
1

Primality Testing

and

Integer Factorisation

2

The Fundamental Theorem of Arithmetic

A positive integer N has a unique prime power
decomposition

(Gauss 1801, but probably known to Euclid)

The
�

Computational Problem

To compute the prime power decomposition we need :

1. An algorithm to test if an integer N is prime

2. An algorithm to find a nontrivial factor f of a
composite integer N

Recursive Algorithm

If N composite, find nontrivial factor f and recursively
apply the algorithm to f and N/f

3

Fermat’s Little Theorem

If p is prime and a≠0 (mod p)

then
ap-1 = 1 (mod p)

In modern terminology, the ring of residue classes
(mod p) is a field.

The converse of Fermat’s Theorem is false as

a≠0 (mod p) and ap-1 = 1 (mod p)

does not imply that p is prime.

There even exist composite n such that :

an-1 = 1 (mod n)

for all a relatively prime to n

Such n are called Carmichael Numbers

e.g. n = 7.13.19 = 1729

4

Primality Testing

We can test a number n for primality by dividing by
all primes up to √n, but this is too slow.

We would like a polynomial� time algorithm, i.e. one
with guaranteed running time

O((log n)c)

for some constant c, to decide if n is prime.

Use of Fermat’s Theorem

We can usually verify that a number n is
composite by finding a < n such that

an-1 ≠ 1 (mod n)

We can never prove primality this way



5

A Rigorous Primality Test

To prove that n is prime it is sufficient to find a
such that

an-1 = 1 (mod n)
and

aj ≠ 1 (mod n)
for 1 < j < n-1

a is called a primitive root (mod n)

To verify the second condition it is sufficient to
check that

a(n-1)/p ≠ 1 (mod n)

for all prime factor p of n - 1

Problems

1. Need to factorise n - 1 (may be hard)

2. Need to find primitive root a (usually easy)

6

Avoiding Factorisation of n - 1

If n is prime and

n - 1 = 2kq (q odd)

then the sequence

(aq, a2q, a4q, ... , an-1)

has the form

(1, 1, 1, ... , 1)

or

(?, ?, ..., -1, 1, 1, ... , 1)

when considered mod n (for any a, 1 < a < n).

Say that n passes Test(a) if the sequence

(aq mod n, ...) has the form expected for prime n

7

Theorem (Rabin)

If n is an odd composite number then the number

of a in the range 1 < a < n for which n passes Test(a)

is less than (n - 2)/4

Probabilistic Interpretation

If n is composite and a is chosen randomly then

the probability that n passes Test(a) is less than 1/4

8

Probabilistic Primality Testing

Given odd n > 1, choose a1, ... , am independently
and randomly from {2, 3, ... , n - 1}.

If n fails
�

Test(ai) for some i then

n is certainly composite

but if n passes Test(ai) for i = 1, ... , m then

n is probably prime

Formally, the probability that a composite n will
wrongly be declared to be prime is less than 4-m

e.g. m = 10 4-m < 10-6

m = 167 4-m < 10-100

Conclusion

For all practical purposes we can test primality in
polynomial time



9

At this point the ARC might ask

What use are large primes ?

Large primes can be used to construct public-key�

cryptosystems (also known as asymmetric crypto-
systems and open encryption key cryptosystems)

Attempts to avoid large primes or their analogues
(such as irreducible polynomials) have generally failed
to produce secure cryptosystems or have proved to be
impractical

10

Public Key Cryptosystems

[Figure to be drawn by hand here to illustrate sender,
encryption, receiver etc.]

