right)$
Each iteration involves operations on numbers of order N^{2}, so time $\mathrm{O}\left((\log N)^{2}\right)$ (we can avoid most of the GCDs)

Thus the expected runtime is $\mathrm{O}\left(p^{1 / 2} \cdot(\log N)^{2}\right)$
Example

$$
F_{8}=2^{256}+1=1238926361552897 . p_{62}
$$

[Brent and Pollard, 1980]

I am now entirely persuaded to employ the method,
a handy trick, on gigantic composite numbers

The Advantage of a Group Operation
The Pollard rho algorithm takes

$$
x_{i+1}=f\left(x_{i}\right)
$$

Suppose instead that

$$
x_{i+1}=x_{1}{ }^{*} x_{i}
$$

where * is an associative operator, i.e.

$$
x^{*}\left(y^{*} z\right)=\left(x^{*} y\right)^{*} z
$$

Then we can compute x_{n} in $\mathrm{O}(\log n)$ steps by the binary powering method,

$$
\begin{aligned}
& \text { e.g. } x_{2}=x_{1}{ }^{*} x_{1} \\
& x_{4}=x_{2}{ }^{*} x_{2} \\
& x_{8}=x_{4}{ }^{*} x_{4} \\
& x_{9}=x_{1}{ }^{*} x_{8}
\end{aligned}
$$

Example 2 - Lenstra's Elliptic Curve Method (ECM)
ECM is an improvement over the Pollard $p-1$ algorithm because different groups can be selected until we find one whose order is sufficiently smooth (i.e. has no large prime factors)

Geometry of Elliptic Curves
An elliptic curve is defined by a cubic polynomial in two variables. By rational transformations it can be reduced to the Weierstrass normal form

$$
y^{2}=x^{3}+a x+b
$$

An Abelian group ($G,{ }^{*}$) can be defined as shown -
[Equations to be inserted by hand here]

Algebraic Definition of *
If $\quad P_{i}=\left(x_{i}, y_{i}\right) \quad$ for $i=1,2,3$
and $\quad P_{3}=P_{1} * P_{2}$
then $\quad x_{3}=\lambda^{2}-x_{1}-x_{2}$
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
where $\quad \lambda=\begin{array}{ll}\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right) & \text { if } P_{1}=P_{2} \\ \left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right) & \text { otherwise }\end{array}$

Instead of considering operations in R we may consider operations in a finite field, e.g. F_{p}

Then $p+1-2 p^{1 / 2}<g<p+1+2 p^{1 / 2}$

Since p is unknown we work $\bmod N$ and detect p as a nontrivial GCD when attempting to compute an inverse $\left(\right.$ consider $x_{1}=x_{2}(\bmod p)$ in the definition of $\left.\lambda\right)$

Example of Factorisation by MPQS

$c_{103}=\left(2^{361}+1\right) /(3.174763)=$
6874301617534827509350575768454356245025403.p
[Lenstra, Manasse et al, 1989]

Corollary

The composite number N used in the RSA cryptosystem should have more than 100 decimal digits

The Number Field Sieve (NFS)
Our numerical examples have all involved numbers of the form

$$
N=a^{n} \pm b
$$

for small a and b, although the factorisation algorithms did not take advantage of this special form.

The Number Field Sieve does take advantage of such a special form. It is similar to the Quadratic Sieve algorithm but works over an algebraic number field defined by a, n, and b (impractical unless a and b are small).

Its conjectured runtime is
$\mathrm{O}\left(\exp \left(c(\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)\right)$
which is asymptotically better than the
$\mathrm{O}\left(\exp \left(c(\log N)^{1 / 2}(\log \log N)^{1 / 2}\right)\right)$
for algorithms such as MPQS (though the constants c may differ).

