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Given a sequence of tasks to be performed serially, a parallel algorithm is proposed to accel-
erate the execution of the tasks on an asynchronous multiprocessor by taking advantage of fluctu-
ations in the execution times of individual tasks.

A parallel program requiring no critical section is given to implement the algorithm and its
correctness is proved. A spacewise more efficient implementation which requires the use of critical

sections is also given.

An analysis is presented (for both implementations) to estimate the speed-up achievable with
the parallel algorithm. When the execution times are exponentiali}e distributed, and no critical section
is used, the algorithm with k processes yields a speed-up of order k"2,
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1. INTRODUCTION

We are interested in the design and analysis of
parallel algorithms for asynchronous multiprocessors such
as C.mmp (Wulf and Bell, 1972) and Cm* (Fuller et al,
1977). For any given task, the task execution time on
such a system is dependent upon the properties of the
operating system, effects of other users, processor-memory
interference, and many other factors. As a result, it is
often necessary to assume that task execution times are
random variables rather than constants. The fluctuations
in task execution times may be significant (Baudet, 1978).
In this paper we propose a novel way of using asynchron-
ous multiprocessors, to achieve a speed-up by taking ad-
vantage of fluctuations in task execution times. (The usual
way of achieving a speed-up on multiprocessors is through
the exploitation of inherent parallelism in tasks. The two
approaches can, of course, be combined.)

To illustrate with an every-day example: suppose that
a husband and wife go shopping together and find queues
at both checkouts in a supermarket. They can minimise
their expected waiting time by joining separate queues
(and exchanging items when one of them reaches the
head of a queue).

We shall present our result as a solution to the prob-
lem of execution of a sequence of n tasks wq, . .. ,w,
under the following conditions:

Cl1. Fori=2,...,n, task w; cannot be started before the
completion of wij—q (i.e., the tasks are linearly
ordered).

C2. Fori=1,...,n, noparallelism can be utilized in the
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execution of w; (i.e.,, we are not allowed to decom-
pose a task).

C3. The execution time of a task is a random variable
rather than a constant. (This condition formalises
the asynchronous nature of the multiprocessor.)

We view a parallel algorithm for asynchronous multi-
processors as a collection of asynchronous processes which
communicate through the use of global variables. Such an
algorithm is defined by giving the procedure each of its
processes executes when assigned to a processor. While
analyzing the algorithm, we always assume that a pro-
cessor is available for any of the runnable processes of
the algorithm. (See Kung [1976] for a general discussion
of asynchronous parallel algorithms, and Kung and Song
[1977], Robinson [1979] for examples of such algor-
ithms.) In Section 2 we give an algorithm which uses
k 2 1 asynchronous processes to solve the problem. The
algorithm is interesting because at most one process is
doing useful work at any given time. Nevertheless, by
taking advantage of condition C3, the mean execution
time is less for k > 1 than for k = 1, i.e., a speed-up is
achieved.

As an example, consider the computation of
X1, .. .,Xp defined by

Xi+1 = PIXi, . . . ,Xi—d),

where Xg,X—1, . .. ,X—g are given and y is some iteration
function. Let wi+ be the task of computing ¥(x;, ...,
Xi—d). Our algorithm could be used to execute tasks
¥/1, . . . ,Wq, which is equivalent to evaluating X1, ... ,Xp.
The application to root-finding and minimisation algor-
ithms is obvious.

The speed-up ratio Sk (n) of a parallel algorithm
using k processes is defined in Section 3, and some pre-
liminary results are proved there. In Section 4 we give
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Figure 1, A possible task scheduling with three processes,

programs to implement our algorithm both with and
without using critical sections and prove their correct-
ness. In Section 5 we consider the implementation with-
out critical sections, and obtain an analytic expression for
the speed-up under certain assumptions (A1 and A2 of
Section 5). For large n and k, our result is Sk (n) ~
(2k/m)".

In Section 6 we consider the implementation which
uses critical sections. Here the analysis is more difficult,
and we can obtain analytic results only for k < 2. Some
conclusions and open problems are stated in Section 7.