B publishes his public key (k, N) but keeps his
secret key k’ private

A encrypts a message M using (k, N) and sends
the encrypted message C to B

B uses his secret key k’ (and N) to retrieve the
original message M

11

Trapdoor or One-Way Functions

Let S be a (large) finite set. A trapdoor function
�

is
an invertible function

f: S → S

such that f(x) is easy, but f -1(y) is hard to compute

Example

N = p.q (a product of two large primes)

S = {s | 0 < s < N, GCD (s, N) = 1}

λ = LCM (p - 1, q - 1)

k > 1, GCD (k, λ) = 1

f(x) = xk (mod N)

f -1(y) = yk’ (mod N)

where

kk’ = 1 (mod λ)

Assumption

Hard to compute k’ unless p (or q) is known

12

Construction of a Trapdoor Function

1. Test sufficiently large random integers using a
probabilistic primality test to find primes p’, q’ such that
p = 2p’ + 1 and q = 2q’ + 1 are prime

2. Check that p + 1 and q + 1 each have at least one
large prime factor (else go back to step 1)

3. Compute N = p.q and λ = 2p’q’

4. Choose random k relatively prime to λ (or just
choose k = 3)

5. Apply the Extended Euclidean algorithm to k and λ
to find k’, λ’ such that 0 < k’ < λ and

kk’ + λλ’ = 1

6. Destroy all evidence of p, q, λ, λ’

7. Make (k, N) public but keep k’ secret



13

Encryption

The sender splits the message M into blocks of
log2N bits (left-justified), treats each block as integer
x in {0, ..., N - 1}, and raises it to the power k (mod N)

y = xk (mod N)

The receiver computes

x = yk’ (mod N)

There is an extremely small chance that this fails
because GCD (y, N) > 1, i.e. y is divisible by p or q
(easy to ensure that this never happens)

Security

There is no known way of cracking the system
without essentially factorising N. (A Theorem if k = 2)

Note that a knowlege of λ easily gives a
factorisation of N, and vice versa

14

Conclusion

Primality testing, integer factorisation,

elementary number theory, elliptic curves and algebraic

numbers turn out to be useful in practical applications

as well as interesting in their own right

15

Integer Factorisation Algorithms

There are many algorithms for finding a nontrivial
factor f of a composite integer N

Class A

Runtime depends on the size of N but is more or
less independent of f

Examples Runtime

Lehman’s Algorithm O(N1/3)
Shanks’s SQUFOF O(N1/4)
Shanks’s Class Group Algorithm O(N1/5 + ε)
Continued Fraction
or MPQS O(exp(c(log(N)loglog(N))1/2))

Class B

Runtime depends mainly on the size of f

Examples Runtime

Trial division O(f.(log N)2)
Pollard Rho O(f 1/2(log N)2)
ECM O(exp(c(log(f)log log(f))1/2).(log N)2)

16

Pollard’s Rho Algorithm

f is a pseudo-random polynomial. In practice we
usually take

f(x) = x2 + c (c ≠ 0, -2)

x0 is a random starting value.

Compute the sequence (x0, x1, ... ) where

xi+1 = f(xi) (mod N)

until
GCD (x2i - xi, N) > 1

If p is the smallest prime factor of N, then probably

GCD (x2i - xi, N) = p



17

Heuristic Analysis of Expected Runtime

The probability that x0, x1, ... , xk are all
distinct (mod p) is roughly

P = (1 - 1/p)(1 - 2/p)...(1 - k/p)

(compare birthday paradox with p = 365)
so

ln P ∼ -k 2/(2p)

and the expected number of f evaluations is O(p1/2)

Each iteration involves operations on numbers of
order N 2, so time O((log N)2) (we can avoid most of
the GCDs)

Thus the expected runtime is O(p1/2.(log N)2)

Example

F8 = 2256 + 1 = 1238926361552897.p62

[Brent and Pollard, 1980]

I am now entirely persuaded to employ the method,

a handy trick, on gigantic composite numbers

18

The Advantage of a Group Operation

The Pollard rho algorithm takes

xi+1 = f(xi)

Suppose instead that

xi+1 = x1 * xi

where * is an associative operator, i.e.

x * (y * z) = (x * y) * z

Then we can compute xn in O(log n) steps by the
binary powering method,

e.g. x2 = x1 * x1

x4 = x2 * x2

x8 = x4 * x4

x9 = x1 * x8

19

Computation of the Identity (mod p)

Let m be the product of all prime powers less than
some bound B. If the cyclic group <x1> has order g
which is sufficiently smooth, then g is a divisor of m
and

x1
m = I (the identity)

Why is this useful ?