Some caution is necessary when interpreting the
results of this paper. Under conditions C1-C3 above we
can obtain a real speedup in the expected execution time
of a sequence of given tasks. We do not claim to increase
the system throughput. In fact, since redundant comput-
ations are often performed, overall system throughput
may be degraded. It might be necessary to prohibit our
approach if it became too popular amongst the users of a
system of asynchronous multiprocessors! For further
discussion see Section 7.

2.  THE ALGORITHM

For each positive integer k, we define an algorithm
with k processes for executing tasks wq, ... ,wp under con-
ditions C1 and C2 stated in the preceding section. The
algorithm is specified as follows:

Whenever a process, P, is ready to execute a task,

(i) if no task has yet been completed by any

process, process P starts executing task w,

(ii) otherwise, if the last task w, has not yet been

completed by any process, process P starts
executing a task which is unfinished and
ready for execution.
For simplicity, we shall assume that no two tasks are
completed at the same time. Then due to the linear order-
ing of the tasks, (ii) defines without ambiguity a unique
task to be executed by process P.

Let ty,ta,t3, ... with t; < tj+1 be the time instants
of completions of tasks by the processes. The diagram in
Figure 1 illustrates a possible scheduling of the tasks when
they are executed by the algorithm with three processes.

Note that when process Py finishes task w3 at time
tg, process Po has already completed wy. Thus, after Py
completes ws, it starts executing ws rather than wy.
Task wy is skipped by P3. Similarly, tasks ws and wy are
skipped by Py, and tasks wg and w7 by Pp. After any one
of the three processes has executed six tasks, tasks wj
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through wg rather than tasks w; through wg are com-
pleted. A speed-up has been achieved!

Observe that at any given time at most one process
is doing work useful for later computation. With respect
to the scheduling given by Figure 1, the time intervals
on which processes are doing useful computations are
indicated in Figure 2. Thus the speed up is not achieved
by sharing work among processes but is achieved by taking
advantage of fluctuations in the execution times.

3. A SPEED-UP MEASURE

Consider the algorithm with k processes as specified
in the preceding section. The algorithm is said to be the
sequential algorithm if k = 1 and to be a parallel algorithm
if k> 1. Let

Tk (n) = the time to execute tasks wi,wo, . .
the algorithm with k processes.

., Wp by

Let T (n) be the mean of the random variable Ty (n). We
define the speed-up ratio of the parallel algorithm with k
processes to be

Sp {n :jI_‘l_I:_rl_}_
Tk (n)

For each k and for each execution of the algorithm
with k processes, we define si j to be the time instant of
the first completion of task wj, and define sk o = 0. For
example, with respect to the scheduling of Figure 1, with
k =3, we have

$3,1 = 11,532 = 12,533 T l5,53 4 =t3,535 19,536 =
t12,83,7 = l13,.

The following theorem describes the relation between

Figure 2, Time intervals on which processes are doing useful work,
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{ sk iy and { t;} in terms of the scheduling of the tasks. This
theorem is important in Sections 5 and 6 for computing
speed-up ratios.

Theorem 3.1
Suppose that sk j =ty with 1 <i<n-1. Then s j+1 =
ts+j for some 1 <j <k if and only if

(a) the | processes completing tasks at times
t1,t/41, ..., i+j—1 are all distinct, and

(b) the process completing task wj+7 at time
t/+j is one of the j processes mentioned in (a).

Proof

(=>) Suppose that some process P completes two tasks at
times t j+pp and t j+ 1y for 0 <h <m=<j—1. Then, since at
time t s+ task w; has already been completed, the task
completed at time t ;+, by process P must be wi+q. This
contradicts the fact that w4y is completed for the first
time at time ty+j, since t/+m < t+j. This proves (a).

Let P be the process completing task wi+1, for the
first time, at time t/+;. Suppose that P does not complete
any task in the time interval [t , t ,r+i_1]. Then the task
completed by P at time t ;4+j must be started before time
t ;. But at any time before t, task wj is not completed yet.
Hence any task started before time t ; cannot be wi+1. In
particular, the task completed by P at time t ;+j cannot be
wi+1. This contradiction proves (b).

(<=) The proof is omitted, since it is similar to the one
above.

Fori=1,2,...,n, let 7 (i) be the random variable repre-
senting the quantity sk ; — sk,i—1. Then since Tk (n) =
Sk n, we have

(3.1) T (n) =7 () + 7 (2) + ...+ 7 (n).

(3.1) will be used later to compute Ty (n), which is needed
for evaluating the speed-up ratio Sk (n).

4. PARALLEL PROGRAMS FOR THE ALGORITHM
AND THEIR CORRECTNESS
We give two programs to implement the algorithm
with k processes: one without critical sections and one
with critical sections.

4.1 A Program without Critical Sections
Program A:
global (integer or real) array U[1:n];
global Boolean array M[1:n+1];
Initialization: begin
form « 1 to n+1 do M[m] «false;
start processes Py, ... ,Pk
end

Process Pj: begin integer m;;
mi+1;

(4.1) while M[m;] do m; «mj+1;
(4.2) while m; én do

begin
(4.3) perform task Wp;;
(4.4) write the output of task W, on Ulm;];
(4.5) M[m;] «true;
(4.6) while M[m;]| do mj «mj+1

end

end
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Assume that the tasks are not allowed to alter the
array M and integers m;. We shall prove that Program A is
correct in the following sense:

P1. Form =2,...,n, task wq, is executed only if task
Wm_1 has been finished and its output has been
written on U[m—1].

P2. Forj=1,...k, process Pj can execute the loops at
(4.1), (4.2) and (4.6) at most n times.

P3, All the tasks wq, ... ,wy will have been completed
at the time when any one of the processes Py, ... Pk
terminates its execution.

Property P2 guarantees that the program will term-
inate. (Note that there is no possibility of deadlocks in
the program.) Property P1 ensures that the linear ordering
requirement of the executions of the tasks is maintained,
and property P3 implies that when the program termin-
ates all the tasks are completed.

Lemma 4.1
(i) Form=1,...,n if M[m] is set to true, it
remains true afterwards.
(i) After being initialized to false, M[n+1] is
never modified.

Proof

After initialization, M can only be modified through
statement (4.5) executed by some process Pj. But when
entering the main while-loop (starting at (4.2) ), m; satisfies
the condition m; < n and is not modified before the execut-
ion of (4.5). Therefore M[n+1] can never be modified.

Lemma 4.2

Forj =1, ...k, if mj has the value m = 2, then
M[m—1] is true.
Proof

Suppose that mj = m with m 2 2 at time t. If mj was
incremented by one to the value m inside the while state-
ment (4.1) or (4.6), then the test of M[mj| being true
with mj = m—1 must have been satisfied. Hence M[m—1]
was true at some time before t, Thus, by Lemma 4.1
M[m~—1] is true at time t.

Lemma 4.3
Form=2,...
true,

n, if M[m] is true, then M[m—1] is

Proof

Suppose that M[m] is true. Then M[m] must have
been assigned to true through instruction (4.5) by some
process Pj with m; having the value m. Therefore, by
Lemma 4.2, M[m—T] is true.

Lemma 4.4
For m=1,...,n, if M[m] is true, then task wp, is
completed and its output is on U[m].

Proof

Suppose that M[m] is true. Then M[m] must have
been assigned to true through instruction (4.5) by some
process P; with m; having the value m. Since Pj executes
instruction (4.5) only after the completion of task wpm;
and since m; is not modified in between, we conclude
that task w,, is completed.

We are now able to prove the following theorem.
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Theorem 4.1
Program A satisfies properties P1, P2 and P3.

Proof

1. Suppose that process P; is executing wy, with m =
mj = 2. Then by Lemma 4.2 M[m—1] is true, and
hence by Lemma 4.4 wqy_1 is completed and its
output is on U[m—1]. We conclude that program A
satisfies P1.

2. Property P2 follows from (ii) of Lemma 4.1, since
mj is incremented by one in each execution of a
loop.

3. Suppose that a process, say process P;, terminates.
This happens only when m; = m+1. Thus by Lemma
4,2 M[n] is true and hence by Lemma 4.3 M[m] is
true for all m =1, ... ,n. Therefore by Lemma 4.4
all tasks are completed. We have shown that Pro-
gram A satisfies property P3.