The group is defined mod p but we work mod N
since p is an unknown divisor of N. This can be
considered as using a redundant representation for
group elements.

When we compute I its representation mod N may
allow us to compute p via a GCD computation.

20

Example 1 - Pollard’s p - 1 Algorithm

Here * is just multiplication (mod p) so g | p - 1
and

x1
m = I means x1

m = 1 (mod p)
so

p | GCD (x1
m - 1, N)

The worst case

p� - 1 = 2.prime is possible, and in this case we
need B ≥ p/2, so there are of order p group operations.

However, the worst case does not always occur -
we may be lucky.

Lucky example

p� = 1155685395246619182673033 | M257 = 2257 - 1

p - 1 = 23.32.192.47.67.257.439.119173.1050151
[Baillie]



21

Example 2 - Lenstra’s Elliptic Curve Method (ECM)

ECM is an improvement over the Pollard p - 1
algorithm because different groups can be selected
until we find one whose order is sufficiently smooth
(i.e. has no large prime factors)

Geometry of Elliptic Curves

An elliptic curve is defined by a cubic polynomial in
two variables. By rational transformations it can be
reduced to the Weierstrass normal form

y� 2 = x3 + ax + b

An Abelian group (G, *) can be defined as shown -

[Equations to be inserted by hand here]

22

Algebraic Definition of *

If Pi = (xi, yi) for i = 1, 2, 3

and P3 = P1 * P2

then x3 = λ2 - x1 - x2

y3 = λ(x1 - x3) - y1

where (3x1
2 + a)/(2y1) if P1 = P2

λ =
(y1 - y2)/(x1 - x2) otherwise

Instead of considering operations in R we may
consider operations in a finite field, e.g. Fp

Then p + 1 - 2p1/2 < g < p + 1 + 2p1/2

Since p is unknown we work mod N and detect p
as a nontrivial GCD when attempting to compute an
inverse (consider x1 = x2 (mod p) in the definition of λ)

23

Some Factors found by ECM

c101 = (46741 - 1)/(466.1022869)

= 4089568263561830388113662969166474269.p65

[Brent, Cohen and te Riele - 10300 opn proof]

F11 = 22048 + 1

= 319489.974849.
167988556341760475137.
3560841906445833920513.p564 [Brent, 1988]

24

The Idea of the Quadratic Sieve Method

If we can generate a nontrivial relation

x2 = y2 (mod N)

then provided x ≠ ±y (mod N) the computation of

GCD (x - y, N)

gives a nontrivial factor of N

How to find x, y

Several algorithms generate relations of the form

u2 = v2w (mod N)

where w is in a small set of primes (the factor base).

Once enough such relations have been found,
Gaussian elimination in F2 finds a subset of relations
whose product has only even exponents.



25

Example of Factorisation by MPQS

c103 = (2361 + 1)/(3.174763) =

6874301617534827509350575768454356245025403.p

[Lenstra, Manasse et al, 1989]

Corollary

The composite number N used in the RSA

cryptosystem should have more than 100 decimal digits

26

The Number Field Sieve (NFS)

Our numerical examples have all involved numbers
of the form

N = an ± b

for small a and b, although the factorisation algorithms
did not take advantage of this special form.

The Number Field Sieve does take
�

advantage of
such a special form. It is similar to the Quadratic Sieve
algorithm but works over an algebraic number field
defined by a, n, and b (impractical unless a and b are
small).

Its conjectured runtime is

O(exp(c(log N)1/3(log log N)2/3))

which is asymptotically better than the

O(exp(c(log N)1/2(log log N)1/2))

for algorithms such as MPQS (though the constants c
may differ).

27

Example

Using Q((-8)1/5), the 138-digit number (2457 + 1)/3
was split into 49-digit and 89-digit factors,

p49 = 688535...729193

[Lenstra, Lenstra, Manasse and Pollard, 1989]