Program A is very reliable in the following sense.
Property P3 implies that, even if some processes fail (for
reasons external to the algorithm: e.g., “‘crash’ of the
processors executing the processes) the program may
still continue executing tasks and eventually complete all
the tasks provided that there remains at least one active
process. We shall not pursue this reliability issue any
further in this paper, though we believe it is important.

4.2 A Program with Critical Sections

For problems where we are only interested in the
output of the last task wy, the use of the global arrays
U[1:n] and M[1:n+1] in Program A can be avoided at
the expense of using critical sections,

We shall illustrate the idea with the following ex-
ample, Consider the problem of generating the nth iterate
Xn by x; + ¢(x;—1) given the initial iterate xg. Suppose
that we use Program A. Then corresponding to the global
array U[1:n] we have the global array x[0:n] where x[i]
keeps the value of the ith iterate, and (4.3) and (4.4)
become

x[mj] «@(x[mj—1]).

Note that we only need x[n]. The use of the array x[0:n]
is wasteful in space, and might even be impractical (e.g.,
when n is large and when the elements x[0] x[1], . ..,
x[n] are themselves vectors or complicated structures).
The following program solves the problem:

Program B:
global integer m; global real x;

Initialization: begin
m+1 VX X0,

start processes Py, ..., Pk
end
Process Pj: begin integer m;; real yj;
(4.7) {mj «m;yj+x}
while m; <'n do
begin
yj *elyj)
(4.8) {'if mj=m then (m «mj+1;x +yj) };
(4.9) { mj*m; yj +x}
end
end
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It is crucial to assume that the statements enclosed
within a pair of curly brackets (lines (4.7), (4.8) and
(4.9)) are programmed as critical sections. (As a matter
of fact, the two lines (4.8) and (4.9) can be programmed
as one critical section.) With this assumption it is possible
to prove the correctness of the above program. The proof
is based on the observation that the global variable m is a
non-decreasing function of time which takes on all integer
values between 1 and n+1. The proof is relatively easy and
hence is omitted here.

Note that, as we already mentioned, x and y; may
represent a large amount of data. Hence the execution of
X *+yj oryj+*x inside a critical section may take a signifi-
cant amount of time. After presenting, in Section 5, an
analysis for programs which do not have critical sections,
we will give, in Section 6, an analysis for programs which
do have critical sections.

5. SPEED-UP RATIOS — IMPLEMENTATIONS WITH-

OUT CRITICAL SECTIONS

Let t; ; be the random variable representing the time
to execute task w; by process Pj. /n this and the next
section, we assume that the ty, for i =1, ... nandj=
1, ...,k are independent andl identically distributed. The
assumption is reasonable when all tasks are of the same
complexity. We shall use T to denote any of the random
variables t; j, and use 7 to denote the mean of T. We assume
that T is independent of k, the number of processes in the
algorithm. This is a reasonable assumption when there are
more than k processors, memory is sufficiently inter-
leaved and the time lost due to memory interference can
be ignored.

It is easy to obtain Ty (n). By (3.1) with k = 1, we
have

Ty(n)=71 () +7 (2)+...+7 (n).

Since, in this case, the 71 (i) are independent and identical-
ly distributed with mean 7, we deduce

(5.1) Tq (n) =n7.

In the rest of the paper, in order to evaluate Ty (n),
we impose the following further assumptions:

Al. Al processes start at the same time t = 0. (l.e., at tg
all Shc k processes start with the execution of task

W1
A2. The random variable T is exponentially distributed

with mean .

We observe that by the independence of the t;; and
by assumption A2 the quantities 7, (i), i=1,...,n, are
independent random variables. It follows, from equation
(3.1) and assumption A2, that

(5.2) Te (n) =7, (1) +...+7 (n).
In addition, by assumption A1, 7 (1) is given by the

minimum of k random variables distributed as T. Since T
is exponentially distributed, the minimum has the mean:

T
(53) 7 (1) =7~

We now consider 7y (i+1) fori =1, ... n-1. Define
the distribution probability Pk,j, i = 1,2, ..., as follows.
(We use here the same notation as in Section 3.) Let Pk,j
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be the probability that sy j+7 =t 14> given that sg ; =t
for some /. Hence for 1 <] <k, pk j s the probability that
conditions (a) and (b) of Theorem 3.1 hold. Using the same
argument as used in the proof of Theorem 3.1, it is easy to
show that py; = 0 if j > k. In addition, assumption A2
implies that, from the memory-less property of the ex-
ponential distribution, pyg j is independent of i and /. We
have

t ;41 — t; with probability pg 1,
(trer =)+ (trsn —tyeq)

(5.4) 7 (i+1) = with probability py:2,

(tper —t)+. o+ (e —tyrg—1)
with probability pk k.

Since by assumption A2 the random variables t ;47 — t,

/=1,2, ..., are independent (and identically distributed)
random variables with mean ;]z": we derive from (5.4)
that, fori=1,...,n-1, the mean of 1 (i+1) is given by:
k k
(5.5) T (ix1) = Zpii F) =T Zipk -
=1 k=1

By (5.2), (5.3) and (5.5), we obtain that

1 K
A0+ (o) 2 1.
l=

(5.6) T (n) =

To evaluate Ty (n), we need to know the following quan-
tity:

k
Nk = i2:31ip|<,j-

Lemma 5.1
(5.7) Ak forj=1 k
. = —————, forj=1,...,k

Pk.,j k'”[k-i]! J
Proof

We first observe that, by assumption A2, for 7 =
1,2, ., any one of the k processes is equally likely to
complete a task at time t ;. Suppose that sx ; = t; and
Sk,i+1 = t s+j. Then by condition (a) of Theorem 3.1, the
j processes completmg tasks at time t /,tf41, ..., 1/4j]
are different. This occurs with probability

ko (ke1) (k=i+1) - __ k!
(58] S ki(k-)!

Moreover, by condition (b} of Theorem 3.1, the process
completing a task at time t ;+j must be one of the j prow

cesses mentioned above. This occurs with probability e

Hence IEil\e probability that sy ; = t ; and s j+1 =t j4j is
j !

ko k(K-

The problem of computing the leading terms in the
asymptotic series for Ny is rather difficult. Fortunately,
some known results can be used here. Define

=3 ekl
Q« _1.2.51 ki (k-j)r
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Lemma 5.2
Nk = Qk.
Proof
We have
k
Ni = 2 ipk,j J,§1(k (k-i))
k k ]
k 2 Pk :E(k-!}pk,
_ ko kt ok k!
,:21 ki (k-j)! i1 Kit1 (k-j-1)!
ok jk! Yk (i-1)k!
151 ki (k)t 7 5y K (k)
k k!
G

The leading terms in the asymptotic series for Qg are
known (Knuth, 1973, Eq. (25) in §1.1.11.3):

Qi = \/w Ly L /o 4 v 1 /T 4+0(k2).

]2 2k 135k 288 Y 9ok3

Hence by (5.1), (5.6) and Lemma 5.2, we have the follow-
ing theorem:

Theorem 5.1
Using k processes, the speed-up ratio is given by
_ nk
Sk (n) = 55y
where
\/ﬂ' -|- I \/ '-’7 - +

5k 288 2k3

Asymptotically, when both n and k are large we obtain
Sk (n) ~v2- v/ k=0.798/k.
T

6. SPEED-UP RATIOS — IMPLEMENTATIONS WITH

CRITICAL SECTIONS

In this section, we analyze speed-up ratios achievable
by the algorithms when they are implemented with critical
sections.

The diagram of Figure 3 illustrates a portion of a pos-
sible scheduling of the tasks by the parallel algorithm with
two processes. In the diagram, the crosses and circles
indicate the sequences of time instants u; and vj,
i=1,2, . .., when a process completes a task and when the
same process completes the subsequent critical section.
Since, at any time, only one process can execute the
critical section, a process may have to wait before enter-
ing the critical section. The periods of waiting times are
indicated by the shaded lines. The time instants t; when
processes actually enter the critical section are indicated
by the triangles.

As in the preceding section, we assume that the time
a process takes to execute a task is a random variable inde-
pendent of the process and of the task. Let F be its dis-
tribution function, and f its density function. Similarly, we
assume that the time a process takes to execute the critical
section is a random variable independent of the process. Let
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Figure 3. A possible task scheduling with two processes.
_ ) Forj = Tand 2, let pj be the probability that sy j+1 =
B be its distribution function and b its density function. t y+j, given that sp ; = t; for some /. As in Section 5, by
Furthermore, let 7 and § denote the average execution Theorem 3.1, we obtain, fori=1,2,...n-1,
times for a task and for the critical section, respectively.
In the following, we derive a general formula for eval- s — U with probability pq,

uating the speed-up ratio achievable by the parallel
algorithm with two processes for the case when F is anm ex-
ponential distribution function and B is a general distribu-
tion function,

Observe that at time t; when a process enters the criti-
cal section, the second process is necessarily performing
some task (possibly just starting a task). Since the distribu-
tion function F is exponential, at time t; the remaining
execution time for the task performed by the second pro-
cess is distributed according to the same distribution func-
tion F. Therefore the evolution of the processes, from time
t; on, is independent of the past for any distribution B,

In particular, the random variables tj+ — tj, fori=1,2,...,
are independent and identically distributed, and the same
holds for the random variables 7y (i+1), fori=1,2, ...,

defined in Section 3.

In this section, let Ty {(n) and T4 (n) denote the time
to complete task wp and the subsequent critical section by
the sequential algorithm and the parallel algorithm with
two processes, respectively. Let Ty (n) and To (n) denote
their means. It follows from the above discussion that, for
k=1 and 2, we have:

(6.1) Tk (n) =7 (1) +7x (2)+. ..+ 7 (n) +8

where the last term, 8, accounts for the time to execute the
last critical section (after the completion of task wp).
Consider first the sequential algorithm. In this case,
we simply have7y (1) =1, and, fori=2,...,n,71 (i) =0+
Therefore, by equation (6.1): (6.2) Ty (n) = n{r +8).
(Here we ignore the fact that in the sequential algorithm
the code corresponding to critical sections in the parallel
algorithm can be shortened, since there is no need to
include synchronization primitives.)
Consider now the parallel algorithm. As (5.3), we

(6.4) 72 (i+1) =
(+1 — t) + (ys2 — ) with probability
P2,

We have already mentioned that the random variables
ty+1 — t;, /=12, ..., areindependent and identically dis-
tributed. Let u denote their mean. It follows from (6.4)
that the mean of 75 (i+1) is given by

(6.5) T (i+1) =py ~+py - 2u=(2—pylu,

since pyp +poy = 1.

The following lemma establishes the values of u and
P1.

Lemma6.1
(6.6) =B+5 B*(1/7),
(6.7) py =5 B*(1/7),

where B* is the Laplace transform of the distribution
function B,

Proof

We consider transitions for passing from time t; to
time tj+1. Up to a permutation of the processes, there are
three possible transitions as defined by the diagrams in
Figure 4,
where the notation of Figure 3 is assumed,

Let H; (1), j = 1,2 and 3, be the probability that trans-
ition A; takes place and that tj+ — t; <t. We have:

Hy (0 =15 [T —Fx)] J§ bly)f(x-y)dy dx,

have

(6.3) ™ (1) =17 Hay (1) = f§ f(x) £ bly)[1 — F(x-y) dy dx,
Hs (1) = fi b(x)F(x)dx.

i b1 t Yy
I o ;‘r. h—0— fr—————0
Al: Az: AB:
t, t.
i+1 i+1

Figure 4. Three possible transitions.
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But we observe that H(t)=Hy (t) + Hy (t) + H3 (t) is the
distribution function for tj+7 — t; and that the same pro-
cess enters the critical section at both times t; and tjsq
only with transition Ay. Hence:

uo= [P = 31 - Hg]dy,
p1 =S dH (1) = 15 [1 — F(x)] [§ bly)f(x+y)dy dx,

from which equations (6.6) and (6.7) follow easily.
By collecting the preceding results, we obtain the fol-
lowing theorem:

Theorem 6.1:

S5 () = LUALL

(n-1) [2 —lzB*{Hr}l {,8+15TB*{1,’7]] +%T+.6

1 T+ﬁ 1
- ot
2-“-%8*{117} ﬁ*%B*(UT} * 0l

We give below B*(1/7) for some distribution functions B.
(i)  Bisexponential (with parameter 1/8):

B*(1/7) =T—Tﬂ;'3.
(i) B is the Dirac function at the point §:

B*¥(1/7) = eBIT,

(iii) B is uniform over |a,b]:
* W,:E'aff—c‘b”_
B (/) =y

In Figure 5, we have plotted the asymptotic speed-up
ratio So as a function of the ratio a = /(7 + B} for the three
distributions mentioned above (in the third case, a and b
have been chosen as §/2 and 3f/2, respectively).

When a tends to 0 (or § tends to infinity), the algor-
ithm approaches its worst performance, since the evalu-
ations of the two processes tend to be exactly interleaved.
When a = 1 (or 8 = 0), the critical section is non-existent
and we have the results of Section 5.

We observe from Figure 5 that the best speed-up
ratio is always obtained when B is an exponential dis-
tribution (the first case). We also note that the results
obtained for the two other cases are very close to each
other and close to the results obtained with the exponent-
ial distribution. This suggests that the results obtained
with the exponential distribution could be used as approx-
imations to results obtained with other distributions.

We can observe from Figure 5 that, unlike the imple-
mentation without critical section, better speed-up is not
necessarily achieved by using more processes, though we
assume that a processor is always available to each process!
More precisely, the figure indicates that (when B is an
exponential distribution) in order to achieve the best
speed-up when two processors are available, one should
create two processes when a > 0.586, but only one pro-
cess when a < 0,.586. Similar results are useful in practice,
since they can be used to determine the optimal number of
processes to create in order to minimize the overall execut-
ion time.
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Figure 5. Speed-up ratio with two processes for various distrib-
utions B.

7. CONCLUSION AND OPEN PROBLEMS

In recent years, research in parallel algorithms has
dealt mostly with synchronized array or vector processors
such as the ILLIAC IV or the CDC STAR, and there are
very few results on the design and analysis of algorithms
for asynchronous multiprocessors. In this paper, we have
proposed a novel method of using asynchronous multi-
processors which takes advantage of their asynchronous
behaviour. We have also presented analytic techniques to
evaluate the performance of an asynchronous algorithm
using the method. The algorithm is expected to achieve a
large speed-up when the fluctuations in the task execution
times are relatively large. If inherent parallelism in tasks
can also be utilized, a larger speed-up may be obtained.

As noted in Section 2, at any given time at most
one process in the algorithm presented is doing work
useful for later computation. In this sense, the algorithm
achieves its speed-up through redundant computation
performed concurrently by a number of processes. It has
long been recognized that redundancy brings reliability.
Indeed, as observed in Section 4, the algorithm enjoys a
nice reliability property. Thus, this paper shows a tech-
nique by which both speed and reliability can be achieved
through redundant computation. We expect that similar
ideas can be used to construct fast and reliable algorithms
for a variety of prablems.

For the implementation with critical sections we
obtained analytic results for two processes. The results
show that the parallel algorithm using two processes is
not necessarily faster than the sequential algorithm, because
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of the critical section overheads associated with the para-
llel algorithm. This confirms practical experience that the
speed-up ratio does not necessarily increase as the number
of processes increases. It would be interesting to extend
our analytic results for more than two processes. We
have chosen to deal with a simple problem by imposing
the condition that the tasks are linearly ordered. An inter-
esting extension would be to consider a set of tasks
(possibly generated dynamically) which are ordered by a
directed graph (i.e., partially rather than linearly ordered).
Another interesting extension would be to design algor-
ithms where the execution of a task by a process may be
interrupted by another process. We expect that this ap-
proach could result in more efficient algorithms, since
processes which were not doing useful work could be
interrupted. A careful performance analysis including the
additional overheads introduced by the interruption mech-
anism would be needed.

Following circulation of a draft of this paper, Barak
and Downey (1980) generalised our results by considering
the execution of a chain of tasks with interrupts, and
suggested several other directions in which our results
might be extended.

The results of this paper are not only applicable to
multiprocessor systems. The ideas can be used to solve
any problem in operation research which satisfies con-
ditions similar to C1, C2 and C3,
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